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Historical and other perspectives

Brouncker and Wallis

Euler, Gauss, Jacobi

Chebyshev, Markov, Stieltjes

Hilbert, von Neumann

Krylov, Gantmakher

Lanczos, Hestenes, Stiefel

Cornelius Lanczos, Why Mathematics, 1966

“ Personally I would not hesitate not only to graduate with first class honors, but to
give the Ph.D. (and with summa cum laude) without asking any further questions,
to anybody who knew only one quarter of what Euler knew, provided that he knew it
in the way in which Euler knew it. ”

Analytic × algorithmic, application and computational perspectives.
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Adaptation as the main principle

Cornelius Lanczos, March 9, 1947

“To obtain a solution in very few steps
means nearly always that one has found a way
that does justice to the inner nature of the problem.”

Albert Einstein, March 18, 1947

“Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”

Nonlinear adaptation of the iterations to linear problems?

Inner nature of the problem?
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1. Infinite dimensional problem and finite dimensional
computations
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1 Krylov subspace methods as polynomial methods

Consider a numerical solution of equations

Gu = f, f ∈ V ,

on an infinite dimensional Hilbert space V , where G is a linear invertible
operator, G : V → V .

Krylov subspace methods at the step n implicitly construct a finite dimensional
approximation Gn of G with the desired approximate solution un defined by
(u0 = 0)

un := pn−1(Gn) f ≈ u = G−1f ,

where pn−1(λ) is a particular polynomial of degree at most n − 1 and Gn is
obtained by restricting and projecting G onto the nth Krylov subspace

Kn(G, f) := span
{
f,Gf, . . . ,Gn−1f

}
.
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1 Four basic questions

1 How fast un, n = 1, 2, . . . approximate the desired solution u ?
Nonlinear adaptation.

2 Which characteristics of G and f can be used in investigating
the previous question? Inner nature of the problem.

3 How to handle efficiently discretization and computational issues?
Provided that Kn(G, f) can be computed, the projection provides
discretization of the infinite dimensional problem Gu = f .

4 How to handle transformation of Gu = f into
an easier-to-solve problem? Preconditioning.
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1 Fundamental theorem of discretization of G, f

Consistency deals with the question how closely Ghuh = fh approximates Gu = f .
The residual measure

Ghπhu − fh

gives
πhu − uh = G−1

h (Ghπhu − fh).

If ‖G−1
h ‖h is bounded from above uniformly in h (the discretization is stable),

then consistency

‖Ghπhu − fh‖h → 0 as h → 0

implies convergence of the discretization scheme

‖πhu − uh‖h → 0 as h → 0 .
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1 Approximation of bounded invertible operators?

What do we mean by an approximation of G by a finite dimensional operator?

A uniform (norm) limit of finite dimensional operators Gn can only be
a compact operator. Moreover, every compact operator on a Hilbert space
is a uniform limit of a sequence of finite dimensional operators.

A uniform limit of a sequence of compact operators can only be
a compact operator.

Consequence:

Bounded invertible operators in Hilbert spaces can be approximated by compact or
finite dimensional operators only in the sense of strong convergence (pointwise limit)

‖Gh w − G w‖ → 0 as h → 0 for all w ∈ V ;

The convergence Gh w → G w is not uniform; the role of right hand sides.
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1 Integral representation of self-adjoint operators on Hilbert spaces

Finite dimensional self-adjoint operators (finite Hermitian matrices)

A =
1

2πι

∫

Γ

λ (λIN −A)−1 dλ =
1

2πι

N∑

j=1

∫

Γj

λ (λIN −A)−1 dλ

=
N∑

j=1

Y diag

(
1

2πι

∫

Γj

1

λ − λℓ
dλ

)

Y ∗ =
N∑

j=1

λj yjy
∗
j

=

∫ M(A)

m(A)

λ dE(λ) .

Compact infinite dimensional self-adjoint operators

Bounded infinite dimensional self-adjoint operators

Generalization to bounded normal and non-normal operators
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1 Analysis of polynomial iterative methods?

