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Diagonalization

H = H0 +H1 Hilbert space, B =

(
A0 W1

W0 A1

)
= A + V ,

A self-adjoint.

Find T ,D0,1 with T−1BT =

(
D0 0
0 D1

)
.

Issues

1. Complementary invariant graph subspaces H = G0 +G1

G0 = {f + X0f | f ∈ H0}, G1 = {X1g + g | g ∈ H1}
X0 : H0 → H1, X1 : H1 → H0 bounded operator. May not
exist!

2. Decomposition of B:
Dom(B)=(Dom(B) ∩ G0) + (Dom(B) ∩ G1) splits. May be
too small !
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Main Theorem [MSS 16]

Set Y =

(
0 X1

X0 0

)
, D = {f ∈ Dom(B) | Yf ∈ Dom(B)}

Theorem 1
If G0,1 are invariant graph subspaces for B = A + V and A + V
and A− YV closed with common point λ in the resolvent. Then
the following are equivalent:

1. Dom(B) = (Dom(B) ∩ G0) + (Dom(B) ∩ G1),

2. Dom(B) invariant for X0 and X1.

⇒ Block-diagonalization

4 / 21



Main Theorem [MSS 16]

Set Y =

(
0 X1

X0 0

)
, D = {f ∈ Dom(B) | Yf ∈ Dom(B)}

Theorem 1
If G0,1 are invariant graph subspaces for B = A + V and A + V
and A− YV closed with common point λ in the resolvent. Then
the following are equivalent:

1. Dom(B) = (Dom(B) ∩ G0) + (Dom(B) ∩ G1),

2. Dom(B) invariant for X0 and X1.

⇒ Block-diagonalization

4 / 21



Main Theorem [MSS 16]

Set Y =

(
0 X1

X0 0

)
, D = {f ∈ Dom(B) | Yf ∈ Dom(B)}

Theorem 1
If G0,1 are invariant graph subspaces for B = A + V and A + V
and A− YV closed with common point λ in the resolvent. Then
the following are equivalent:

1. Dom(B) = (Dom(B) ∩ G0) + (Dom(B) ∩ G1),

2. Dom(B) invariant for X0 and X1.

⇒ Block-diagonalization

4 / 21



Main Theorem [MSS 16]

Set Y =

(
0 X1

X0 0

)
, D = {f ∈ Dom(B) | Yf ∈ Dom(B)}

Theorem 1
If G0,1 are invariant graph subspaces for B = A + V and A + V
and A− YV closed with common point λ in the resolvent. Then
the following are equivalent:

1. Dom(B) = (Dom(B) ∩ G0) + (Dom(B) ∩ G1),

2. Dom(B) invariant for X0 and X1.

⇒ Block-diagonalization

4 / 21



Main Theorem [MSS 16]

Set Y =

(
0 X1

X0 0

)
, D = {f ∈ Dom(B) | Yf ∈ Dom(B)}

Theorem 1
If G0,1 are invariant graph subspaces for B = A + V and A + V
and A− YV closed with common point λ in the resolvent. Then
the following are equivalent:

1. Dom(B) = (Dom(B) ∩ G0) + (Dom(B) ∩ G1),

2. Dom(B) invariant for X0 and X1.

⇒ Block-diagonalization

4 / 21



Diagonlizations

Riccati equation

G0 and G1 invariant for A + V ⇐⇒ Y satisfies

AYx−YAx−YVYx+Vx = 0, x ∈ D = {f ∈ Dom(B) | Yf ∈ Dom(B)}

⇐⇒ (I − Y )(A + V )x = (A− YV )(I − Y )x , x ∈ D

Strong form of operator Riccati equation, A− YV diagonal.
What is D? Operator equality?
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Operator Inclusions

G0, G1 invariant for B

I Dom(B) = (Dom(B) ∩ G0) + (Dom(B) ∩ G1)

⇐⇒ (I − Y )(A + V )⊃(A− YV )(I − Y )

I Dom(B) invariant for X0 and X1

⇐⇒ (I − Y )(A + V )⊂(A− YV )(I − Y )

Diagonalization if both inclusions hold.
One inclusion implies the other if A + V and A− YV have a
common point in the resolvent set.
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Alternative Diagonalization

Riccati equation

AYx − YAx − YVYx + Vx = 0, x ∈ D

can be written as

(A + V )(I + Y )x = (I + Y )(A + VY )x , x ∈ D .

