On spectral divisors for a class of non-selfadjoint operator polynomials

Axel Torshage

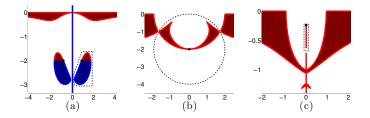
Umeå University, Sweden

axel.torshage@math.umu.se

Joint work with Christian Engström

June 8, 2016

- Accumulation of a branch of eigenvalues of operator polynomials and minimality and completeness of the associated vectors.
- Sufficient conditions for accumulation for a rational operator function with applications to Maxwells equations.



2 Accumulation of eigenvalues of operator polynomials

3 Accumulation of eigenvalues to the poles of a rational operator function

• Let $n, k \in \mathbb{N}$, where $k \leq n$, and consider the polynomial

$$P(\lambda) := \sum_{i=0}^{n} P_i \lambda^i.$$

- $P_0 = (I + K)H$, where K is compact and $H \in S_p(\mathcal{H})$ is normal. (*H* has spectrum on a finite number of rays from the origin).
- P_i is compact and ker $H \subset \ker P_i$ for $i = 1, \ldots, k 1$.
- $P_k = I + \widetilde{K}$, where \widetilde{K} is compact.

- Pioneers in this area include Krein, Gohberg, Langer, Matsaev and Russo.
- In the case ker H = {0} and k = 1 this was studied in the book Introduction to the spectral theory of polynomial operator pencils by A. Markus.
- We want to generalize results concerning accumulation of eigenvalues to H with non-trivial kernel and k ≥ 1.

- Pioneers in this area include Krein, Gohberg, Langer, Matsaev and Russo.
- In the case ker H = {0} and k = 1 this was studied in the book Introduction to the spectral theory of polynomial operator pencils by A. Markus.
- We want to generalize results concerning accumulation of eigenvalues to H with non-trivial kernel and k ≥ 1.

• Assume that there exists operator polynomials $Q(\cdot)$ and $R(\cdot)$ such that

$$P(\lambda) = Q(\lambda)R(\lambda) = \left(\sum_{i=0}^{n-k} \lambda^i Q_i\right) \left(\lambda^k + \sum_{i=0}^{k-1} \lambda^i R_i\right),$$

and there exist some open bounded $0 \in \Gamma \subset \mathbb{C}$ such that $\sigma(R) = \Gamma \cap \sigma(P)$ and $\sigma(Q) \subset \mathbb{C} \setminus \Gamma$.

- Then R is called a spectral divisor of P of order k.
- From the definition of P and the spectral divisor it follows that: i. $R_0 = (I + \hat{K})H$, where \hat{K} is compact.
 - ii. R_i is compact and ker $H \subset$ ker R_i for $i = 1, \ldots, k 1$.
- *P* has a spectral divisor of order *k* if:
 - i. $\overline{W(P)} \cap \partial \Gamma = \emptyset$.
 - ii. $(P(\lambda)u, u)$ has exactly k roots in Γ for all $u \in \mathcal{H} \setminus \{0\}$.

• Assume that there exists operator polynomials $Q(\cdot)$ and $R(\cdot)$ such that

$$P(\lambda) = Q(\lambda)R(\lambda) = \left(\sum_{i=0}^{n-k} \lambda^i Q_i\right) \left(\lambda^k + \sum_{i=0}^{k-1} \lambda^i R_i\right),$$

and there exist some open bounded $0 \in \Gamma \subset \mathbb{C}$ such that $\sigma(R) = \Gamma \cap \sigma(P)$ and $\sigma(Q) \subset \mathbb{C} \setminus \Gamma$.

- Then R is called a spectral divisor of P of order k.
- From the definition of *P* and the spectral divisor it follows that: i. $R_0 = (I + \hat{K})H$, where \hat{K} is compact.
 - ii. R_i is compact and ker $H \subset \ker R_i$ for $i = 1, \ldots, k 1$.
- P has a spectral divisor of order k if:
 - i. $\overline{W(P)} \cap \partial \Gamma = \emptyset$.
 - ii. $(P(\lambda)u, u)$ has exactly k roots in Γ for all $u \in \mathcal{H} \setminus \{0\}$.

