Block-Diagonalization of unbounded operator

matrices

Stephan Schmitz

University of Missouri, Columbia, Missouri

Joint works with K. A. Makarov, A. Seelmann;
L. Grubisi¢, V. Kostrykin, K. A. Makarov and K. Veselié.

CIRM 9.6.2017

1/21



» Diagonalization of Operator matrices

2/21



» Diagonalization of Operator matrices

» Graphene

2/21



» Diagonalization of Operator matrices
» Graphene

» Diagonalization of Operator matrices via forms

2/21



v

Diagonalization of Operator matrices

v

Graphene

v

Diagonalization of Operator matrices via forms

v

The Stokes operator

2/21



Diagonalization

A Wi

H = Ho + H1 Hilbert space, B = (Wo A

A self-adjoint.

)-arv

3/21



Diagonalization

A Wi

H = Ho + H1 Hilbert space, B = (Wo A

A self-adjoint.
. , 1 Dy O
Find T, DO,l with T7*BT = )

)-arv

0 D

3/21



Diagonalization

H = Ho + H1 Hilbert space, B = Ao W =A+V,
Wo A

A self-adjoint.

: - Dy 0
Find T, Do with T-1BT = (00 D1>_

Issues

1. Complementary invariant graph subspaces H = Go + G1
Go={f+Xof | f € Ho}, G1={X1g+g|gecHi}
Xo: Ho — Hi, X1: H1 — Ho bounded operator.

3/21



Diagonalization

H = Ho + H1 Hilbert space, B = Ao W =A+V,
Wo A

A self-adjoint.

: - Dy 0
Find T, Do with T-1BT = (00 D1>_

Issues
1. Complementary invariant graph subspaces H = Go + G1
Go={f+Xof | f €Ho}, G1={Xig+gl|geHi}

Xo: Ho — Hi, X1: H1 — Hp bounded operator. May not
exist!

3/21



Diagonalization

H = Ho + H1 Hilbert space, B = Ao W =A+V,
Wo A

A self-adjoint.

: - Dy 0
Find T, Do with T-1BT = (00 D1>_

Issues
1. Complementary invariant graph subspaces H = Go + G1
Go={f+Xof | f €Ho}, G1={Xig+gl|geHi}

Xo: Ho — Hi, X1: H1 — Hp bounded operator. May not
exist!

2. Decomposition of B:

3/21



Diagonalization

H = Ho + H1 Hilbert space, B = Ao W =A+V,
Wo A

A self-adjoint.

: - Dy 0
Find T, Do with T-1BT = (00 D1>_

Issues
1. Complementary invariant graph subspaces H = Go + G1
Go={f+Xof | f €Ho}, G1={Xig+gl|geHi}

Xo: Ho — Hi, X1: H1 — Hp bounded operator. May not
exist!

2. Decomposition of B:
Dom(B)=(Dom(B) N Go) + (Dom(B) N G1) splits.

3/21
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H = Ho + H1 Hilbert space, B = Ao W =A+V,
Wo A

A self-adjoint.
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Find T,Dp1 with T-1BT = (00 D1>_
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1. Complementary invariant graph subspaces H = Go + G1
Go={f+Xof | f € Ho}, G1={X1g+g|gecHi}
Xo: Ho — Hi, X1: H1 — Hp bounded operator. May not
exist!

2. Decomposition of B:

Dom(B)=(Dom(B) N Go) + (Dom(B) N G1) splits. May be
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Main Theorem [MSS 16]

0 X
Xo O
Theorem 1

If Go,1 are invariant graph subspaces for B=A+ V and A+ V
and A — YV closed with common point A in the resolvent. Then
the following are equivalent:

1. Dom(B) = (Dom(B) N Go) + (Dom(B) N G1),
2. Dom(B) invariant for Xy and Xj.
= Block-diagonalization

Set Y = ( ) D = {f € Dom(B) | Yf € Dom(B)}
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Go and G7 invariant for A+ V <= Y satisfies

AYx—YAx—YVYx+Vx =0, x €D ={f € Dom(B)| Yf € Dom(B)}
e (- Y)A+V)x=(A-YWV)(I-Y)x, x€D
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What is D? Operator equality?
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Go, G1 invariant for B
» Dom(B) = (Dom(B) N Gop) + (Dom(B) N G1)
S (I=Y) A+ V)D(A=-YV)(I-Y)
» Dom(B) invariant for Xy and X;
= (I=-Y) A+ V)C(A=YV)(-Y)
Diagonalization if both inclusions hold.

One inclusion implies the other if A4+ V and A — YV have a
common point in the resolvent set.
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Corollary: Relatively bounded perturbations

A self-adjoint, sup Spec Ag < 0 < inf Spec A1, V symmetric.

1. If Dom(V) D Dom(A), B = A+ V (diagonal dominant),
self-adjoint, then

Ran Eg(—00,0) + (Ker(B) N Ho) = G(Ho, X)
is a graph subspace that reduces B. X contraction.

2. If V has A—bound less than 1, then Y = <;.< _())< ) solves

the Riccati equation
AY —YA—-YVY +V =0,

both diagonalizations hold and A+ VY, A — YV are mutually
adjoint.
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Two dimensional structure of carbon
Survey: Geim, Novoselov 2007.