Diagonalization on D⊂Dom(A + VY )⊂Dom(A).

Langer, Tretter 1997; Adamyan, Langer, Tretter 2001,. . . .
Issue: Dom(A + VY ) depends on Y and is difficult to determine in
advance.
But Dom(A− YV ) = Dom(A + V ) is known.
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Two Diagonalizations [MSS]

Theorem 2
If Dom(A) ⊂ Dom(V ) (diagonal dominant), G0,1 invariant graph
subspaces for B = A + V and B and A− YV closed with common
point λ in the resolvent,

then
D = Dom(A) = Dom(A + V ) = Dom(A + VY ) and

(I − Y )(A + V )(I − Y )−1 =

(
A0 − X1W0 0

0 A1 − X0W1

)
as well as

(I + Y )−1(A + V )(I + Y ) =

(
A0 + W1X0 0

0 A1 + W0X1

)
.
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Corollary: Relatively bounded perturbations

A self-adjoint, supSpecA0 ≤ 0 ≤ inf SpecA1, V symmetric.

1. If Dom(V ) ⊃ Dom(A), B = A + V (diagonal dominant),
self-adjoint, then

RanEB(−∞, 0) + (Ker(B) ∩H0) = G(H0,X )

is a graph subspace that reduces B. X contraction.

2. If V has A−bound less than 1, then Y =

(
0 −X ∗
X 0

)
solves

the Riccati equation

AY − YA− YVY + V = 0,

both diagonalizations hold and A + VY ,A− YV are mutually
adjoint.
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Grapene

Two dimensional structure of carbon
Survey: Geim, Novoselov 2007.
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Graphene

Hamiltonian for massless Dirac fermions in the presence of an
impurity in graphene, 2 dimensional single layer structure

H =
~νF
i

σ ·∇ + U = ~νF
(

0 kx − iky
kx + iky 0

)
+ U ,

σ = (σx , σy ), with σx , σy the 2× 2 Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

νF the Fermi velocity and U short range “defect” potential.
~νF := 1. Not diagonal dominant
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Diagonalization Procedure [MSS]

H not diagonal dominant (even off-diagnally dominant), but can
be transformed that way:

Foldy-Wouthuysen transformation T FW

diagonalizes the free Dirac operator H0 = −iσ ·∇ in momentum
representation:

T FWH0 T −1
FW =

(√
−∆ 0

0 −
√
−∆

)

T FW =
1√
2

(
θ(k) 1
θ(k) −1

)
with θ(k) =

√
k2
x + k2

y

kx − iky
,

T FWH T −1
FW =

(√
−∆ + U + ΘUΘ∗ −U + ΘUΘ∗

−U + ΘUΘ∗ −
√
−∆ + U + ΘUΘ∗

)
,

Θ Fourier multiplier with the unimodular symbol θ(k).
Subordinated spectra if U is a compactly supported bounded
potential with ‖U‖∞ small enough.
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How to diagonalize upper-dominant Matrices? [GKMSV]

S =

(
A+ W ∗

W −A−

)
= A + V on H = H+⊕H−,

A± ≥ 0 in H± and Dom(A
1/2
+ ) ⊂ Dom(W ).

