Block-Diagonalization of unbounded operator matrices

Stephan Schmitz

University of Missouri, Columbia, Missouri

Joint works with K. A. Makarov, A. Seelmann;
L. Grubišić, V. Kostrykin, K. A. Makarov and K. Veselić.

CIRM 9.6.2017

Content

- Diagonalization of Operator matrices

Content

- Diagonalization of Operator matrices
- Graphene

Content

- Diagonalization of Operator matrices
- Graphene
- Diagonalization of Operator matrices via forms

Content

- Diagonalization of Operator matrices
- Graphene
- Diagonalization of Operator matrices via forms
- The Stokes operator

Diagonalization

$$
\begin{aligned}
& \mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1} \text { Hilbert space, } B=\left(\begin{array}{ll}
A_{0} & W_{1} \\
W_{0} & A_{1}
\end{array}\right)=A+V \\
& \text { A self-adjoint. }
\end{aligned}
$$

Diagonalization

$\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ Hilbert space, $B=\left(\begin{array}{cc}A_{0} & W_{1} \\ W_{0} & A_{1}\end{array}\right)=A+V$, A self-adjoint.
Find $T, D_{0,1}$ with $T^{-1} B T=\left(\begin{array}{cc}D_{0} & 0 \\ 0 & D_{1}\end{array}\right)$.

Diagonalization

$\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ Hilbert space, $B=\left(\begin{array}{cc}A_{0} & W_{1} \\ W_{0} & A_{1}\end{array}\right)=A+V$,
A self-adjoint.
Find $T, D_{0,1}$ with $T^{-1} B T=\left(\begin{array}{cc}D_{0} & 0 \\ 0 & D_{1}\end{array}\right)$.
Issues

1. Complementary invariant graph subspaces $\mathcal{H}=\mathcal{G}_{0}+\mathcal{G}_{1}$ $\mathcal{G}_{0}=\left\{f+X_{0} f \mid f \in \mathcal{H}_{0}\right\}, \quad \mathcal{G}_{1}=\left\{X_{1} g+g \mid g \in \mathcal{H}_{1}\right\}$ $X_{0}: \mathcal{H}_{0} \rightarrow \mathcal{H}_{1}, X_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{0}$ bounded operator.

Diagonalization

$\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ Hilbert space, $B=\left(\begin{array}{cc}A_{0} & W_{1} \\ W_{0} & A_{1}\end{array}\right)=A+V$,
A self-adjoint.
Find $T, D_{0,1}$ with $T^{-1} B T=\left(\begin{array}{cc}D_{0} & 0 \\ 0 & D_{1}\end{array}\right)$.
Issues

1. Complementary invariant graph subspaces $\mathcal{H}=\mathcal{G}_{0}+\mathcal{G}_{1}$ $\mathcal{G}_{0}=\left\{f+X_{0} f \mid f \in \mathcal{H}_{0}\right\}, \quad \mathcal{G}_{1}=\left\{X_{1} g+g \mid g \in \mathcal{H}_{1}\right\}$ $X_{0}: \mathcal{H}_{0} \rightarrow \mathcal{H}_{1}, X_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{0}$ bounded operator. May not exist!

Diagonalization

$\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ Hilbert space, $B=\left(\begin{array}{cc}A_{0} & W_{1} \\ W_{0} & A_{1}\end{array}\right)=A+V$,
A self-adjoint.
Find $T, D_{0,1}$ with $T^{-1} B T=\left(\begin{array}{cc}D_{0} & 0 \\ 0 & D_{1}\end{array}\right)$.
Issues

1. Complementary invariant graph subspaces $\mathcal{H}=\mathcal{G}_{0}+\mathcal{G}_{1}$ $\mathcal{G}_{0}=\left\{f+X_{0} f \mid f \in \mathcal{H}_{0}\right\}, \quad \mathcal{G}_{1}=\left\{X_{1} g+g \mid g \in \mathcal{H}_{1}\right\}$ $X_{0}: \mathcal{H}_{0} \rightarrow \mathcal{H}_{1}, X_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{0}$ bounded operator. May not exist!
2. Decomposition of B :