Let Γh surrounds the spectra of G and of its discrete approximation Gh with a
distance related to h . For any polynomial

p(G) − p(Gh) =
1

2πi

∫

Γh

p(λ) [(λ − G)−1 − (λ − Gh)−1 ] dλ .

If ‖G − Gh‖ → 0 as h → 0 and, consequently,

‖(λ − G)−1 − (λ − Gh)−1‖ → 0 as h → 0 uniformly on Γh ,

then it seems that one can investigate p(G) instead of p(Gh) .

But the assumption ‖G − Gh‖ → 0 as h → 0 does not hold for any bounded
infinite dimensional operator G having a bounded inverse.
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2. Linear projections onto (nonlinear) Krylov
subspaces

For more details and references:

Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA,
second ed. (2003)

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 2
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2 Krylov sequences and (cyclic) Krylov subspaces

The nth Krylov subspace generated by A ∈ C
N×N and v ∈ C

N

Kn(A, v) := span{v, Av, . . . , An−1v}, n = 1, 2, . . .

By construction,

K1(A, v) ⊂ K2(A, v) ⊂ · · · ⊂ Kd(A, v) = Kd+k(A, v) for all k ≥ 1.

v

A

##
Av

A

  
· · ·

A

""
Ad−2v

A

$$
Ad−1v

K1(A, v)

A

;;K2(A, v)

A

>>· · ·

A

<<Kd−1(A, v)

A

::Kd(A, v)

A

DD
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2 Krylov subspace methods as projection processes

Krylov subspace methods are based on a sequence of projections onto the nested
Krylov subspaces that form the search spaces.

Linear algebraic system Ax = b: x0 (possibly zero), r0 = b − Ax0.

xn ∈ x0 + Sn = x0 + Kn(A, r0) such that rn = b − Axn ⊥ Cn , n = 1, 2, . . .

n-dimensional constraints space Cn determines the different methods.

Eigenvalue problem Ax = λx: given nonzero v , find (λn, xn) such that

xn ∈ Kn(A, v) and rn = Axn − λnxn ⊥ Cn.

Examples: Lanczos and Arnoldi methods, where Cn = Kn(A, v).

Method is well defined when xn is uniquely determined for n = 1, 2, . . . , d − 1,
and xd = x (in exact arithmetic).
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2 Examples of Krylov subspace methods for Ax = b

Conjugate gradient (CG) method: Sn = Cn = Kn(A, r0).

Well defined for HPD matrices A; short recurrences.
Orthogonality rn ⊥ Kn(A, v) is equivalent to optimality:

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A.

GMRES method: Sn = Kn(A, r0), Cn = AKn(A, r0).

Well defined for nonsingular matrices A; full recurrences.
Orthogonality rn ⊥ AKn(A, v) is equivalent to optimality:

‖b − Axn‖2 = min
z∈x0+Kn(A,r0)

‖b − Az‖2.

Closely related FOM method with Sn = Cn = Kn(A, r0) is not well defined.

15 / 62



2 CG, Lanczos, orthogonal projections and optimality

‖x − xn‖A = min
u∈ x0+Kn(A,r0)

‖x − u‖A

with the formulation via the Lanczos process, w1 = r0/‖r0‖ ,

AWn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A, r0) AWn(A, r0) ,

and the CG approximation given by

Tn yn = ‖r0‖e1 , xn = x0 + Wn yn .

An = Qn A Qn = WnW ∗
n AWnW ∗

n = Wn Tn W ∗
n ,

Clearly, the projection process is very highly nonlinear in both A and r0 .
This allows for the adaptation to the data apparent from the
model reduction and moment matching properties.
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3. Model reduction and moment matching

For more details and references:

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 3
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3 Distribution functions and moments

Let A be HPD with spectral decomposition A = Y ΛY ∗, where
0 < λ1 < λ2 < · · · < λN (distinct eigenvalues for simplicity).

Suppose ωk = |(v1, yk)|2 > 0, k = 1, . . . , N , and define the distribution function

ω(λ) =






0, if λ < λ1,∑ℓ
k=1 ωk, if λℓ ≤ λ < λℓ+1, for ℓ = 1, . . . , N − 1,

1, if λN ≤ λ.

