Block-Diagonalization of unbounded operator matrices

Stephan Schmitz

University of Missouri, Columbia, Missouri

Joint works with K. A. Makarov, A. Seelmann; L. Grubišić, V. Kostrykin, K. A. Makarov and K. Veselić.

CIRM 9.6.2017

Diagonalization of Operator matrices

- Diagonalization of Operator matrices
- Graphene

- Diagonalization of Operator matrices
- Graphene
- Diagonalization of Operator matrices via forms

- Diagonalization of Operator matrices
- Graphene
- Diagonalization of Operator matrices via forms
- The Stokes operator

 $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1$ Hilbert space, $B = \begin{pmatrix} A_0 & W_1 \\ W_0 & A_1 \end{pmatrix} = A + V$, A self-adjoint.

Diagonalization

$$\begin{split} \mathcal{H} &= \mathcal{H}_0 + \mathcal{H}_1 \text{ Hilbert space, } B = \begin{pmatrix} A_0 & W_1 \\ W_0 & A_1 \end{pmatrix} = A + V, \\ A \text{ self-adjoint.} \\ \text{Find } T, D_{0,1} \text{ with } T^{-1}BT = \begin{pmatrix} D_0 & 0 \\ 0 & D_1 \end{pmatrix}. \end{split}$$

 $\begin{aligned} \mathcal{H} &= \mathcal{H}_0 + \mathcal{H}_1 \text{ Hilbert space, } B = \begin{pmatrix} A_0 & W_1 \\ W_0 & A_1 \end{pmatrix} = A + V, \\ A \text{ self-adjoint.} \\ \text{Find } T, D_{0,1} \text{ with } T^{-1}BT = \begin{pmatrix} D_0 & 0 \\ 0 & D_1 \end{pmatrix}. \end{aligned}$

Issues

1. Complementary invariant graph subspaces $\mathcal{H} = \mathcal{G}_0 + \mathcal{G}_1$ $\mathcal{G}_0 = \{f + X_0 f \mid f \in \mathcal{H}_0\}, \quad \mathcal{G}_1 = \{X_1 g + g \mid g \in \mathcal{H}_1\}$ $X_0: \mathcal{H}_0 \to \mathcal{H}_1, X_1: \mathcal{H}_1 \to \mathcal{H}_0$ bounded operator. $\begin{aligned} \mathcal{H} &= \mathcal{H}_0 + \mathcal{H}_1 \text{ Hilbert space, } B = \begin{pmatrix} A_0 & W_1 \\ W_0 & A_1 \end{pmatrix} = A + V, \\ A \text{ self-adjoint.} \end{aligned} \\ \text{Find } \mathcal{T}, D_{0,1} \text{ with } \mathcal{T}^{-1}B\mathcal{T} = \begin{pmatrix} D_0 & 0 \\ 0 & D_1 \end{pmatrix}. \end{aligned}$

Issues

1. Complementary invariant graph subspaces $\mathcal{H} = \mathcal{G}_0 + \mathcal{G}_1$ $\mathcal{G}_0 = \{f + X_0 f \mid f \in \mathcal{H}_0\}, \quad \mathcal{G}_1 = \{X_1 g + g \mid g \in \mathcal{H}_1\}$ $X_0: \mathcal{H}_0 \to \mathcal{H}_1, X_1: \mathcal{H}_1 \to \mathcal{H}_0$ bounded operator. May not exist! $\begin{aligned} \mathcal{H} &= \mathcal{H}_0 + \mathcal{H}_1 \text{ Hilbert space, } B = \begin{pmatrix} A_0 & W_1 \\ W_0 & A_1 \end{pmatrix} = A + V, \\ A \text{ self-adjoint.} \\ \text{Find } T, D_{0,1} \text{ with } T^{-1}BT = \begin{pmatrix} D_0 & 0 \\ 0 & D_1 \end{pmatrix}. \end{aligned}$

Issues

- 1. Complementary invariant graph subspaces $\mathcal{H} = \mathcal{G}_0 + \mathcal{G}_1$ $\mathcal{G}_0 = \{f + X_0 f \mid f \in \mathcal{H}_0\}, \quad \mathcal{G}_1 = \{X_1 g + g \mid g \in \mathcal{H}_1\}$ $X_0: \mathcal{H}_0 \to \mathcal{H}_1, X_1: \mathcal{H}_1 \to \mathcal{H}_0$ bounded operator. May not exist!
- 2. Decomposition of *B*:

$$\begin{split} \mathcal{H} &= \mathcal{H}_0 + \mathcal{H}_1 \text{ Hilbert space, } B = \begin{pmatrix} A_0 & W_1 \\ W_0 & A_1 \end{pmatrix} = A + V, \\ A \text{ self-adjoint.} \\ \text{Find } T, D_{0,1} \text{ with } T^{-1}BT = \begin{pmatrix} D_0 & 0 \\ 0 & D_1 \end{pmatrix}. \end{split}$$

Issues

- 1. Complementary invariant graph subspaces $\mathcal{H} = \mathcal{G}_0 + \mathcal{G}_1$ $\mathcal{G}_0 = \{f + X_0 f \mid f \in \mathcal{H}_0\}, \quad \mathcal{G}_1 = \{X_1 g + g \mid g \in \mathcal{H}_1\}$ $X_0: \mathcal{H}_0 \to \mathcal{H}_1, X_1: \mathcal{H}_1 \to \mathcal{H}_0$ bounded operator. May not exist!
- Decomposition of B: Dom(B)=(Dom(B) ∩ G₀) + (Dom(B) ∩ G₁) splits.