Spectral divisor

• Assume that there exists operator polynomials $Q(\cdot)$ and $R(\cdot)$ such that

$$P(\lambda) = Q(\lambda)R(\lambda) = \left(\sum_{i=0}^{n-k} \lambda^i Q_i\right) \left(\lambda^k + \sum_{i=0}^{k-1} \lambda^i R_i\right),$$

and there exist some open bounded $0 \in \Gamma \subset \mathbb{C}$ such that $\sigma(R) = \Gamma \cap \sigma(P)$ and $\sigma(Q) \subset \mathbb{C} \setminus \Gamma$.

- Then R is called a spectral divisor of P of order k.
- From the definition of P and the spectral divisor it follows that:
 - i. $R_0 = (I + K)H$, where K is compact.
 - ii. R_i is compact and ker $H \subset$ ker R_i for $i = 1, \ldots, k 1$.
- P has a spectral divisor of order k if:
 - i. $\overline{W(P)} \cap \partial \Gamma = \emptyset$.
 - ii. $(P(\lambda)u, u)$ has exactly k roots in Γ for all $u \in \mathcal{H} \setminus \{0\}$.

• Define $\mathcal{H}_0 := \ker H$, $\mathcal{H}_1 := \mathcal{H} \perp \mathcal{H}_0$ and let $V_i^* : \mathcal{H} \to \mathcal{H}_i$ denote the partial isometry given by

$$V_i^* u = \begin{cases} u, & u \in \mathcal{H}_i \\ 0, & u \in \mathcal{H}_i^{\perp} \end{cases}$$

• ker $H \subset$ ker R_i for i < k thus, in the block representation $\mathcal{H} \simeq \mathcal{H}_1 \oplus \mathcal{H}_0$, the operator R_i for i < k has the structure

$$R_i = \begin{bmatrix} C_i & 0 \\ D_i & 0 \end{bmatrix}.$$

How to deal with ker $H \neq \{0\}$

• *R* admits the factorization

$$R(\lambda) = \begin{bmatrix} C(\lambda) & 0\\ \sum_{i=0}^{k-1} \lambda^i D_i & \lambda^k \end{bmatrix} = \begin{bmatrix} C(\lambda) & 0\\ 0 & I \end{bmatrix} \begin{bmatrix} I_{\mathcal{H}_1} & 0\\ \sum_{i=0}^{k-1} \lambda^i D_i & \lambda^k \end{bmatrix},$$

where
$$C(\lambda) := \lambda^k + \sum_{i=0}^{k-1} \lambda^i C_i$$
.

• *R* is said to be equivalent to *C* on $\mathbb{C}\setminus\{0\}$ after extension

i.
$$\sigma(R) \setminus \{0\} = \sigma(C) \setminus \{0\}.$$

- ii. There is a one-to-one-correspondence between the eigenvectors and associated vectors of R and of C.
- The operator polynomial *C* satisfies:

i. $C_0 = (I + K_1)H_1$, where K_1 is compact and ker $H_1 = \{0\}$,

ii. C_i is compact for $i = 1, \ldots, k - 1$.

• *R* admits the factorization

$$R(\lambda) = \begin{bmatrix} C(\lambda) & 0\\ \sum_{i=0}^{k-1} \lambda^i D_i & \lambda^k \end{bmatrix} = \begin{bmatrix} C(\lambda) & 0\\ 0 & I \end{bmatrix} \begin{bmatrix} I_{\mathcal{H}_1} & 0\\ \sum_{i=0}^{k-1} \lambda^i D_i & \lambda^k \end{bmatrix},$$

where $C(\lambda) := \lambda^k + \sum_{i=0}^{k-1} \lambda^i C_i$.

• *R* is said to be equivalent to *C* on $\mathbb{C}\setminus\{0\}$ after extension

i.
$$\sigma(R) \setminus \{0\} = \sigma(C) \setminus \{0\}.$$

- ii. There is a one-to-one-correspondence between the eigenvectors and associated vectors of R and of C.
- The operator polynomial C satisfies:

i. $C_0 = (I + K_1)H_1$, where K_1 is compact and ker $H_1 = \{0\}$,

ii.
$$C_i$$
 is compact for $i = 1, \ldots, k - 1$.