The moments of ω(λ) are given by

∫
λkdω(λ) =

N∑

ℓ=1

ωℓ{λℓ}
k = v∗

1Akv1, k = 0, 1, 2, . . .

Analogous construction applied to Tn = V ∗
n AVn yields a distribution function

ω(n)(λ) with moments given by

∫
λkdω(n)(λ) =

n∑

ℓ=1

ω
(n)
ℓ {λ

(n)
ℓ }k = eT

1 T k
ne1, k = 0, 1, 2, . . .
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3 Stieltjes recurrence, Jacobi matrix and Lanczos (CG)

Let φ0(λ) ≡ 1, φ1(λ), . . . , φn(λ) be the first n + 1 orthonormal

polynomials corresponding to the distribution function ω(λ) .

Then, writing Φn(λ) = [φ0(λ), . . . , φn−1(λ)]∗ ,

λ Φn(λ) = Tn Φn(λ) + δn+1 φn(λ) en

represents the Stieltjes recurrence (1893-4), see Chebyshev (1855), Brouncker
(1655), Wallis (1656), Toeplitz and Hellinger (1914) with the Jacobi matrix

Tn ≡





γ1 δ2

δ2 γ2

. . .

. . .
. . .

δn

δn γn




, δl > 0 , ℓ = 2, . . . , n .
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3 Fundamental relationship with Gauss quadrature

v∗
1Akv1 = eT

1 T k
n e1 for k = 0, 1, . . . , 2n − 1.

represents the n-node Gauss-Christoffel quadrature.
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3 Partial fraction decomposition and continued fraction

b∗(λI − A)−1b =

∫ U

L

dω(µ)

λ − µ
=

N∑

j=1

ωj

λ − λj
=

RN (λ)

PN (λ)
,

RN (λ)

PN(λ)
= FN(λ) ≡

1

λ − γ1 −
δ2
2

λ − γ2 −
δ2
3

λ − γ3 − . . .

. . .

λ − γN−1 −
δ2

N

λ − γN

The denominator Pn(λ) corresponding to the nth convergent Fn(λ) of FN (λ) ,
n = 1, 2, . . . is the nth orthogonal polynomial in the sequence determined by
ω(λ) ; see Chebyshev (1855).
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3 Approximation of bounded linear operators in Hilbert space

Let B be a bounded linear operator on Hilbert space V . Given z0 , form
a sequence z0, z1 = Bz0, z2 = Bz1 = B2z0, . . . , zn = Bzn−1 = Bnzn−1, . . .

Let z1, . . . , zn be linearly independent. Determine a sequence of operators Bn

defined on the nested subspaces Vn generated by z0, z1, . . . , zn−1 ,

z1 = Bz0 = Bnz0,

z2 = B2z0 = (Bn)2z0,

...

zn−1 = Bn−1z0 = (Bn)n−1z0,

Enzn = EnB
nz0 = (Bn)nz0.

where Enzn is the projection (orthogonal or oblique) from V onto Vn .
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3 Model reduction using Krylov subspaces Vorobyev (1958, 1965)

Using the projection En onto Vn we can write for the operators constructed
above (for the method of moments see Vorobyev (1958, 1965))

Bn = En B En .

For finite non-Hermitian matrices:

The first n steps of non-Hermitian Lanczos give complex generalization
of the Gauss quadrature matching the first 2n moments. Auxiliary subspaces,
oblique projections.

The first n steps of Arnoldi match only the first n moments. No auxiliary
subspaces, orthogonal projections.
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4. Convergence and spectral information

For more details and references:

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 5, Sections 5.1 - 5.7

T. Gergelits and Z.S., Composite convergence bounds based on Chebyshev
polynomials and finite precision conjugate gradient computations, Numer. Alg.
65, 759-782 (2014)

24 / 62



4 Characterization of convergence

Problem Ax = b

A normal A non-normal
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4 Linearity and single number characteristics in algebraic iterations

Stationary iterative methods, A = K − L

x − xn = Mn (x − x0), M = K−1L, M = WJW−1,

W−1(x − xn) = Jn (W−1(x − x0)).