$$\begin{split} \mathcal{H} &= \mathcal{H}_0 + \mathcal{H}_1 \text{ Hilbert space, } B = \begin{pmatrix} A_0 & W_1 \\ W_0 & A_1 \end{pmatrix} = A + V, \\ A \text{ self-adjoint.} \\ \text{Find } T, D_{0,1} \text{ with } T^{-1}BT = \begin{pmatrix} D_0 & 0 \\ 0 & D_1 \end{pmatrix}. \end{split}$$

Issues

- 1. Complementary invariant graph subspaces $\mathcal{H} = \mathcal{G}_0 + \mathcal{G}_1$ $\mathcal{G}_0 = \{f + X_0 f \mid f \in \mathcal{H}_0\}, \quad \mathcal{G}_1 = \{X_1 g + g \mid g \in \mathcal{H}_1\}$ $X_0: \mathcal{H}_0 \to \mathcal{H}_1, X_1: \mathcal{H}_1 \to \mathcal{H}_0$ bounded operator. May not exist!
- Decomposition of B: Dom(B)=(Dom(B) ∩ G₀) + (Dom(B) ∩ G₁) splits. May be too small !

Main Theorem [MSS 16]

Set
$$Y = \begin{pmatrix} 0 & X_1 \\ X_0 & 0 \end{pmatrix}$$
, $\mathcal{D} = \{f \in \mathsf{Dom}(B) \mid Yf \in \mathsf{Dom}(B)\}$

Main Theorem [MSS 16]

Set
$$Y = \begin{pmatrix} 0 & X_1 \\ X_0 & 0 \end{pmatrix}$$
, $\mathcal{D} = \{f \in \mathsf{Dom}(B) \mid Yf \in \mathsf{Dom}(B)\}$

Theorem 1

If $\mathcal{G}_{0,1}$ are invariant graph subspaces for B = A + V and A + Vand A - YV closed with common point λ in the resolvent. Then the following are equivalent:

Set
$$Y = \begin{pmatrix} 0 & X_1 \\ X_0 & 0 \end{pmatrix}$$
, $\mathcal{D} = \{f \in \mathsf{Dom}(B) \mid Yf \in \mathsf{Dom}(B)\}$

If $\mathcal{G}_{0,1}$ are invariant graph subspaces for B = A + V and A + Vand A - YV closed with common point λ in the resolvent. Then the following are equivalent:

1. $\operatorname{Dom}(B) = (\operatorname{Dom}(B) \cap \mathcal{G}_0) + (\operatorname{Dom}(B) \cap \mathcal{G}_1),$

Set
$$Y = \begin{pmatrix} 0 & X_1 \\ X_0 & 0 \end{pmatrix}$$
, $\mathcal{D} = \{f \in \mathsf{Dom}(B) \mid Yf \in \mathsf{Dom}(B)\}$

If $\mathcal{G}_{0,1}$ are invariant graph subspaces for B = A + V and A + Vand A - YV closed with common point λ in the resolvent. Then the following are equivalent:

- 1. $\operatorname{Dom}(B) = (\operatorname{Dom}(B) \cap \mathcal{G}_0) + (\operatorname{Dom}(B) \cap \mathcal{G}_1),$
- 2. Dom(B) invariant for X_0 and X_1 .

Set
$$Y = \begin{pmatrix} 0 & X_1 \\ X_0 & 0 \end{pmatrix}$$
, $\mathcal{D} = \{f \in \mathsf{Dom}(B) \mid Yf \in \mathsf{Dom}(B)\}$

If $\mathcal{G}_{0,1}$ are invariant graph subspaces for B = A + V and A + Vand A - YV closed with common point λ in the resolvent. Then the following are equivalent:

- 1. $\operatorname{Dom}(B) = (\operatorname{Dom}(B) \cap \mathcal{G}_0) + (\operatorname{Dom}(B) \cap \mathcal{G}_1),$
- 2. Dom(B) invariant for X_0 and X_1 .
- \Rightarrow Block-diagonalization

Riccati equation \mathcal{G}_0 and \mathcal{G}_1 invariant for $A + V \iff Y$ satisfies

 $AY_x - YA_x - YVY_x + V_x = 0, \quad x \in \mathcal{D} = \{f \in \mathsf{Dom}(B) \mid Yf \in \mathsf{Dom}(B)\}$

Riccati equation \mathcal{G}_0 and \mathcal{G}_1 invariant for $A + V \iff Y$ satisfies

 $AY_x - YA_x - YVY_x + V_x = 0, \quad x \in \mathcal{D} = \{f \in \mathsf{Dom}(B) \mid Yf \in \mathsf{Dom}(B)\}$

$$\iff (I - Y)(A + V)x = (A - YV)(I - Y)x, \quad x \in \mathcal{D}$$

Riccati equation \mathcal{G}_0 and \mathcal{G}_1 invariant for $A + V \iff Y$ satisfies $AYx - YAx - YVYx + Vx = 0, \quad x \in \mathcal{D} = \{f \in \text{Dom}(B) \mid Yf \in \text{Dom}(B)\}$

$$\iff (I - Y)(A + V)x = (A - YV)(I - Y)x, \quad x \in \mathcal{D}$$

Strong form of operator Riccati equation, A - YV diagonal.