10/21



Hamiltonian for massless Dirac fermions in the presence of an
impurity in graphene, 2 dimensional single layer structure

11/21



Hamiltonian for massless Dirac fermions in the presence of an
impurity in graphene, 2 dimensional single layer structure

 hwe B 0 ke ik,

o = (ox,0y), with o, 0, the 2 x 2 Pauli matrices

/01 (0 i
9%=\1 0) = \i o)’

11/21



Hamiltonian for massless Dirac fermions in the presence of an
impurity in graphene, 2 dimensional single layer structure

 hwe B 0 ke ik,

o = (ox,0y), with o, 0, the 2 x 2 Pauli matrices

/01 (0 i
9%=\1 0) = \i o)’

vr the Fermi velocity and U short range “defect” potential.
hl/F = 1.

11/21



Hamiltonian for massless Dirac fermions in the presence of an
impurity in graphene, 2 dimensional single layer structure

 hwe B 0 ke ik,

o = (ox,0y), with o, 0, the 2 x 2 Pauli matrices
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be transformed that way: Foldy-Wouthuysen transformation 7 rw
diagonalizes the free Dirac operator Hy = —io - V in momentum
representation:

_ vV—=A 0

T L0 1Y ith oK) Vit ky

FW — —= =0,
V2 \0(k) —1 ke — iky

o HTAL V—A+ U+ 0Ue* —U+0Uue*

FW T rw = —U + 0Ue* —V=A+U+0Ue*)’

© Fourier multiplier with the unimodular symbol 6(k).
Subordinated spectra if U is a compactly supported bounded

potential with ||U||s small enough.
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A: >0in Hzs and Dom(AY?) ¢ Dom(W).
Upper dominant Matrix! Diagonalize the form s = a + v on

Dom[s] = Dom[a] = Dom(|A|*/?),

I 0
alx, v] = (A2, (O _,) A2, x.y € Domla] = Dom(|A]"/2),

and
ofx,y] = (Wxy,y—) + (x-, Wy4) on  Dom[v] = Doml[a],
X=xy®x_, y=y; @y, xi,y:r€Dom(|AL|*?)CHy.
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s[x, y] = (|S'/2x, sign(S)|S["/?y).
One-To-One correspondence between these forms and operators.

L+ =RanEs(R+ \ {0}) ® (Ker(S)NH4 )

are reducing graph subspaces of contractions X, —X* for the form
and the Operator. — Unitary block diagonalization for S if / + Y/,
|l + Y| bijective on Dom[s].
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Stokes Operator on Lipschitz domain £2.

Stationary Stokes System: Slow flow of incompressible viscous fluid

—Au+gradp=1f, divu=0, ulspo=0.

Construction of the semibounded Stokes Operator

—A grad) . n
S = <—div go ) in 1 = H3 (Q)" @ L2(Q)

using the semibounded form

_" u(x)[2dx e x)divu(x)dx.
b[u@p]—j;/Q\DJ ()P + 2Re | pljTEval)d
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Spectral Block-Diagonalisation of S

Lemma [GKMSV]

1. RanEs(R+) = G(H+, X) graph of a contraction X.
2. X is the unique contractive solution to

C1+[X*,D, U] + U[—X*p@ 0,0@XU] + t)[OGBP’ U@O] =0.

Form variant of the Operator Riccati Equation.
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Spectral Block-Diagonalisation of S

Theorem 3: Unitary Spectral Block-Diagonalisation
[GKMSV]

1 o S+ 0
T 5T_(0 s )
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Spectral Block-Diagonalisation of S

Theorem 3: Unitary Spectral Block-Diagonalisation
[GKMSV]

1 o S+ 0
T 5T_<0 s )

Sy = (I +X*X)Y2(—A + X*div)(I + X*X)1/2
S = —(I + XX*)"Y2(div X*) (I + XX*)1/2
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1. 0(S4) is discrete, Sy > A1(2)/, A\1(€2) smallest Dirichlet
Eigenvalue of the Laplacian.
2. Oess(S_) = 0ess(— div A~ grad), divA~! grad
Cosserat Operator:
Band-Spectrum for domains with corners
[Costabel, Crouzeix, Dauge, Lafranche 15|

3. 5_ > —1 sharp estimate.
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Physical interpretation:

Introduce viscosity v, characteristic velocity v, and rescale

[ —vA v.grad)
5= <—v,:div 0 ) '

Same physical unit of frequency everywhere.
Generalized Reynolds number

Re — char. velocity - char. length _ 2v,
- viscosity Ty />\1(Q)

Angle © between Ran Es(R) and H . satisfies a Tan2© theorem

tan2[|0|| < Re.

— Geometric interpretation of Ladyzhenskaya's Stability Result
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If Re <1 (||©] < F). where

1/2
Vi = </ vE? + \V;|2dxdy> ,
Q

then the non-stationary solution v converges to v° exponentially

(v —v®)(x,t) < (v —v°)(x,0) exp(—at),

20/21



Ladyzhenskaya:

v® stationary solution of the 2D-Navier-Stokes equation

1
6815‘/5 + (v®-grad)v® —vAv® + —gradp=1f, divv>° =0
p

If Re <1 (||©] < F). where

1/2
Vi = </ vE? + \V;|2dxdy> ,
Q

then the non-stationary solution v converges to v° exponentially

(v —v®)(x,t) < (v —v°)(x,0) exp(—at),

a=rvA1(2)(1 — Re).
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Thank You!