Upper dominant Matrix! Diagonalize the form s = a + v on

Dom[s] = Dom[a] = Dom(|A|1/2),

a[x , y ] = 〈|A|1/2x ,

(
I 0
0 −I

)
|A|1/2y〉, x , y ∈ Dom[a] = Dom(|A|1/2),

and

v[x , y ] = 〈Wx+, y−〉+ 〈x−,Wy+〉 on Dom[v] = Dom[a],

x = x+ ⊕ x−, y = y+ ⊕ y−, x±, y± ∈ Dom(|A±|1/2) ⊂ H± .
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Diagonalization of forms

The form s is associated with a unique self-adjoint operator S ,
Dom(S) ⊆ Dom(|A|1/2),

s[x , y ] = 〈x , Sy〉, x ∈ Dom[s], y ∈ Dom(S).

If Dom(|S |1/2) = Dom[s] then s is represented by S ,

s[x , y ] = 〈|S |1/2x , sign(S)|S |1/2y〉.

One-To-One correspondence between these forms and operators.

L± = Ran ES(R± \ {0})⊕
(

Ker(S) ∩H±
)

are reducing graph subspaces of contractions X ,−X ∗ for the form
and the Operator. → Unitary block diagonalization for S if I ± Y ,
|I ± Y | bijective on Dom[s].
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Stokes Operator on Lipschitz domain Ω.

Stationary Stokes System: Slow flow of incompressible viscous fluid

−∆u + grad p = f , divu = 0, u|∂Ω = 0.

Construction of the semibounded Stokes Operator

S =

(
−∆ grad
− div 0

)
in H = H1

0 (Ω)n ⊕ L2(Ω)

using the semibounded form

b[u ⊕ p] =
n∑

j=1

∫
Ω
|Dju(x)|2dx + 2Re

∫
Ω
p(x)divu(x)dx .
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Spectral Block-Diagonalisation of S

Lemma [GKMSV ]

1. Ran ES(R+) = G(H+,X ) graph of a contraction X .

2. X is the unique contractive solution to

a+[X ∗p, u] + v[−X ∗p ⊕ 0, 0⊕ Xu] + v[0⊕ p, u ⊕ 0] = 0.

Form variant of the Operator Riccati Equation.
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Spectral Block-Diagonalisation of S

Theorem 3: Unitary Spectral Block-Diagonalisation
[GKMSV ]

T−1ST =

(
S+ 0
0 S−

)
,

S+ = (I + X ∗X )−1/2(−∆ + X ∗div)(I + X ∗X )1/2

S− = −(I + XX ∗)−1/2(divX ∗)(I + XX ∗)1/2
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Spectral properties

1. σ(S+) is discrete, S+ ≥ λ1(Ω)I , λ1(Ω) smallest Dirichlet
Eigenvalue of the Laplacian.

2. σess(S−) = σess(− div ∆−1 grad), div∆−1 grad
Cosserat Operator:
Band-Spectrum for domains with corners
[Costabel ,Crouzeix ,Dauge, Lafranche 15]

3. S− ≥ −1 sharp estimate.
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Physical interpretation:

Introduce viscosity ν, characteristic velocity v∗ and rescale

S =

(
−ν∆ v∗ grad
−v∗ div 0

)
:

Same physical unit of frequency everywhere.
Generalized Reynolds number
Re = char. velocity · char. length

viscosity = 2v∗
ν
√
λ1(Ω)

Angle Θ between RanES(R+) and H+ satisfies a Tan2Θ theorem

tan 2||Θ|| ≤ Re.

→ Geometric interpretation of Ladyzhenskaya’s Stability Result
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Ladyzhenskaya:

v s stationary solution of the 2D-Navier-Stokes equation

∂

∂t
vs + (v s · grad)v s − ν∆v s +

1

ρ
grad p = f , divv s = 0

If Re < 1 (||Θ|| < π
8 ), where

v∗ =

(∫
Ω
|v sx |2 + |v sy |2dxdy

)1/2

,

then the non-stationary solution v converges to v s exponentially

(v − v s)(x , t) ≤ (v − v s)(x , 0) exp(−αt),

α = νλ1(Ω)(1− Re).
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Thank You!
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