Diagonalization

$\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ Hilbert space, $B=\left(\begin{array}{cc}A_{0} & W_{1} \\ W_{0} & A_{1}\end{array}\right)=A+V$,
A self-adjoint.
Find $T, D_{0,1}$ with $T^{-1} B T=\left(\begin{array}{cc}D_{0} & 0 \\ 0 & D_{1}\end{array}\right)$.
Issues

1. Complementary invariant graph subspaces $\mathcal{H}=\mathcal{G}_{0}+\mathcal{G}_{1}$ $\mathcal{G}_{0}=\left\{f+X_{0} f \mid f \in \mathcal{H}_{0}\right\}, \quad \mathcal{G}_{1}=\left\{X_{1} g+g \mid g \in \mathcal{H}_{1}\right\}$ $X_{0}: \mathcal{H}_{0} \rightarrow \mathcal{H}_{1}, X_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{0}$ bounded operator. May not exist!
2. Decomposition of B :
$\operatorname{Dom}(B)=\left(\operatorname{Dom}(B) \cap \mathcal{G}_{0}\right)+\left(\operatorname{Dom}(B) \cap \mathcal{G}_{1}\right)$ splits.

Diagonalization

$\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ Hilbert space, $B=\left(\begin{array}{cc}A_{0} & W_{1} \\ W_{0} & A_{1}\end{array}\right)=A+V$,
A self-adjoint.
Find $T, D_{0,1}$ with $T^{-1} B T=\left(\begin{array}{cc}D_{0} & 0 \\ 0 & D_{1}\end{array}\right)$.
Issues

1. Complementary invariant graph subspaces $\mathcal{H}=\mathcal{G}_{0}+\mathcal{G}_{1}$ $\mathcal{G}_{0}=\left\{f+X_{0} f \mid f \in \mathcal{H}_{0}\right\}, \quad \mathcal{G}_{1}=\left\{X_{1} g+g \mid g \in \mathcal{H}_{1}\right\}$ $X_{0}: \mathcal{H}_{0} \rightarrow \mathcal{H}_{1}, X_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{0}$ bounded operator. May not exist!
2. Decomposition of B :
$\operatorname{Dom}(B)=\left(\operatorname{Dom}(B) \cap \mathcal{G}_{0}\right)+\left(\operatorname{Dom}(B) \cap \mathcal{G}_{1}\right)$ splits. May be too small!

Main Theorem [MSS 16]

$$
\text { Set } Y=\left(\begin{array}{cc}
0 & X_{1} \\
X_{0} & 0
\end{array}\right), \mathcal{D}=\{f \in \operatorname{Dom}(B) \mid Y f \in \operatorname{Dom}(B)\}
$$

Main Theorem [MSS 16]

Set $Y=\left(\begin{array}{cc}0 & X_{1} \\ X_{0} & 0\end{array}\right), \mathcal{D}=\{f \in \operatorname{Dom}(B) \mid Y f \in \operatorname{Dom}(B)\}$
Theorem 1
If $\mathcal{G}_{0,1}$ are invariant graph subspaces for $B=A+V$ and $A+V$ and $A-Y V$ closed with common point λ in the resolvent. Then the following are equivalent:

Main Theorem [MSS 16]

Set $Y=\left(\begin{array}{cc}0 & X_{1} \\ X_{0} & 0\end{array}\right), \mathcal{D}=\{f \in \operatorname{Dom}(B) \mid Y f \in \operatorname{Dom}(B)\}$
Theorem 1
If $\mathcal{G}_{0,1}$ are invariant graph subspaces for $B=A+V$ and $A+V$ and $A-Y V$ closed with common point λ in the resolvent. Then the following are equivalent:

$$
\text { 1. } \operatorname{Dom}(B)=\left(\operatorname{Dom}(B) \cap \mathcal{G}_{0}\right)+\left(\operatorname{Dom}(B) \cap \mathcal{G}_{1}\right) \text {, }
$$