Stationary Richardson (assume A HPD)

x − xn = (I − ω−1A)n (x − x0)

Chebyshev semiiterative method

x − xn =
1

|χn(0)|
χn(A) (x − x0) ,

1

|χn(0)|
≤ 2

(√
κ(A) − 1√
κ(A) + 1

)n

;

‖χn(A)‖ = max
λj

|χk(λj)| ≤ max
λ∈[λ1,λN ]

|χk(λ)| = 1 .

Why can CG do substantially better?
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4 Conjugate Gradient method (CG) for Ax = b with A HPD (1952)

r0 = b − Ax0, p0 = r0 . For n = 1, . . . , nmax :

αn−1 =
r∗n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
r∗nrn

r∗n−1rn−1

pn = rn + βnpn−1

Here αn−1 ensures the minimization of ‖x − xn‖A along the line

z(α) = xn−1 + αpn−1 .
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4 Mathematical elegance of CG

Provided that
pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in
the n-dimensional minimization over the whole shifted Krylov subspace

x0 + Kn(A, r0) = x0 + span{p0, p1, . . . , pn−1} .

The orthogonality condition leads to short recurrences due to the relationship
to the orthogonal polynomials that define the algebraic residuals and search
vectors.

Inexact computations?
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4 Lanczos (conjugate gradients) as the nonlinear moment problem

Let G be a linear bounded self-adjoint operator on a Hilbert space V , f ∈ V ,
‖f‖ = 1 . Consider the 2n real numbers

mj = (Gjf, f) =

∫
λj dω(λ), j = 0, . . . , 2n − 1.

The method of conjugate gradients (assuming, in addition, the coercivity of G ), as
well as the Lanczos method for approximating eigenvalues, solve the 2n equations

n∑

j=1

ω
(n)
j {θ

(n)
j }ℓ = mℓ , ℓ = 0, 1, . . . , 2n − 1 ,

for the 2n real unknowns ω
(n)
j > 0, θ

(n)
j .

Golub, Welsch (1968), Gordon (1968), . . . .

An overview and generalization to quasi-definite linear functionals and complex
Gauss quadrature is given in Pozza, Pranic, S (2016), relationship with the
nonsymmetric Lanczos algorithm in Pozza, Pranic, S (2017).
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4 Jacobi matrices gives the fundamental mathematical structure

Tn =





γ1 δ2

δ2

. . .
. . .

. . .
. . .

. . .

. . .
. . . δn

δn γn





is the Jacobi matrix of the Lanczos process coefficients at step n .

Whenever the bottom element of a normalized eigenvector of Tn vanishes,
the associated eigenvalue of Tn closely approximates an eigenvalue of A
and an analogous approximation must exist for Tn+1, Tn+2 etc.

The notion of “deflation”.
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4 CG, large outliers and “effective condition numbers”

Desired accuracy ǫ , κs(A) ≡ λN−s/λ1 . Then in exact arithmetic

k = s +

⌈
ln(2/ǫ)

2

√
κs(A)

⌉

CG steps will produce the approximate solution xn satisfying

‖x − xn‖A ≤ ǫ ‖x − x0‖A .

Assuming exact arithmetic, this statement qualitatively explains superlinear
convergence of CG at the presence of large outliers in the spectrum.

The assumption is crucial. Since CG uses short recurrences, the argument using
“effective condition number” is completely void for non-trivial applications.
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4 Finite precision effects on Lanczos/CG

We no longer have Krylov subspaces defined by the input data.

Computed residuals are not orthogonal to the generated subspaces,
i.e., the Galerkin orthogonality does not hold.

The structure of Krylov subspace methods as projection processes onto nested
subspaces of increasing dimensionality seems to be completely lost.

Is anything preserved?
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4 Adaptive Chebyshev bound? Liesen, S (2013)

0 20 40 60 80 100

10
−15

10
−10

10
−5

10
0

The difference between the dash-dotted and the solid line?