• *R* admits the factorization

$$R(\lambda) = \begin{bmatrix} C(\lambda) & 0\\ \sum_{i=0}^{k-1} \lambda^i D_i & \lambda^k \end{bmatrix} = \begin{bmatrix} C(\lambda) & 0\\ 0 & I \end{bmatrix} \begin{bmatrix} I_{\mathcal{H}_1} & 0\\ \sum_{i=0}^{k-1} \lambda^i D_i & \lambda^k \end{bmatrix},$$

where $C(\lambda) := \lambda^k + \sum_{i=0}^{k-1} \lambda^i C_i$.

• *R* is said to be equivalent to *C* on $\mathbb{C}\setminus\{0\}$ after extension

i.
$$\sigma(R) \setminus \{0\} = \sigma(C) \setminus \{0\}.$$

- ii. There is a one-to-one-correspondence between the eigenvectors and associated vectors of R and of C.
- The operator polynomial C satisfies:

i.
$$C_0 = (I + K_1)H_1$$
, where K_1 is compact and ker $H_1 = \{0\}$,

ii. C_i is compact for $i = 1, \ldots, k - 1$.

- Assume k = 1, then if $I + K_1$ is invertible it follows that $C(\lambda) = \lambda + (I + K_1)H_1$ and the eigenvectors and associated vectors in \mathcal{H}_1 are complete and minimal.
- It follows that the eigenvectors and associated vectors to $\sigma(P) \cap \Gamma$ are complete and minimal in \mathcal{H} .
- Hence, there is a branch of eigenvalues accumulating to 0 if and only $\dim \mathcal{H}_1 = \infty.$

- Assume k = 1, then if $I + K_1$ is invertible it follows that $C(\lambda) = \lambda + (I + K_1)H_1$ and the eigenvectors and associated vectors in \mathcal{H}_1 are complete and minimal.
- It follows that the eigenvectors and associated vectors to σ(P) ∩ Γ are complete and minimal in H.
- Hence, there is a branch of eigenvalues accumulating to 0 if and only $\dim \mathcal{H}_1 = \infty.$

- Assume k = 1, then if I + K₁ is invertible it follows that
 C(λ) = λ + (I + K₁)H₁ and the eigenvectors and associated vectors
 in H₁ are complete and minimal.
- It follows that the eigenvectors and associated vectors to $\sigma(P) \cap \Gamma$ are complete and minimal in \mathcal{H} .
- Hence, there is a branch of eigenvalues accumulating to 0 if and only $\dim \mathcal{H}_1 = \infty.$

• If k > 1, then $C(\lambda)$ is a compact perturbation of

$$\widetilde{C}(\lambda) := \lambda^k - (I + K_1)H_1,$$

which has a complete set of associated vectors.

• Using continuity of eigenvalues under compact perturbations and a fix point theorem we show that if dim $\mathcal{H}_1 = \infty$ there is an accumulation of eigenvalues to 0.

• If k > 1, then $C(\lambda)$ is a compact perturbation of

$$\widetilde{C}(\lambda) := \lambda^k - (I + K_1)H_1,$$

which has a complete set of associated vectors.

• Using continuity of eigenvalues under compact perturbations and a fix point theorem we show that if dim $\mathcal{H}_1 = \infty$ there is an accumulation of eigenvalues to 0.

The studied rational operator function

$$T(\omega) := A - \omega^2 - \frac{\omega^2}{c - \mathrm{i}d\omega - \omega^2}B, \quad \mathrm{dom} \ T(\omega) = \mathrm{dom} \ A,$$

where $\omega \in \mathcal{C} := \mathbb{C} \setminus \{\delta_+, \delta_-\}, \quad \theta := \sqrt{c - \frac{d^2}{4}}, \quad \delta_{\pm} := \pm \theta - \mathrm{i}\frac{d}{2}.$

- $T(\omega)$ linear operator in a Hilbert space \mathcal{H} .
- A is a self-adjoint operator in H. Further W(A) ⊂ (α₀, ∞) and the resolvent of A is in S_p(H) for some p.
- $B \ge 0$ is a bounded self-adjoint operator in \mathcal{H} .
- The constants satisfy $c \ge 0$ and d > 0.