Riccati equation \mathcal{G}_0 and \mathcal{G}_1 invariant for $A + V \iff Y$ satisfies $AYx - YAx - YVYx + Vx = 0, \quad x \in \mathcal{D} = \{f \in \text{Dom}(B) \mid Yf \in \text{Dom}(B)\}$

$$\iff (I - Y)(A + V)x = (A - YV)(I - Y)x, \quad x \in \mathcal{D}$$

Strong form of operator Riccati equation, A - YV diagonal. What is \mathcal{D} ? Operator equality? $\mathcal{G}_0,\,\mathcal{G}_1$ invariant for B

►
$$\operatorname{Dom}(B) = (\operatorname{Dom}(B) \cap \mathcal{G}_0) + (\operatorname{Dom}(B) \cap \mathcal{G}_1)$$

 $\iff (I - Y)(A + V) \supset (A - YV)(I - Y)$

$\mathcal{G}_0,\,\mathcal{G}_1$ invariant for ${\it B}$

►
$$\mathsf{Dom}(B) = (\mathsf{Dom}(B) \cap \mathcal{G}_0) + (\mathsf{Dom}(B) \cap \mathcal{G}_1)$$

 $\iff (I - Y)(A + V) \supset (A - YV)(I - Y)$

▶ Dom(B) invariant for
$$X_0$$
 and X_1
 $\iff (I - Y)(A + V) \subset (A - YV)(I - Y)$

$\mathcal{G}_0,\,\mathcal{G}_1$ invariant for ${\it B}$

►
$$\mathsf{Dom}(B) = (\mathsf{Dom}(B) \cap \mathcal{G}_0) + (\mathsf{Dom}(B) \cap \mathcal{G}_1)$$

 $\iff (I - Y)(A + V) \supset (A - YV)(I - Y)$

• Dom(B) invariant for
$$X_0$$
 and X_1
 $\iff (I - Y)(A + V) \subset (A - YV)(I - Y)$

Diagonalization if both inclusions hold.

$\mathcal{G}_0,\,\mathcal{G}_1$ invariant for ${\it B}$

►
$$\operatorname{Dom}(B) = (\operatorname{Dom}(B) \cap \mathcal{G}_0) + (\operatorname{Dom}(B) \cap \mathcal{G}_1)$$

 $\iff (I - Y)(A + V) \supset (A - YV)(I - Y)$

▶ Dom(B) invariant for
$$X_0$$
 and X_1
 $\iff (I - Y)(A + V) \subset (A - YV)(I - Y)$

Diagonalization if both inclusions hold. One inclusion implies the other if A + V and A - YV have a common point in the resolvent set.

$$AYx - YAx - YVYx + Vx = 0, \quad x \in \mathcal{D}$$

can be written as

$$(A+V)(I+Y)x = (I+Y)(A+VY)x, \quad x \in \mathcal{D}.$$

$$AYx - YAx - YVYx + Vx = 0, \quad x \in \mathcal{D}$$

can be written as

$$(A+V)(I+Y)x = (I+Y)(A+VY)x, \quad x \in \mathcal{D}.$$

Diagonalization on $\mathcal{D} \subset \text{Dom}(A + VY) \subset \text{Dom}(A)$.

$$AYx - YAx - YVYx + Vx = 0, \quad x \in \mathcal{D}$$

can be written as

$$(A+V)(I+Y)x = (I+Y)(A+VY)x, \quad x \in \mathcal{D}.$$

Diagonalization on $\mathcal{D} \subset \text{Dom}(A + VY) \subset \text{Dom}(A)$. Langer, Tretter 1997; Adamyan, Langer, Tretter 2001,....

$$AYx - YAx - YVYx + Vx = 0, \quad x \in \mathcal{D}$$

can be written as

$$(A+V)(I+Y)x = (I+Y)(A+VY)x, \quad x \in \mathcal{D}.$$

Diagonalization on $\mathcal{D} \subset \text{Dom}(A + VY) \subset \text{Dom}(A)$. Langer, Tretter 1997; Adamyan, Langer, Tretter 2001,.... Issue: Dom(A + VY) depends on Y and is difficult to determine in advance.

$$AYx - YAx - YVYx + Vx = 0, \quad x \in \mathcal{D}$$

can be written as

$$(A+V)(I+Y)x = (I+Y)(A+VY)x, \quad x \in \mathcal{D}.$$

Diagonalization on $\mathcal{D} \subset \text{Dom}(A + VY) \subset \text{Dom}(A)$.

Langer, Tretter 1997; Adamyan, Langer, Tretter 2001,.... Issue: Dom(A + VY) depends on Y and is difficult to determine in advance.

But Dom(A - YV) = Dom(A + V) is known.

$$AYx - YAx - YVYx + Vx = 0, \quad x \in \mathcal{D}$$

can be written as

$$(A+V)(I+Y)x = (I+Y)(A+VY)x, \quad x \in \mathcal{D}.$$

Diagonalization on $\mathcal{D} \subset \text{Dom}(A + VY) \subset \text{Dom}(A)$.

Langer, Tretter 1997; Adamyan, Langer, Tretter 2001,.... Issue: Dom(A + VY) depends on Y and is difficult to determine in advance.

But Dom(A - YV) = Dom(A + V) is known.