∫
λj dω(λ) →

∫
λj dω1−n(λ)
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4 Non-self-adjoint operators?

x − xn = pn(A) (x − x0) = Wpn(J) W−1 (x − x0)

does not offer an insight unless W is close to unitary and the spectrum of A has
some particular structure. Separating the operator from the initial error and using
Cauchy integral representation

pn(A) =
1

2πi

∫

Γ

p(λ) (λ − A)−1 dλ .

we get with denoting L(Γ) the length of the integrating curve

‖pn(A)‖ =
L(Γ)

2π
max
λ∈Γ

‖(λ − A)−1‖ max
λ∈Γ

|p(λ)| .

Considering the curves Γǫ on which the resolvent norm is constant
‖(λ − A)−1‖ = 1/ǫ , i.e., the boundaries of the ǫ-pseudospectra of A ,

‖pn(A)‖ =
L(Γǫ)

2πǫ
max
λ∈Γǫ

|p(λ)| .
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4 Convergence bounds for GMRES

Assuming that A is diagonalizable, A = WΛW−1, κ(W ) = ‖W‖‖W−1‖ ,

‖rn‖

‖r0‖
≤ κ(W ) min

p∈Pn

max
i=1,...,n

|p(λi)| .

The pseudospectra-based bound

‖rn‖

‖r0‖
≤

L(Γǫ)

2πǫ
min
p∈Pn

max
λ∈Γǫ

|p(λ)| .

None of the bounds is universally descriptive. Different eigenvalues with close
invariant subspaces make big troubles.
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4 Spectral information alone is not sufficient

Given any spectrum and any sequence of the nonincreasing residual norms, a
complete parametrization is known of the set of all GMRES associated matrices
and right-hand sides.

The set of problems for which the distribution of eigenvalues alone does not
correspond to convergence behavior is not of measure zero and it is not pathological.

Widespread eigenvalues alone can not be identified with poor convergence.

Clustered eigenvalues alone can not be identified with fast convergence.

Here the link between the matrix and the right-hand side is crucial.
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4 Any GMRES convergence with any spectrum

Theorem

1◦ The spectrum of A is given by {λ1, . . . , λN} and GMRES(A, b) yields
residuals with the prescribed nonincreasing sequence (x0 = 0)

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

2◦ Let C be the spectral companion matrix, h = (h1, . . . , hN)T ,
h2

i = ‖ri−1‖
2 − ‖ri‖

2 , i = 1, . . . , N . Let R be a nonsingular upper triangular
matrix such that Rs = h with s being the first column of C−1 , and let
W be a unitary matrix. Then

A = WR C R−1W ∗ and b = Wh .

Greenbaum, Pták, Arioli and S (1994 - 98); Liesen (1999); Eiermann and Ernst
(2001); Meurant (2012); Meurant and Tebbens (2012, 2014); .....
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4 GMRES-equivalent matrices GMRES(A, r0) ≡ GMRES(B, r0)

Theorem

Let the spectrum of A be given by {λ1, . . . , λN} and GMRES(A, b)
yields residuals with the prescribed non-increasing sequence (x0 = 0)

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

1◦ There is always a GMRES-equivalent unitary matrix B .

2◦ Let zero is out of the field of values of the matrix A .
Then there is always a GMRES-equivalent
Hermitian positive definite matrix B .

Greenbaum and S (1994)
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5. Mathematical structure preserved at the presence of
numerical errors
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5 Numerical behavior of algebraic solvers

In finite precision arithmetic, the characteristics used for linear (nonadaptive)
iterative solvers remain (with a slight modification) descriptive:

Jn for the linear stationary iterative solvers

|χn(0)|−1 for the Chebyshev semiiterative method.

However, the description of numerical behavior of the method of conjugate
gradients in finite precision arithmetics is significantly different.
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5 Mathematical structure preserved in FP Lanczos/CG computations

Practical computation generates a sequence of (nested) Jacobi matrices
Tn, n = 1, 2, . . .