Main Theorem [MSS 16]

Set $Y=\left(\begin{array}{cc}0 & X_{1} \\ X_{0} & 0\end{array}\right), \mathcal{D}=\{f \in \operatorname{Dom}(B) \mid Y f \in \operatorname{Dom}(B)\}$
Theorem 1
If $\mathcal{G}_{0,1}$ are invariant graph subspaces for $B=A+V$ and $A+V$ and $A-Y V$ closed with common point λ in the resolvent. Then the following are equivalent:

1. $\operatorname{Dom}(B)=\left(\operatorname{Dom}(B) \cap \mathcal{G}_{0}\right)+\left(\operatorname{Dom}(B) \cap \mathcal{G}_{1}\right)$,
2. $\operatorname{Dom}(B)$ invariant for X_{0} and X_{1}.

Main Theorem [MSS 16]

Set $Y=\left(\begin{array}{cc}0 & X_{1} \\ X_{0} & 0\end{array}\right), \mathcal{D}=\{f \in \operatorname{Dom}(B) \mid Y f \in \operatorname{Dom}(B)\}$
Theorem 1
If $\mathcal{G}_{0,1}$ are invariant graph subspaces for $B=A+V$ and $A+V$ and $A-Y V$ closed with common point λ in the resolvent. Then the following are equivalent:

$$
\text { 1. } \operatorname{Dom}(B)=\left(\operatorname{Dom}(B) \cap \mathcal{G}_{0}\right)+\left(\operatorname{Dom}(B) \cap \mathcal{G}_{1}\right)
$$

2. $\operatorname{Dom}(B)$ invariant for X_{0} and X_{1}.
\Rightarrow Block-diagonalization

Diagonlizations

Riccati equation
\mathcal{G}_{0} and \mathcal{G}_{1} invariant for $A+V \Longleftrightarrow Y$ satisfies
$A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}=\{f \in \operatorname{Dom}(B) \mid Y f \in \operatorname{Dom}(B)\}$

Diagonlizations

Riccati equation
\mathcal{G}_{0} and \mathcal{G}_{1} invariant for $A+V \Longleftrightarrow Y$ satisfies
$A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}=\{f \in \operatorname{Dom}(B) \mid Y f \in \operatorname{Dom}(B)\}$

$$
\Longleftrightarrow(I-Y)(A+V) x=(A-Y V)(I-Y) x, \quad x \in \mathcal{D}
$$

Diagonlizations

Riccati equation
\mathcal{G}_{0} and \mathcal{G}_{1} invariant for $A+V \Longleftrightarrow Y$ satisfies
$A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}=\{f \in \operatorname{Dom}(B) \mid Y f \in \operatorname{Dom}(B)\}$

$$
\Longleftrightarrow(I-Y)(A+V) x=(A-Y V)(I-Y) x, \quad x \in \mathcal{D}
$$

Strong form of operator Riccati equation, $A-Y V$ diagonal.

Diagonlizations

Riccati equation
\mathcal{G}_{0} and \mathcal{G}_{1} invariant for $A+V \Longleftrightarrow Y$ satisfies
$A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}=\{f \in \operatorname{Dom}(B) \mid Y f \in \operatorname{Dom}(B)\}$

$$
\Longleftrightarrow(I-Y)(A+V) x=(A-Y V)(I-Y) x, \quad x \in \mathcal{D}
$$

Strong form of operator Riccati equation, $A-Y V$ diagonal. What is \mathcal{D} ? Operator equality?