• Can we show accumulation of the eigenvalues to the poles of T?

The studied rational operator function

$$T(\omega) := A - \omega^2 - \frac{\omega^2}{c - \mathrm{i}d\omega - \omega^2}B, \quad \mathrm{dom} \ T(\omega) = \mathrm{dom} \ A,$$

where $\omega \in \mathcal{C} := \mathbb{C} \setminus \{\delta_+, \delta_-\}, \quad \theta := \sqrt{c - \frac{d^2}{4}}, \quad \delta_{\pm} := \pm \theta - \mathrm{i}\frac{d}{2}.$

- $T(\omega)$ linear operator in a Hilbert space \mathcal{H} .
- A is a self-adjoint operator in H. Further W(A) ⊂ (α₀, ∞) and the resolvent of A is in S_p(H) for some p.
- $B \ge 0$ is a bounded self-adjoint operator in \mathcal{H} .
- The constants satisfy $c \ge 0$ and d > 0.
- Can we show accumulation of the eigenvalues to the poles of T?

 \bullet Define the "equivalent" bounded polynomial $\mathit{P}(\cdot)$ as

$$\mathsf{P}(\lambda) := \lambda \left(\lambda + \sqrt{4c - d^2} \right) (\mathsf{A} - \alpha_0)^{-\frac{1}{2}} \mathsf{T}(\lambda + \delta_+) (\mathsf{A} - \alpha_0)^{-\frac{1}{2}}.$$

- $P(\lambda)$ is on the desired form where k = 1 if $d \neq 2\sqrt{c}$ and k = 2 if $d = 2\sqrt{c}$.
- *P* has a spectral divisor of order *k* if there is some open bounded $\Gamma \in \mathbb{C}$ such that and $0 \in \Gamma$ and
 - i. $\overline{W(P)} \cap \partial \Gamma = \emptyset$.
 - ii. $(P(\lambda)u, u)$ has exactly k roots in Γ for all $u \in \mathcal{H} \setminus \{0\}$.
- *P* has a spectral divisor if *T* satisfies the following conditions: There is a $\hat{\Gamma} \subset \mathbb{C}$ such that $\delta_+ \in \hat{\Gamma}$ and
 - i. $\overline{W(T)} \cap \partial \widehat{\Gamma} = \emptyset$.
 - ii. $(T(\omega)u, u) = 0$ has exactly k solutions in $\widehat{\Gamma}$ for a fixed $u \in \mathcal{H} \setminus \{0\}$.

• Define the "equivalent" bounded polynomial $P(\cdot)$ as

$$\mathsf{P}(\lambda) := \lambda \left(\lambda + \sqrt{4c - d^2} \right) (\mathsf{A} - \alpha_0)^{-\frac{1}{2}} \mathsf{T}(\lambda + \delta_+) (\mathsf{A} - \alpha_0)^{-\frac{1}{2}}.$$

- $P(\lambda)$ is on the desired form where k = 1 if $d \neq 2\sqrt{c}$ and k = 2 if $d = 2\sqrt{c}$.
- *P* has a spectral divisor of order *k* if there is some open bounded $\Gamma \in \mathbb{C}$ such that and $0 \in \Gamma$ and
 - i. $\overline{W(P)} \cap \partial \Gamma = \emptyset$.
 - ii. $(P(\lambda)u, u)$ has exactly k roots in Γ for all $u \in \mathcal{H} \setminus \{0\}$.
- *P* has a spectral divisor if *T* satisfies the following conditions: There is a $\hat{\Gamma} \subset \mathbb{C}$ such that $\delta_+ \in \hat{\Gamma}$ and
 - i. $\overline{W(T)} \cap \partial \widehat{\Gamma} = \emptyset$.
 - ii. $(T(\omega)u, u) = 0$ has exactly k solutions in $\widehat{\Gamma}$ for a fixed $u \in \mathcal{H} \setminus \{0\}$.