Theorem 2 If $Dom(A) \subset Dom(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for B = A + V and B and A - YV closed with common point λ in the resolvent, Theorem 2 If $Dom(A) \subset Dom(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for B = A + V and B and A - YV closed with common point λ in the resolvent, then $\mathcal{D} = Dom(A) = Dom(A + V) = Dom(A + VY)$ and

If $Dom(A) \subset Dom(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for B = A + V and B and A - YV closed with common point λ in the resolvent,then $\mathcal{D} = Dom(A) = Dom(A + V) = Dom(A + VY)$ and

$$(I - Y)(A + V)(I - Y)^{-1} = \begin{pmatrix} A_0 - X_1 W_0 & 0 \\ 0 & A_1 - X_0 W_1 \end{pmatrix}$$

If $Dom(A) \subset Dom(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for B = A + V and B and A - YV closed with common point λ in the resolvent,then $\mathcal{D} = Dom(A) = Dom(A + V) = Dom(A + VY)$ and

$$(I - Y)(A + V)(I - Y)^{-1} = \begin{pmatrix} A_0 - X_1 W_0 & 0 \\ 0 & A_1 - X_0 W_1 \end{pmatrix}$$

as well as

$$(I+Y)^{-1}(A+V)(I+Y) = \begin{pmatrix} A_0 + W_1 X_0 & 0 \\ 0 & A_1 + W_0 X_1 \end{pmatrix}.$$

If $Dom(A) \subset Dom(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for B = A + V and B and A - YV closed with common point λ in the resolvent,then $\mathcal{D} = Dom(A) = Dom(A + V) = Dom(A + VY)$ and

$$(I - Y)(A + V)(I - Y)^{-1} = \begin{pmatrix} A_0 - X_1 W_0 & 0 \\ 0 & A_1 - X_0 W_1 \end{pmatrix}$$

as well as

$$(I+Y)^{-1}(A+V)(I+Y) = \begin{pmatrix} A_0 + W_1 X_0 & 0 \\ 0 & A_1 + W_0 X_1 \end{pmatrix}.$$

A self-adjoint, sup Spec $A_0 \le 0 \le \inf \text{Spec } A_1$, V symmetric.

A self-adjoint, sup Spec $A_0 \le 0 \le \inf \text{Spec } A_1$, V symmetric.

 If Dom(V) ⊃ Dom(A), B = A + V (diagonal dominant), self-adjoint, then

 $\operatorname{\mathsf{Ran}} E_B(-\infty,0) + (\operatorname{\mathsf{Ker}}(B) \cap \mathcal{H}_0) = \mathcal{G}(\mathcal{H}_0,X)$

is a graph subspace that reduces B. X contraction.

A self-adjoint, sup Spec $A_0 \le 0 \le \inf \text{Spec } A_1$, V symmetric.

 If Dom(V) ⊃ Dom(A), B = A + V (diagonal dominant), self-adjoint, then

$$\operatorname{\mathsf{Ran}} E_B(-\infty,0) + (\operatorname{\mathsf{Ker}}(B) \cap \mathcal{H}_0) = \mathcal{G}(\mathcal{H}_0,X)$$

is a graph subspace that reduces B. X contraction.

2. If V has A-bound less than 1, then $Y = \begin{pmatrix} 0 & -X^* \\ X & 0 \end{pmatrix}$ solves the Riccati equation

$$AY - YA - YVY + V = 0,$$

A self-adjoint, sup Spec $A_0 \le 0 \le \inf \text{Spec } A_1$, V symmetric.

 If Dom(V) ⊃ Dom(A), B = A + V (diagonal dominant), self-adjoint, then

$$\operatorname{\mathsf{Ran}} E_B(-\infty,0) + (\operatorname{\mathsf{Ker}}(B) \cap \mathcal{H}_0) = \mathcal{G}(\mathcal{H}_0,X)$$

is a graph subspace that reduces B. X contraction.

2. If V has A-bound less than 1, then $Y = \begin{pmatrix} 0 & -X^* \\ X & 0 \end{pmatrix}$ solves the Riccati equation

$$AY - YA - YVY + V = 0,$$

both diagonalizations hold and A + VY, A - YV are mutually adjoint.

Two dimensional structure of carbon Survey: Geim, Novoselov 2007.

$$H = \frac{\hbar\nu_F}{i}\boldsymbol{\sigma}\cdot\boldsymbol{\nabla} + U = \hbar\nu_F \begin{pmatrix} 0 & k_x - ik_y \\ k_x + ik_y & 0 \end{pmatrix} + U,$$

 $\boldsymbol{\sigma} = (\sigma_x, \sigma_y)$, with σ_x, σ_y the 2 imes 2 Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$$

$$H = \frac{\hbar\nu_F}{i}\boldsymbol{\sigma}\cdot\boldsymbol{\nabla} + U = \hbar\nu_F \begin{pmatrix} 0 & k_x - ik_y \\ k_x + ik_y & 0 \end{pmatrix} + U,$$

 $\boldsymbol{\sigma} = (\sigma_x, \sigma_y)$, with σ_x, σ_y the 2 imes 2 Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$$

 ν_F the Fermi velocity and U short range "defect" potential. $\hbar\nu_F := 1$.

$$H = \frac{\hbar\nu_F}{i}\boldsymbol{\sigma}\cdot\boldsymbol{\nabla} + U = \hbar\nu_F \begin{pmatrix} 0 & k_x - ik_y \\ k_x + ik_y & 0 \end{pmatrix} + U,$$

 $\boldsymbol{\sigma} = (\sigma_x, \sigma_y)$, with σ_x, σ_y the 2 imes 2 Pauli matrices

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$$

 ν_F the Fermi velocity and U short range "defect" potential. $\hbar\nu_F := 1$. Not diagonal dominant

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way:

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way: Foldy-Wouthuysen transformation $\mathcal{T}_{\rm FW}$ diagonalizes the free Dirac operator $H_0 = -i\boldsymbol{\sigma}\cdot\boldsymbol{\nabla}$ in momentum representation:

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way: Foldy-Wouthuysen transformation $\mathcal{T}_{\rm FW}$ diagonalizes the free Dirac operator $H_0 = -i\boldsymbol{\sigma}\cdot\boldsymbol{\nabla}$ in momentum representation:

$${\mathcal T}_{
m FW} \, {\mathcal H}_0 \, {\mathcal T}_{
m FW}^{-1} = \begin{pmatrix} \sqrt{-\Delta} & 0 \\ 0 & -\sqrt{-\Delta} \end{pmatrix}$$
 ${\mathcal T}_{
m FW} = rac{1}{\sqrt{2}} egin{pmatrix} heta({f k}) & 1 \\ heta({f k}) & -1 \end{pmatrix} \quad {
m with} \quad heta({f k}) = rac{\sqrt{k_x^2 + k_y^2}}{k_x - ik_y} \,,$

 \mathcal{T}

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way: Foldy-Wouthuysen transformation $\mathcal{T}_{\rm FW}$ diagonalizes the free Dirac operator $H_0 = -i\boldsymbol{\sigma}\cdot\boldsymbol{\nabla}$ in momentum representation:

$$\begin{split} \mathcal{T}_{\mathrm{FW}} \, \mathcal{H}_0 \, \mathcal{T}_{\mathrm{FW}}^{-1} &= \begin{pmatrix} \sqrt{-\Delta} & 0\\ 0 & -\sqrt{-\Delta} \end{pmatrix} \\ \mathcal{T}_{\mathrm{FW}} &= \frac{1}{\sqrt{2}} \begin{pmatrix} \theta(\mathbf{k}) & 1\\ \theta(\mathbf{k}) & -1 \end{pmatrix} \quad \text{with} \quad \theta(\mathbf{k}) &= \frac{\sqrt{k_x^2 + k_y^2}}{k_x - ik_y} \,, \\ \\ \mathcal{T}_{\mathrm{FW}} \, \mathcal{H} \, \mathcal{T}_{\mathrm{FW}}^{-1} &= \begin{pmatrix} \sqrt{-\Delta} + U + \Theta U \Theta^* & -U + \Theta U \Theta^* \\ -U + \Theta U \Theta^* & -\sqrt{-\Delta} + U + \Theta U \Theta^* \end{pmatrix}, \end{split}$$

 Θ Fourier multiplier with the unimodular symbol $\theta(\mathbf{k})$.

 \mathcal{T}

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way: Foldy-Wouthuysen transformation $\mathcal{T}_{\rm FW}$ diagonalizes the free Dirac operator $H_0 = -i\boldsymbol{\sigma}\cdot\boldsymbol{\nabla}$ in momentum representation:

$$\begin{split} \mathcal{T}_{\mathrm{FW}} \, \mathcal{H}_0 \, \mathcal{T}_{\mathrm{FW}}^{-1} &= \begin{pmatrix} \sqrt{-\Delta} & 0\\ 0 & -\sqrt{-\Delta} \end{pmatrix} \\ \mathcal{T}_{\mathrm{FW}} &= \frac{1}{\sqrt{2}} \begin{pmatrix} \theta(\mathbf{k}) & 1\\ \theta(\mathbf{k}) & -1 \end{pmatrix} \quad \text{with} \quad \theta(\mathbf{k}) &= \frac{\sqrt{k_x^2 + k_y^2}}{k_x - ik_y} \,, \\ \mathcal{T}_{\mathrm{FW}} \, \mathcal{H} \, \mathcal{T}_{\mathrm{FW}}^{-1} &= \begin{pmatrix} \sqrt{-\Delta} + U + \Theta U \Theta^* & -U + \Theta U \Theta^* \\ -U + \Theta U \Theta^* & -\sqrt{-\Delta} + U + \Theta U \Theta^* \end{pmatrix}, \end{split}$$

 Θ Fourier multiplier with the unimodular symbol $\theta(\mathbf{k})$. Subordinated spectra if U is a compactly supported bounded potential with $\|U\|_{\infty}$ small enough.

$$S = \begin{pmatrix} A_+ & W^* \\ W & -A_- \end{pmatrix} = A + V \quad ext{on} \ \ \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-,$$

 $A_{\pm} \geq 0$ in \mathcal{H}_{\pm} and $\mathsf{Dom}(A^{1/2}_{+}) \subset \mathsf{Dom}(W)$.

$$S = \begin{pmatrix} A_+ & W^* \\ W & -A_- \end{pmatrix} = A + V \quad ext{on} \ \ \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-,$$

 $A_{\pm} \ge 0$ in \mathcal{H}_{\pm} and $\mathsf{Dom}(A_{\pm}^{1/2}) \subset \mathsf{Dom}(W)$. Upper dominant Matrix!

$$S = \begin{pmatrix} A_+ & W^* \\ W & -A_- \end{pmatrix} = A + V \quad ext{on} \ \ \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-,$$