Operator Inclusions

$\mathcal{G}_{0}, \mathcal{G}_{1}$ invariant for B

- $\operatorname{Dom}(B)=\left(\operatorname{Dom}(B) \cap \mathcal{G}_{0}\right)+\left(\operatorname{Dom}(B) \cap \mathcal{G}_{1}\right)$
$\Longleftrightarrow(I-Y)(A+V) \supset(A-Y V)(I-Y)$

Operator Inclusions

$\mathcal{G}_{0}, \mathcal{G}_{1}$ invariant for B

- $\operatorname{Dom}(B)=\left(\operatorname{Dom}(B) \cap \mathcal{G}_{0}\right)+\left(\operatorname{Dom}(B) \cap \mathcal{G}_{1}\right)$
$\Longleftrightarrow(I-Y)(A+V) \supset(A-Y V)(I-Y)$
- $\operatorname{Dom}(B)$ invariant for X_{0} and X_{1}

$$
\Longleftrightarrow(I-Y)(A+V) \subset(A-Y V)(I-Y)
$$

Operator Inclusions

$\mathcal{G}_{0}, \mathcal{G}_{1}$ invariant for B

- $\operatorname{Dom}(B)=\left(\operatorname{Dom}(B) \cap \mathcal{G}_{0}\right)+\left(\operatorname{Dom}(B) \cap \mathcal{G}_{1}\right)$ $\Longleftrightarrow(I-Y)(A+V) \supset(A-Y V)(I-Y)$
- $\operatorname{Dom}(B)$ invariant for X_{0} and X_{1}

$$
\Longleftrightarrow(I-Y)(A+V) \subset(A-Y V)(I-Y)
$$

Diagonalization if both inclusions hold.

Operator Inclusions

$\mathcal{G}_{0}, \mathcal{G}_{1}$ invariant for B

- $\operatorname{Dom}(B)=\left(\operatorname{Dom}(B) \cap \mathcal{G}_{0}\right)+\left(\operatorname{Dom}(B) \cap \mathcal{G}_{1}\right)$ $\Longleftrightarrow(I-Y)(A+V) \supset(A-Y V)(I-Y)$
- $\operatorname{Dom}(B)$ invariant for X_{0} and X_{1}

$$
\Longleftrightarrow(I-Y)(A+V) \subset(A-Y V)(I-Y)
$$

Diagonalization if both inclusions hold.
One inclusion implies the other if $A+V$ and $A-Y V$ have a common point in the resolvent set.

Alternative Diagonalization

Riccati equation

$$
A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}
$$

can be written as

$$
(A+V)(I+Y) x=(I+Y)(A+V Y) x, \quad x \in \mathcal{D}
$$

Alternative Diagonalization

Riccati equation

$$
A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}
$$

can be written as

$$
(A+V)(I+Y) x=(I+Y)(A+V Y) x, \quad x \in \mathcal{D}
$$

Diagonalization on $\mathcal{D} \subset \operatorname{Dom}(A+V Y) \subset \operatorname{Dom}(A)$.

Alternative Diagonalization

Riccati equation

$$
A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}
$$

can be written as

$$
(A+V)(I+Y) x=(I+Y)(A+V Y) x, \quad x \in \mathcal{D}
$$

Diagonalization on $\mathcal{D} \subset \operatorname{Dom}(A+V Y) \subset \operatorname{Dom}(A)$.
Langer, Tretter 1997; Adamyan, Langer, Tretter 2001,....

Alternative Diagonalization

Riccati equation

$$
A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}
$$

can be written as

$$
(A+V)(I+Y) x=(I+Y)(A+V Y) x, \quad x \in \mathcal{D}
$$

Diagonalization on $\mathcal{D} \subset \operatorname{Dom}(A+V Y) \subset \operatorname{Dom}(A)$.
Langer, Tretter 1997; Adamyan, Langer, Tretter 2001,.... Issue: $\operatorname{Dom}(A+V Y)$ depends on Y and is difficult to determine in advance.