• Define the "equivalent" bounded polynomial $P(\cdot)$ as

$$\mathsf{P}(\lambda) := \lambda \left(\lambda + \sqrt{4c - d^2} \right) (A - \alpha_0)^{-\frac{1}{2}} \mathcal{T}(\lambda + \delta_+) (A - \alpha_0)^{-\frac{1}{2}}.$$

- $P(\lambda)$ is on the desired form where k = 1 if $d \neq 2\sqrt{c}$ and k = 2 if $d = 2\sqrt{c}$.
- *P* has a spectral divisor of order *k* if there is some open bounded $\Gamma \in \mathbb{C}$ such that and $0 \in \Gamma$ and
 - i. $\overline{W(P)} \cap \partial \Gamma = \emptyset$.

ii. $(P(\lambda)u, u)$ has exactly k roots in Γ for all $u \in \mathcal{H} \setminus \{0\}$.

- *P* has a spectral divisor if *T* satisfies the following conditions: There is a $\hat{\Gamma} \subset \mathbb{C}$ such that $\delta_+ \in \hat{\Gamma}$ and
 - i. $\overline{W(T)} \cap \partial \widehat{\Gamma} = \emptyset$.
 - ii. $(T(\omega)u, u) = 0$ has exactly k solutions in $\widehat{\Gamma}$ for a fixed $u \in \mathcal{H} \setminus \{0\}$.

• Define the "equivalent" bounded polynomial $P(\cdot)$ as

$$\mathsf{P}(\lambda) := \lambda \left(\lambda + \sqrt{4c - d^2} \right) (A - \alpha_0)^{-\frac{1}{2}} \mathcal{T}(\lambda + \delta_+) (A - \alpha_0)^{-\frac{1}{2}}.$$

- $P(\lambda)$ is on the desired form where k = 1 if $d \neq 2\sqrt{c}$ and k = 2 if $d = 2\sqrt{c}$.
- *P* has a spectral divisor of order *k* if there is some open bounded $\Gamma \in \mathbb{C}$ such that and $0 \in \Gamma$ and
 - i. $\overline{W(P)} \cap \partial \Gamma = \emptyset$.
 - ii. $(P(\lambda)u, u)$ has exactly k roots in Γ for all $u \in \mathcal{H} \setminus \{0\}$.
- *P* has a spectral divisor if *T* satisfies the following conditions: There is a $\hat{\Gamma} \subset \mathbb{C}$ such that $\delta_+ \in \hat{\Gamma}$ and

i.
$$\overline{W(T)} \cap \partial \widehat{\Gamma} = \emptyset$$
.
ii. $(T(\omega)u, u) = 0$ has exactly k solutions in $\widehat{\Gamma}$ for a fixed $u \in \mathcal{H} \setminus \{0\}$.

Definition of the enclosure of W(T)

- We can in general not compute W(T). However, we can derive a computable enclosure of $\overline{W(T)}$.
- Define for $u \in \text{dom } T$ the functions,

$$t_{\alpha_u,\beta_u}(\omega) := \frac{(T(\omega)u,u)}{\|u\|^2} = \alpha_u - \omega^2 - \frac{\omega^2}{c - id\omega - \omega^2}\beta_u.$$

• Let $\Omega := \overline{W(A)} \times \overline{W(B)}$ and define the enclosure of $\overline{W(T)}$

 $W_{\Omega}(T) := \{\delta_+, \delta_-\} \cup \{\omega \in \mathbb{C} \setminus \{\delta_+, \delta_-\} : t_{\alpha, \beta}(\omega) = 0 : (\alpha, \beta) \in \Omega\}.$

• Hence, what we want to show is:

ii. $(T(\omega)u, u) = 0$ has exactly k roots in $\widehat{\Gamma}$ for one $u \in \mathcal{H} \setminus \{0\}$.