 $A_{\pm} \ge 0$ in \mathcal{H}_{\pm} and $\mathsf{Dom}(A_{\pm}^{1/2}) \subset \mathsf{Dom}(W)$. Upper dominant Matrix! Diagonalize the form $\mathfrak{s} = \mathfrak{a} + \mathfrak{v}$ on

$$\mathsf{Dom}[\mathfrak{s}] = \mathsf{Dom}[\mathfrak{a}] = \mathsf{Dom}(|A|^{1/2}),$$
$$\mathfrak{a}[x, y] = \langle |A|^{1/2}x, \begin{pmatrix} I & 0\\ 0 & -I \end{pmatrix} |A|^{1/2}y \rangle, \quad x, y \in \mathsf{Dom}[\mathfrak{a}] = \mathsf{Dom}(|A|^{1/2}),$$

$$S = \begin{pmatrix} A_+ & W^* \\ W & -A_- \end{pmatrix} = A + V \quad ext{on} \ \ \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-,$$

 $A_{\pm} \geq 0$ in \mathcal{H}_{\pm} and $\text{Dom}(A_{\pm}^{1/2}) \subset \text{Dom}(W)$. Upper dominant Matrix! Diagonalize the form $\mathfrak{s} = \mathfrak{a} + \mathfrak{v}$ on

$$\mathsf{Dom}[\mathfrak{s}] = \mathsf{Dom}[\mathfrak{a}] = \mathsf{Dom}(|A|^{1/2}),$$
$$\mathfrak{a}[x, y] = \langle |A|^{1/2}x, \begin{pmatrix} I & 0\\ 0 & -I \end{pmatrix} |A|^{1/2}y \rangle, \quad x, y \in \mathsf{Dom}[\mathfrak{a}] = \mathsf{Dom}(|A|^{1/2}),$$
and

anu

$$\begin{split} \mathfrak{v}[x,y] &= \langle Wx_+, y_- \rangle + \langle x_-, Wy_+ \rangle \quad \text{on} \quad \mathsf{Dom}[\mathfrak{v}] = \mathsf{Dom}[\mathfrak{a}], \\ x &= x_+ \oplus x_-, \quad y = y_+ \oplus y_-, \quad x_\pm, y_\pm \in \mathsf{Dom}(|\mathcal{A}_\pm|^{1/2}) \subset \mathcal{H}_\pm \end{split}$$

.

The form \mathfrak{s} is associated with a unique self-adjoint operator S, $\mathsf{Dom}(S) \subseteq \mathsf{Dom}(|A|^{1/2})$,

 $\mathfrak{s}[x,y] = \langle x, Sy \rangle, \quad x \in \mathsf{Dom}[\mathfrak{s}], \ y \in \mathsf{Dom}(S).$

The form \mathfrak{s} is associated with a unique self-adjoint operator S, $\mathsf{Dom}(S) \subseteq \mathsf{Dom}(|A|^{1/2})$,

 $\mathfrak{s}[x,y] = \langle x, Sy \rangle, \quad x \in \mathsf{Dom}[\mathfrak{s}], \ y \in \mathsf{Dom}(S).$

If $Dom(|S|^{1/2}) = Dom[\mathfrak{s}]$ then \mathfrak{s} is represented by S,

$$\mathfrak{s}[x,y] = \langle |S|^{1/2}x, \operatorname{sign}(S)|S|^{1/2}y \rangle.$$

The form \mathfrak{s} is associated with a unique self-adjoint operator S, $\mathsf{Dom}(S) \subseteq \mathsf{Dom}(|A|^{1/2})$,

 $\mathfrak{s}[x,y] = \langle x, Sy \rangle, \quad x \in \mathsf{Dom}[\mathfrak{s}], \ y \in \mathsf{Dom}(S).$

If $Dom(|S|^{1/2}) = Dom[\mathfrak{s}]$ then \mathfrak{s} is represented by S,

$$\mathfrak{s}[x,y] = \langle |S|^{1/2}x, \operatorname{sign}(S)|S|^{1/2}y \rangle.$$

One-To-One correspondence between these forms and operators.

$$\mathcal{L}_{\pm} = \mathsf{Ran}\,\mathsf{E}_{\mathcal{S}}(\mathbb{R}_{\pm}\setminus\{0\})\oplus (\,\mathsf{Ker}(\mathcal{S})\cap\mathcal{H}_{\pm}\,)$$

are reducing graph subspaces of contractions $X, -X^*$ for the form and the Operator.

The form \mathfrak{s} is associated with a unique self-adjoint operator S, $\mathsf{Dom}(S) \subseteq \mathsf{Dom}(|A|^{1/2})$,

 $\mathfrak{s}[x,y] = \langle x, Sy \rangle, \quad x \in \mathsf{Dom}[\mathfrak{s}], \ y \in \mathsf{Dom}(S).$

If $Dom(|S|^{1/2}) = Dom[\mathfrak{s}]$ then \mathfrak{s} is represented by S,

$$\mathfrak{s}[x,y] = \langle |S|^{1/2}x, \operatorname{sign}(S)|S|^{1/2}y \rangle.$$

One-To-One correspondence between these forms and operators.

$$\mathcal{L}_{\pm} = \mathsf{Ran}\,\mathsf{E}_{\mathcal{S}}(\mathbb{R}_{\pm}\setminus\{0\})\oplusig(\operatorname{\mathsf{Ker}}(\mathcal{S})\cap\mathcal{H}_{\pm}ig)$$

are reducing graph subspaces of contractions $X, -X^*$ for the form and the Operator. \rightarrow Unitary block diagonalization for S if $I \pm Y$, $|I \pm Y|$ bijective on Dom[\mathfrak{s}].

Stokes Operator on Lipschitz domain Ω .

Stationary Stokes System: Slow flow of incompressible viscous fluid

 $-\Delta u + \operatorname{grad} p = f$, $\operatorname{div} u = 0$, $u|_{\partial\Omega} = 0$.