Alternative Diagonalization

Riccati equation

$$
A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}
$$

can be written as

$$
(A+V)(I+Y) x=(I+Y)(A+V Y) x, \quad x \in \mathcal{D}
$$

Diagonalization on $\mathcal{D} \subset \operatorname{Dom}(A+V Y) \subset \operatorname{Dom}(A)$.
Langer, Tretter 1997; Adamyan, Langer, Tretter 2001,....
Issue: $\operatorname{Dom}(A+V Y)$ depends on Y and is difficult to determine in advance.
But $\operatorname{Dom}(A-Y V)=\operatorname{Dom}(A+V)$ is known.

Alternative Diagonalization

Riccati equation

$$
A Y x-Y A x-Y V Y x+V x=0, \quad x \in \mathcal{D}
$$

can be written as

$$
(A+V)(I+Y) x=(I+Y)(A+V Y) x, \quad x \in \mathcal{D}
$$

Diagonalization on $\mathcal{D} \subset \operatorname{Dom}(A+V Y) \subset \operatorname{Dom}(A)$.
Langer, Tretter 1997; Adamyan, Langer, Tretter 2001,....
Issue: $\operatorname{Dom}(A+V Y)$ depends on Y and is difficult to determine in advance.
But $\operatorname{Dom}(A-Y V)=\operatorname{Dom}(A+V)$ is known.

Two Diagonalizations [MSS]

Theorem 2
If $\operatorname{Dom}(A) \subset \operatorname{Dom}(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for $B=A+V$ and B and $A-Y V$ closed with common point λ in the resolvent,

Two Diagonalizations [MSS]

Theorem 2
If $\operatorname{Dom}(A) \subset \operatorname{Dom}(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for $B=A+V$ and B and $A-Y V$ closed with common point λ in the resolvent, then
$\mathcal{D}=\operatorname{Dom}(A)=\operatorname{Dom}(A+V)=\operatorname{Dom}(A+V Y)$ and

Two Diagonalizations [MSS]

Theorem 2
If $\operatorname{Dom}(A) \subset \operatorname{Dom}(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for $B=A+V$ and B and $A-Y V$ closed with common point λ in the resolvent, then
$\mathcal{D}=\operatorname{Dom}(A)=\operatorname{Dom}(A+V)=\operatorname{Dom}(A+V Y)$ and

$$
(I-Y)(A+V)(I-Y)^{-1}=\left(\begin{array}{cc}
A_{0}-X_{1} W_{0} & 0 \\
0 & A_{1}-X_{0} W_{1}
\end{array}\right)
$$

Two Diagonalizations [MSS]

Theorem 2
If $\operatorname{Dom}(A) \subset \operatorname{Dom}(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for $B=A+V$ and B and $A-Y V$ closed with common point λ in the resolvent, then
$\mathcal{D}=\operatorname{Dom}(A)=\operatorname{Dom}(A+V)=\operatorname{Dom}(A+V Y)$ and

$$
(I-Y)(A+V)(I-Y)^{-1}=\left(\begin{array}{cc}
A_{0}-X_{1} W_{0} & 0 \\
0 & A_{1}-X_{0} W_{1}
\end{array}\right)
$$

as well as

$$
(I+Y)^{-1}(A+V)(I+Y)=\left(\begin{array}{cc}
A_{0}+W_{1} X_{0} & 0 \\
0 & A_{1}+W_{0} X_{1}
\end{array}\right)
$$

Two Diagonalizations [MSS]