Definition of the enclosure of W(T)

- We can in general not compute W(T). However, we can derive a computable enclosure of $\overline{W(T)}$.
- Define for $u \in \text{dom } T$ the functions,

$$t_{\alpha_u,\beta_u}(\omega) := \frac{(T(\omega)u,u)}{\|u\|^2} = \alpha_u - \omega^2 - \frac{\omega^2}{c - id\omega - \omega^2}\beta_u.$$

• Let $\Omega := \overline{W(A)} \times \overline{W(B)}$ and define the enclosure of $\overline{W(T)}$

 $W_{\Omega}(T) := \{\delta_+, \delta_-\} \cup \{\omega \in \mathbb{C} \setminus \{\delta_+, \delta_-\} : t_{\alpha, \beta}(\omega) = 0 : (\alpha, \beta) \in \Omega\}.$

Hence, what we want to show is:

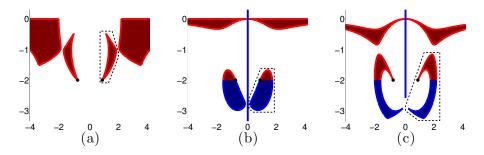
- i. $W_{\Omega}(T) \cap \partial \widehat{\Gamma} = \emptyset$.
- ii. $(T(\omega)u, u) = 0$ has exactly k roots in $\widehat{\Gamma}$ for one $u \in \mathcal{H} \setminus \{0\}$.

• If α_0 is sufficiently large the conditions for a spectral divisor holds.

- Can we explicitly find how large α_0 has to be to guarantee an accumulation of eigenvalues?
- Yes, but proof is technical, paper in preparation.

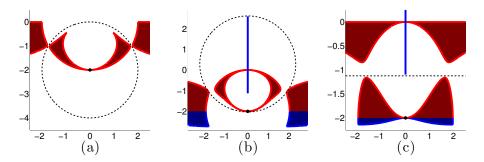
- If α_0 is sufficiently large the conditions for a spectral divisor holds.
- Can we explicitly find how large α_0 has to be to guarantee an accumulation of eigenvalues?
- Yes, but proof is technical, paper in preparation.

- If α_0 is sufficiently large the conditions for a spectral divisor holds.
- Can we explicitly find how large α_0 has to be to guarantee an accumulation of eigenvalues?
- Yes, but proof is technical, paper in preparation.



Examples when there is a accumulation to δ_+ , (and to δ_- due to symmetry with respect to the imaginary axis).

 $d = 2\sqrt{c}$



Examples when there is a accumulation to $-id/2 = \delta_+ = \delta_-$.



Examples when there is a accumulation to δ_+ . However, in (b) we can not guarantee an accumulation to δ_- .

• Several rational terms are common in models of electromagnetic materials:

$$T(\omega) = A - \omega^2 - \sum_{j=1}^m \frac{\omega^2}{c_j - \mathrm{i} d_j \omega - \omega^2} B_j \quad \mathrm{dom} \ T(\omega) = \mathrm{dom} \ A.$$

- Proof of accumulation can be done similarly.
- However, finding the lowest possible lower bound of A for which we can guarantee the existence of spectral divisors, will be extremely technical.

References

- C. ENGSTRÖM, A. TORSHAGE. Accumulation of complex eigenvalues of a class of analytic non-selfadjoint operator functions. in preparation
- C. ENGSTRÖM, A. TORSHAGE. Enclosure of the numerical range of a class of non-selfadjoint rational operator functions. Integral Equations and Operator Theory, 2017
- C. ENGSTRÖM, A. TORSHAGE. On equivalence and linearization of operator matrix functions with unbounded entries. arXiv:1612.01373
 - A. S. MARKUS. Introduction to the spectral theory of polynomial operator pencils. AMS, 1988
 - V. ADAMJAN, V. PIVOVARCHIK, C. TRETTER. On a class of non-self-adjoint quadratic matrix operator pencils arising in elasticity theory. J. Operator Theory, 2002
- V. A. ADAMJAN, H. LANGER. Spectral properties of a class of rational operator valued functions. J. Operator Theory, 1995

Thank you for your attention

Excellence, and why it matter