Stokes Operator on Lipschitz domain Ω .

Stationary Stokes System: Slow flow of incompressible viscous fluid

$$-\Delta u + \operatorname{grad} p = f$$
, $\operatorname{div} u = 0$, $u|_{\partial\Omega} = 0$.

Construction of the semibounded Stokes Operator

$$S = egin{pmatrix} - oldsymbol{\Delta} & ext{grad} \ - ext{div} & 0 \end{pmatrix}$$
 in $\mathcal{H} = H^1_0(\Omega)^n \oplus L^2(\Omega)$

Stokes Operator on Lipschitz domain Ω .

Stationary Stokes System: Slow flow of incompressible viscous fluid

$$-\Delta u + \operatorname{grad} p = f$$
, $\operatorname{div} u = 0$, $u|_{\partial\Omega} = 0$.

Construction of the semibounded Stokes Operator

$$S = egin{pmatrix} -oldsymbol{\Delta} & ext{grad} \ -\operatorname{div} & 0 \end{pmatrix}$$
 in $\mathcal{H} = H^1_0(\Omega)^n \oplus L^2(\Omega)$

using the semibounded form

$$\mathfrak{b}[u\oplus p] = \sum_{j=1}^n \int_{\Omega} |D_j u(x)|^2 dx + 2\operatorname{Re} \int_{\Omega} p(x) \overline{\operatorname{div} u(x)} dx.$$

Lemma [GKMSV]

1. Ran $E_{\mathcal{S}}(\mathbb{R}_+) = \mathcal{G}(\mathcal{H}_+, X)$ graph of a contraction X.

Lemma [GKMSV]

- 1. Ran $E_{\mathcal{S}}(\mathbb{R}_+) = \mathcal{G}(\mathcal{H}_+, X)$ graph of a contraction X.
- 2. X is the unique contractive solution to

$$\mathfrak{a}_+[X^*p,u]+\mathfrak{v}[-X^*p\oplus 0,0\oplus Xu]+\mathfrak{v}[0\oplus p,u\oplus 0]=0.$$

Lemma [GKMSV]

- 1. Ran $E_{\mathcal{S}}(\mathbb{R}_+) = \mathcal{G}(\mathcal{H}_+, X)$ graph of a contraction X.
- 2. X is the unique contractive solution to

 $\mathfrak{a}_{+}[X^*p,u] + \mathfrak{v}[-X^*p \oplus 0, 0 \oplus Xu] + \mathfrak{v}[0 \oplus p, u \oplus 0] = 0.$

Form variant of the Operator Riccati Equation.

Theorem 3: Unitary Spectral Block-Diagonalisation [*GKMSV*]

$$T^{-1}ST = \begin{pmatrix} S_+ & 0 \\ 0 & S_- \end{pmatrix},$$

Theorem 3: Unitary Spectral Block-Diagonalisation [*GKMSV*]

$$T^{-1}ST = \begin{pmatrix} S_+ & 0 \\ 0 & S_- \end{pmatrix},$$

$$egin{aligned} S_+ &= (I + X^*X)^{-1/2} (- oldsymbol{\Delta} + X^* ext{div}) (I + X^*X)^{1/2} \ S_- &= -(I + XX^*)^{-1/2} (ext{div}\,X^*) (I + XX^*)^{1/2} \end{aligned}$$

1. $\sigma(S_+)$ is discrete, $S_+ \ge \lambda_1(\Omega)I$, $\lambda_1(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.

1. $\sigma(S_+)$ is discrete, $S_+ \ge \lambda_1(\Omega)I$, $\lambda_1(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.

2.
$$\sigma_{\mathrm{ess}}(S_{-}) = \sigma_{\mathrm{ess}}(-\operatorname{\mathsf{div}} \mathbf{\Delta}^{-1} \operatorname{\mathsf{grad}}),$$

- 1. $\sigma(S_+)$ is discrete, $S_+ \ge \lambda_1(\Omega)I$, $\lambda_1(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.
- 2. $\sigma_{ess}(S_{-}) = \sigma_{ess}(-\operatorname{div} \Delta^{-1} \operatorname{grad}), \operatorname{div} \Delta^{-1} \operatorname{grad}$ Cosserat Operator:

- 1. $\sigma(S_+)$ is discrete, $S_+ \ge \lambda_1(\Omega)I$, $\lambda_1(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.
- σ_{ess}(S₋) = σ_{ess}(-div Δ⁻¹ grad), div Δ⁻¹ grad Cosserat Operator: Band-Spectrum for domains with corners [*Costabel*, *Crouzeix*, *Dauge*, *Lafranche* 15]

- 1. $\sigma(S_+)$ is discrete, $S_+ \ge \lambda_1(\Omega)I$, $\lambda_1(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.
- σ_{ess}(S₋) = σ_{ess}(-div Δ⁻¹ grad), div Δ⁻¹ grad Cosserat Operator: Band-Spectrum for domains with corners [*Costabel*, *Crouzeix*, *Dauge*, *Lafranche* 15]
- 3. $S_{-} \geq -1$ sharp estimate.

Introduce viscosity ν , characteristic velocity v_* and rescale

$$S = \begin{pmatrix} -\nu \Delta & v_* \operatorname{grad} \\ -v_* \operatorname{div} & 0 \end{pmatrix}$$
:

Introduce viscosity ν , characteristic velocity v_* and rescale

$$S = \begin{pmatrix} -\nu \mathbf{\Delta} & v_* \operatorname{grad} \\ -v_* \operatorname{div} & 0 \end{pmatrix}:$$

Same physical unit of frequency everywhere.