Theorem 2
If $\operatorname{Dom}(A) \subset \operatorname{Dom}(V)$ (diagonal dominant), $\mathcal{G}_{0,1}$ invariant graph subspaces for $B=A+V$ and B and $A-Y V$ closed with common point λ in the resolvent, then
$\mathcal{D}=\operatorname{Dom}(A)=\operatorname{Dom}(A+V)=\operatorname{Dom}(A+V Y)$ and

$$
(I-Y)(A+V)(I-Y)^{-1}=\left(\begin{array}{cc}
A_{0}-X_{1} W_{0} & 0 \\
0 & A_{1}-X_{0} W_{1}
\end{array}\right)
$$

as well as

$$
(I+Y)^{-1}(A+V)(I+Y)=\left(\begin{array}{cc}
A_{0}+W_{1} X_{0} & 0 \\
0 & A_{1}+W_{0} X_{1}
\end{array}\right)
$$

Corollary: Relatively bounded perturbations

A self-adjoint, $\sup \operatorname{Spec} A_{0} \leq 0 \leq \inf \operatorname{Spec} A_{1}, V$ symmetric.

Corollary: Relatively bounded perturbations

A self-adjoint, $\sup \operatorname{Spec} A_{0} \leq 0 \leq \inf \operatorname{Spec} A_{1}, V$ symmetric.

1. If $\operatorname{Dom}(V) \supset \operatorname{Dom}(A), B=A+V$ (diagonal dominant), self-adjoint, then

$$
\operatorname{Ran} E_{B}(-\infty, 0)+\left(\operatorname{Ker}(B) \cap \mathcal{H}_{0}\right)=\mathcal{G}\left(\mathcal{H}_{0}, X\right)
$$

is a graph subspace that reduces $B . X$ contraction.

Corollary: Relatively bounded perturbations

A self-adjoint, $\sup \operatorname{Spec} A_{0} \leq 0 \leq \inf \operatorname{Spec} A_{1}, V$ symmetric.

1. If $\operatorname{Dom}(V) \supset \operatorname{Dom}(A), B=A+V$ (diagonal dominant), self-adjoint, then

$$
\operatorname{Ran} E_{B}(-\infty, 0)+\left(\operatorname{Ker}(B) \cap \mathcal{H}_{0}\right)=\mathcal{G}\left(\mathcal{H}_{0}, X\right)
$$

is a graph subspace that reduces $B . X$ contraction.
2. If V has A-bound less than 1 , then $Y=\left(\begin{array}{cc}0 & -X^{*} \\ X & 0\end{array}\right)$ solves the Riccati equation

$$
A Y-Y A-Y V Y+V=0
$$

Corollary: Relatively bounded perturbations

A self-adjoint, $\sup \operatorname{Spec} A_{0} \leq 0 \leq \inf \operatorname{Spec} A_{1}, V$ symmetric.

1. If $\operatorname{Dom}(V) \supset \operatorname{Dom}(A), B=A+V$ (diagonal dominant), self-adjoint, then

$$
\operatorname{Ran} E_{B}(-\infty, 0)+\left(\operatorname{Ker}(B) \cap \mathcal{H}_{0}\right)=\mathcal{G}\left(\mathcal{H}_{0}, X\right)
$$

is a graph subspace that reduces $B . X$ contraction.
2. If V has A-bound less than 1 , then $Y=\left(\begin{array}{cc}0 & -X^{*} \\ X & 0\end{array}\right)$ solves the Riccati equation

$$
A Y-Y A-Y V Y+V=0
$$

both diagonalizations hold and $A+V Y, A-Y V$ are mutually adjoint.

Grapene

Two dimensional structure of carbon Survey: Geim, Novoselov 2007.

Graphene

Hamiltonian for massless Dirac fermions in the presence of an impurity in graphene, 2 dimensional single layer structure

Graphene

Hamiltonian for massless Dirac fermions in the presence of an impurity in graphene, 2 dimensional single layer structure

$$
H=\frac{\hbar \nu_{F}}{i} \boldsymbol{\sigma} \cdot \nabla+U=\hbar \nu_{F}\left(\begin{array}{cc}
0 & k_{x}-i k_{y} \\
k_{x}+i k_{y} & 0
\end{array}\right)+U
$$

$\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}\right)$, with σ_{x}, σ_{y} the 2×2 Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Graphene