Whenever the bottom element of a normalized eigenvector of Tn vanishes,
the associated eigenvalue of Tn closely approximates an eigenvalue of A
and an analogous approximation must exist for Tn+1, Tn+2 etc;
see Paige (1971 -1980). This result is highly nontrivial.

The fundamental question: What distribution function is behind this?
Greenbaum (1989) gave a beautiful answer. For a given iteration step n the
associated distribution function is

ω1−n(λ)

having clusters of the points of increase whenever the given eigenvalue of A is
within the steps 1 to n multiply approximated.
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5 Interlocking property for the modified distribution functions

∫
λj dω(λ) →

∫
λj dω1−n(λ) ≈

∫
λj dω̂(λ) .

Mathematical structure preserved for the methods with short recurrences?
Complex Jacobi matrices, Gauss quadrature in the complex plane?

Mathematical structure preserved for Arnoldi, FOM and GMRES?
Hessenberg matrices?
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6. Discretization and preconditioning

For more details and references:

J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method in the
Context of Solving PDEs. SIAM Spotlight Series, SIAM (2015)

I. Pultarová, Z.S., Decomposition into subspaces and operator preconditioning
(2017?)
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6 Basic setting

Consider real (complete) Hilbert space V with the inner product

(·, ·)V : V × V → R , ‖ · ‖V ,

dual space V # of bounded linear functionals on V with the duality pairing and
the associated Riesz map

〈·, ·〉 : V # × V → R , τ : V # → V such that (τf, v)V := 〈f, v〉 for all v ∈ V.

Consider a problem
Au = b

with a linear, bounded, coercive, and self-adjoint operator

A : V → V # , a(u, v) := 〈Au, v〉 ,

CA := sup
v∈V, ‖v‖V =1

‖Av‖V # < ∞ ,

cA := inf
v∈V, ‖v‖V =1

〈Av, v〉 > 0 .
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6 Coercivity and boundedness constants, spectrum of τA

MA := sup
u∈V, ‖u‖V =1

〈Au, u〉 , mA := inf
u∈V, ‖u‖V =1

〈Au, u〉 .

Theorem.

The spectrum of τA is enclosed in [mA, MA] . Moreover, mA and MA belong
to the spectrum, and

CA = ‖A‖L(V,V #) = sup
u∈V, ‖u‖V =1

〈Au, u〉 = MA ,

cA = mA =
1

supf∈V #, ‖f‖
V #=1 ‖A

−1f‖V
=
{
‖A−1‖L(V #,V )

}−1
.
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6 Operator preconditioning

Linear, bounded, coercive, and self-adjoint B,

CB := sup
v∈V, ‖v‖V =1

‖Bv‖V # < ∞ , cB := inf
v∈V, ‖v‖V =1

〈Bv, v〉 .

Define

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V ,

τB : V # → V, (τBf, v)B := 〈f, v〉 for all f ∈ V #, v ∈ V .

Instead of
Au = b

we solve
τB Au = τB b

or
B−1 A u = B−1b.
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6 Concept of norm equivalence and spectral equivalence of operators

We are interested in the condition number (but recall Málek, S, 2015, Chapter 11)

κ(B−1A) := ‖B−1A‖V ‖A−1B‖V ≤ κ(A)κ(B)

and in the spectral number

κ̂(B−1A) :=
supu∈V, ‖u‖V =1(B

−1Au, u)V

infv∈V, ‖v‖V =1(B−1Av, v)V
.

Assuming the norm equivalence of A−1 and B−1 ,

α ≤
‖A−1f‖V

‖B−1f‖V
≤ β for all f ∈ V #, f 6= 0 ,

we get

κ(B−1A) ≤
β

α
.
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6 Discretization

N-dimensional subspace Vh ⊂ V ; abstract Galerkin discretization gives uh ∈ Vh,
uh ≈ u ∈ V satisfying Galerkin orthogonality

〈Auh − b, v〉 = 0 for all v ∈ Vh .