Introduce viscosity ν , characteristic velocity v_* and rescale

$$S = \begin{pmatrix} -\nu \mathbf{\Delta} & v_* \operatorname{grad} \\ -v_* \operatorname{div} & 0 \end{pmatrix} :$$

Same physical unit of frequency everywhere.

 $\label{eq:Re} \begin{aligned} & \text{Generalized Reynolds number} \\ & \text{Re} = \frac{\text{char. velocity} \cdot \text{char. length}}{\text{viscosity}} \end{aligned}$

Introduce viscosity ν , characteristic velocity v_* and rescale

$$S = \begin{pmatrix} -\nu \mathbf{\Delta} & v_* \operatorname{grad} \\ -v_* \operatorname{div} & 0 \end{pmatrix} :$$

Same physical unit of frequency everywhere.

 $\begin{array}{l} \mbox{Generalized Reynolds number} \\ \mbox{Re} = \frac{\mbox{char. velocity char. length}}{\mbox{viscosity}} = \frac{2 v_*}{\nu \sqrt{\lambda_1(\Omega)}} \end{array}$

Introduce viscosity ν , characteristic velocity v_* and rescale

$$S = \begin{pmatrix} -\nu \Delta & v_* \operatorname{grad} \\ -v_* \operatorname{div} & 0 \end{pmatrix}$$
:

Same physical unit of frequency everywhere.

 $\begin{array}{l} \mbox{Generalized Reynolds number} \\ \mbox{Re} = \frac{\mbox{char. velocity} \cdot \mbox{char. length}}{\mbox{viscosity}} = \frac{2\nu_*}{\nu\sqrt{\lambda_1(\Omega)}} \\ \mbox{Angle } \Theta \mbox{ between Ran } E_{\mathcal{S}}(\mathbb{R}_+) \mbox{ and } \mathcal{H}_+ \mbox{ satisfies a Tan} 2\Theta \mbox{ theorem} \end{array}$

 $\tan 2||\Theta|| \leq {\rm Re}.$

Introduce viscosity ν , characteristic velocity v_* and rescale

$$S = \begin{pmatrix} -\nu \Delta & v_* \operatorname{grad} \\ -v_* \operatorname{div} & 0 \end{pmatrix}$$
:

Same physical unit of frequency everywhere.

Generalized Reynolds number $Re = \frac{\text{char. velocity} \cdot \text{char. length}}{\text{viscosity}} = \frac{2v_*}{\nu\sqrt{\lambda_1(\Omega)}}$ Angle Θ between Ran $E_S(\mathbb{R}_+)$ and \mathcal{H}_+ satisfies a Tan2 Θ theorem

 $\tan 2||\Theta|| \leq {\rm Re}.$

 \rightarrow Geometric interpretation of Ladyzhenskaya's Stability Result

 v^s stationary solution of the 2D-Navier-Stokes equation

$$\frac{\partial}{\partial t}v_{s} + (v^{s} \cdot \operatorname{grad})v^{s} - \nu \Delta v^{s} + \frac{1}{\rho}\operatorname{grad} p = f, \quad \operatorname{div} v^{s} = 0$$

 v^s stationary solution of the 2D-Navier-Stokes equation

$$\frac{\partial}{\partial t}v_s + (v^s \cdot \operatorname{grad})v^s - \nu \Delta v^s + \frac{1}{\rho}\operatorname{grad} p = f, \quad \operatorname{div} v^s = 0$$

If $\operatorname{Re} < 1$ ($||\Theta|| < \frac{\pi}{8}$), where

$$v_* = \left(\int_\Omega |v^s_x|^2 + |v^s_y|^2 dx dy
ight)^{1/2},$$

then the non-stationary solution v converges to v^s exponentially

 v^s stationary solution of the 2D-Navier-Stokes equation

$$\frac{\partial}{\partial t}v_s + (v^s \cdot \operatorname{grad})v^s - \nu \Delta v^s + \frac{1}{\rho}\operatorname{grad} p = f, \quad \operatorname{div} v^s = 0$$

If $\operatorname{Re} < 1$ ($||\Theta|| < \frac{\pi}{8}$), where

$$v_* = \left(\int_{\Omega} |v^s_x|^2 + |v^s_y|^2 dx dy
ight)^{1/2},$$

then the non-stationary solution v converges to v^s exponentially

$$(\mathbf{v}-\mathbf{v}^{s})(x,t) \leq (\mathbf{v}-\mathbf{v}^{s})(x,0)\exp(-\alpha t),$$

 v^s stationary solution of the 2D-Navier-Stokes equation

$$\frac{\partial}{\partial t}v_s + (v^s \cdot \operatorname{grad})v^s - \nu \Delta v^s + \frac{1}{\rho}\operatorname{grad} p = f, \quad \operatorname{div} v^s = 0$$

If $\operatorname{Re} < 1$ ($||\Theta|| < \frac{\pi}{8}$), where

$$v_*=\left(\int_\Omega |v^s_x|^2+|v^s_y|^2dxdy
ight)^{1/2},$$

then the non-stationary solution v converges to v^s exponentially

$$(\mathbf{v}-\mathbf{v}^{s})(x,t) \leq (\mathbf{v}-\mathbf{v}^{s})(x,0)\exp(-lpha t),$$

$$\alpha = \nu \lambda_1(\Omega)(1 - \operatorname{Re}).$$

Thank You!