Hamiltonian for massless Dirac fermions in the presence of an impurity in graphene, 2 dimensional single layer structure

$$
H=\frac{\hbar \nu_{F}}{i} \boldsymbol{\sigma} \cdot \nabla+U=\hbar \nu_{F}\left(\begin{array}{cc}
0 & k_{x}-i k_{y} \\
k_{x}+i k_{y} & 0
\end{array}\right)+U,
$$

$\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}\right)$, with σ_{x}, σ_{y} the 2×2 Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right),
$$

ν_{F} the Fermi velocity and U short range "defect" potential. $\hbar \nu_{F}:=1$.

Graphene

Hamiltonian for massless Dirac fermions in the presence of an impurity in graphene, 2 dimensional single layer structure

$$
H=\frac{\hbar \nu_{F}}{i} \boldsymbol{\sigma} \cdot \boldsymbol{\nabla}+U=\hbar \nu_{F}\left(\begin{array}{cc}
0 & k_{x}-i k_{y} \\
k_{x}+i k_{y} & 0
\end{array}\right)+U,
$$

$\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}\right)$, with σ_{x}, σ_{y} the 2×2 Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right),
$$

ν_{F} the Fermi velocity and U short range "defect" potential. $\hbar \nu_{F}:=1$. Not diagonal dominant

Diagonalization Procedure [MSS]

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way:

Diagonalization Procedure [MSS]

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way: Foldy-Wouthuysen transformation $\mathcal{T}_{\text {FW }}$ diagonalizes the free Dirac operator $H_{0}=-i \sigma \cdot \nabla$ in momentum representation:

Diagonalization Procedure [MSS]

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way: Foldy-Wouthuysen transformation $\mathcal{T}_{\text {FW }}$ diagonalizes the free Dirac operator $H_{0}=-i \sigma \cdot \nabla$ in momentum representation:

$$
\begin{gathered}
\mathcal{T}_{\mathrm{FW}} H_{0} \mathcal{T}_{\mathrm{FW}}^{-1}=\left(\begin{array}{cc}
\sqrt{-\Delta} & 0 \\
0 & -\sqrt{-\Delta}
\end{array}\right) \\
\mathcal{T}_{\mathrm{FW}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\theta(\mathbf{k}) & 1 \\
\theta(\mathbf{k}) & -1
\end{array}\right) \quad \text { with } \quad \theta(\mathbf{k})=\frac{\sqrt{k_{x}^{2}+k_{y}^{2}}}{k_{x}-i k_{y}}
\end{gathered}
$$

Diagonalization Procedure [MSS]

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way: Foldy-Wouthuysen transformation $\mathcal{T}_{\text {FW }}$ diagonalizes the free Dirac operator $H_{0}=-i \sigma \cdot \nabla$ in momentum representation:

$$
\begin{gathered}
\mathcal{T}_{\mathrm{FW}} H_{0} \mathcal{T}_{\mathrm{FW}}^{-1}=\left(\begin{array}{cc}
\sqrt{-\Delta} & 0 \\
0 & -\sqrt{-\Delta}
\end{array}\right) \\
\mathcal{T}_{\mathrm{FW}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\theta(\mathbf{k}) & 1 \\
\theta(\mathbf{k}) & -1
\end{array}\right) \quad \text { with }
\end{gathered} \begin{gathered}
\\
\\
\mathcal{T}_{\mathrm{FW}} H \mathcal{T}_{\mathrm{FW}}^{-1}=\left(\begin{array}{cc}
\sqrt{-\Delta}+U+\Theta U \Theta^{*} & -U+\Theta U \Theta^{*} \\
-U+\Theta U \Theta^{*} & -\sqrt{-\Delta}+U+\Theta U \Theta^{*}
\end{array}\right)
\end{gathered}
$$

Θ Fourier multiplier with the unimodular symbol $\theta(\mathbf{k})$.