Considering the restrictions Ah : Vh → V #
h , bh : Vh → R ,

Ahuh = bh, uh ∈ Vh, bh ∈ V #
h .

With the inner product (·, ·)B and the associated restricted Riesz map

τB,h : V #
h → Vh

we get the abstract form of the preconditioned discretized problem

τB,h Ah uh = τB,h bh .
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6 Matrix representation

Using the discretization basis Φh = (φ
(h)
1 , . . . , φ

(h)
N ) of Vh

and the canonical dual basis Φ#
h = (φ

(h)#
1 , . . . , φ

(h)#
N ) of V #

h , (Φ#
h )∗Φh = IN ,

we get the linear algebraic system

M
−1
h Ah xh = M

−1
h bh,

where

Ah, Mh ∈ R
N×N , xh,bh ∈ R

N ,

(xh)i = 〈φ
(h)#
i , uh〉 , (bh)i = 〈b, φ

(h)
i 〉 ,

(Ah)ij =
(
a(φ

(h)
j , φ

(h)
i )
)

i,j=1,...,N
=
(
〈Aφ

(h)
j , φ

(h)
i 〉
)

i,j=1,...,N
,

(Mh)ij =
(
〈Bφ

(h)
j , φ

(h)
i 〉
)

i,j=1,...,N
,

or
Ah = (AΦh)∗Φh, Mh = (BΦh)∗Φh .

49 / 62



6 Matrix representation – symmetric form

Indeed, for the restricted Riesz map τB,h for v and f , with f = Φ#
h f , v = Φhv

(τB,hf, v)B = (τB,hΦ#
h f , Φhv)B = (ΦhMτ f , Φhv)B = 〈BΦhMτ f , Φhv〉 = v

∗
MhMτ f ,

(τB,hf, v)B = 〈f, v〉 = v
∗
f

and therefore
Mτ = M

−1
h .

Using the Cholesky decomposition Mh = LhL∗
h , the resulting preconditioned

algebraic system is transformed into

Lh
−1

Ah(L∗
h)−1(L∗

hxh) = L
−1
h bh ,

i.e.,
At,h x

t
h = b

t
h .
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6 Spectral number of the preconditioned problem

κ̂(M−1
h Ah) :=

|λmax(M
−1
h Ah)|

|λmin(M
−1
h Ah)|

=
maxu∈Vh, ‖u‖B=1〈Au, u〉

minv∈Vh, ‖v‖B=1〈Av, v〉
≤ κ(B)κ(A) .

If the operators A and B are spectrally equivalent, i.e.,

α ≤
〈Aw, w〉

〈Bw, w〉
≤ β for all w ∈ V, w 6= 0 ,

we get

κ̂(M−1
h Ah) = κ(At,h) ≤

β

α
.

κ(M−1
h Ah) = ‖M−1

h Ah‖V ‖A−1
h Mh‖V 6=

|λmax(M
−1
h Ah)|

|λmin(M
−1
h Ah)|

= κ̂(M−1
h Ah) .

Equality holds iff Mh and Ah commute (then M−1
h Ah = M

−1/2
h AhM

−1/2
h ).
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6 Does better conditioning mean faster convergence?
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laplace

Nonhomogeneous diffusion tensor, uniform mesh. Unpreconditioned CG; ichol PCG
(no fill-in); ichol PCG (drop-off tolerance 1e-02); Laplace operator PCG. Condition

numbers of At,h : 6.75e04, 4.31e02, 1.6e01, 1.61e02.
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6 Preconditioning as transformation of the discretization basis

Transformation of the discretization basis

Φh → Φt,h such that (BΦt,h)∗Φt,h = I

i.e. orthogonalization of the basis with respect to the inner product (·, ·)B ,
transforms (preconditions) the system Ah xh = bh .

For example, the transformed basis

Φt,h = Φh(L∗
h)−1, Φ#

t,h = Φ#
h Lh

gives

At,h x
t
h = b

t
h .
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6 Analytic results on preconditioning non-self-adjoint problem

???

Analytic results concerning convergence behaviour for non-Hermitian algebraic
problems will be highly appreciated. They are prerequisite for developing an
analytic theory of preconditioning.
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7. Myths about Krylov subspace methods

Myth: A belief given uncritical acceptance by the members of a group especially in
support of existing or traditional practices and institutions.

Webster’s Third New International Dictionary, Enc. Britannica Inc., Chicago (1986)
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7 Comments concerning widespread myths

1 Minimal polynomials can rarely be linked to practical computations.

2 Chebyshev semi-iterative method and CG are very different.

3 Clustering of eigenvalues can be misleading even in the SPD case.

4 Infinite dimensional operator-based bounds may not serve in finite dimensional
analysis.

5 Finite precision computations can not be seen as minor modifications of the
exact arithmetic results.

6 Linearization of nonlinear phenomenon can eliminate the main point that
should be analyzed – adaptation to the problem.

7 Short term recurrences can not guarantee well conditioned basis due to
rounding errors. This is true even for symmetric positive definite problems,
and it remains true also for nonsymmetric problems.

8 Sparsity can have positive as well as negative effects to computations.
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7 Clustering of eigenvalues in the SPD case

④
Mj

−→ ttttt
Mj

single eigenvalue

λj

−→
many close eigenvalues

λ̂j1 , λ̂j2 , . . . , λ̂jℓ

Replacing a single eigenvalue by a tight cluster can make a substantial difference;
Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).

If it does not, then it means that CG can not adapt to the problem, and it
converges almost linearly. In such cases - is it worth using?
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7 Minimal polynomials, asymptotics

It is not true that CG (or other Krylov subspace methods used for solving
systems of linear algebraic equations with symmetric matrices) applied to a
matrix with t distinct well separated tight clusters of eigenvalues produces
in general a large error reduction after t steps; see Sections 5.6.5 and 5.9.1
of Liesen, S (2013). The associated myth has been proved false more than
25 years ago; see Greenbaum (1989); S (1991); Greenbaum, S (1992).
Still it is persistently repeated in literature as an obvious fact.

With no information on the structure of invariant subspaces
it can not be claimed that distribution of eigenvalues provides insight into
the asymptotic behavior of Krylov subspace methods (such as GMRES)
applied to systems with generally nonsymmetric matrices; see Sections 5.7.4,
5.7.6 and 5.11 of Liesen, S (2013). As above, the relevant results
Greenbaum, S (1994); Greenbaum, Pták, S (1996) and Arioli, Pták, S (1998)
are more than 20 years old.
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7 How the mathematical myths are created?

Rutishauser (1959) as well as Lanczos (1952) considered CG principally
different in their nature from the method based on the Chebyshev polynomials.

Daniel (1967) did not identify the CG convergence with the Chebyshev
polynomials-based bound. He carefully writes (modifyling slightly his notation)

“assuming only that the spectrum of the matrix A lies inside the interval
[λ1, λN ], we can do no better than Theorem 1.2.2.”

That means that the Chebyshev polynomials-based bound holds for any
distribution of eigenvalues between λ1 and λ1 and for any distribution of
the components of the initial residuals in the individual invariant subspaces.

Why we do not read the original works? They are many times most valuable
sources of insight, that can be gradually forgotten and can be overshadowed by
commonly accepted myth ...
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7 Analogy with a priori and a posteriori numerical PDE analysis

Think of a priori and a posteriori numerical PDE analysis!

The Chebyshev bound is a typical a priori bound; it uses no a posteriori
information.

A priori bounds are useful for the purpose they have been derived to.
They can not take over the role of the a posteriori bounds.
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8 Concluding remarks and outlook

We wish to understand the behaviour of Krylov subspace methods within the
first few steps.

We are dealing with highly nonlinear finite dimensional phenomena.

Analytic theory is in the self-adjoint case based on the spectral decomposition
of operators.

In the non-self-adjoint case theoretical results are fragmented and a synthesis
is largely missing.

Beautiful results on the effects of numerical errors,
but still a lot of work ahead ...

Historia Magistra Vitae
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Thank you very much for your kind patience!
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