Diagonalization Procedure [MSS]

H not diagonal dominant (even off-diagnally dominant), but can be transformed that way: Foldy-Wouthuysen transformation $\mathcal{T}_{\text {FW }}$ diagonalizes the free Dirac operator $H_{0}=-i \sigma \cdot \nabla$ in momentum representation:

$$
\begin{gathered}
\mathcal{T}_{\mathrm{FW}} H_{0} \mathcal{T}_{\mathrm{FW}}^{-1}=\left(\begin{array}{cc}
\sqrt{-\Delta} & 0 \\
0 & -\sqrt{-\Delta}
\end{array}\right) \\
\mathcal{T}_{\mathrm{FW}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\theta(\mathbf{k}) & 1 \\
\theta(\mathbf{k}) & -1
\end{array}\right) \quad \text { with } \\
\theta(\mathbf{k})=\frac{\sqrt{k_{x}^{2}+k_{y}^{2}}}{k_{x}-i k_{y}} \\
\mathcal{T}_{\mathrm{FW}} H \mathcal{T}_{\mathrm{FW}}^{-1}=\left(\begin{array}{cc}
\sqrt{-\Delta}+U+\Theta U \Theta^{*} & -U+\Theta U \Theta^{*} \\
-U+\Theta U \Theta^{*} & -\sqrt{-\Delta}+U+\Theta U \Theta^{*}
\end{array}\right)
\end{gathered}
$$

Θ Fourier multiplier with the unimodular symbol $\theta(\mathbf{k})$.
Subordinated spectra if U is a compactly supported bounded potential with $\|U\|_{\infty}$ small enough.

How to diagonalize upper-dominant Matrices? [GKMSV]

$$
S=\left(\begin{array}{cc}
A_{+} & W^{*} \\
W & -A_{-}
\end{array}\right)=A+V \quad \text { on } \mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}
$$

$$
A_{ \pm} \geq 0 \text { in } \mathcal{H}_{ \pm} \text {and } \operatorname{Dom}\left(A_{+}^{1 / 2}\right) \subset \operatorname{Dom}(W)
$$

How to diagonalize upper-dominant Matrices? [GKMSV]

$$
S=\left(\begin{array}{cc}
A_{+} & W^{*} \\
W & -A_{-}
\end{array}\right)=A+V \quad \text { on } \mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}
$$

$A_{ \pm} \geq 0$ in $\mathcal{H}_{ \pm}$and $\operatorname{Dom}\left(A_{+}^{1 / 2}\right) \subset \operatorname{Dom}(W)$.
Upper dominant Matrix!

How to diagonalize upper-dominant Matrices? [GKMSV]

$$
S=\left(\begin{array}{cc}
A_{+} & W^{*} \\
W & -A_{-}
\end{array}\right)=A+V \quad \text { on } \mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}
$$

$A_{ \pm} \geq 0$ in $\mathcal{H}_{ \pm}$and $\operatorname{Dom}\left(A_{+}^{1 / 2}\right) \subset \operatorname{Dom}(W)$.
Upper dominant Matrix! Diagonalize the form $\mathfrak{s}=\mathfrak{a}+\mathfrak{v}$ on

$$
\begin{gathered}
\operatorname{Dom}[\mathfrak{s}]=\operatorname{Dom}[\mathfrak{a}]=\operatorname{Dom}\left(|A|^{1 / 2}\right) \\
\left.\mathfrak{a}[x, y]=\left.\langle | A\right|^{1 / 2} x,\left(\begin{array}{cc}
l & 0 \\
0 & -I
\end{array}\right)|A|^{1 / 2} y\right\rangle, \quad x, y \in \operatorname{Dom}[\mathfrak{a}]=\operatorname{Dom}\left(|A|^{1 / 2}\right)
\end{gathered}
$$

How to diagonalize upper-dominant Matrices? [GKMSV]

$$
S=\left(\begin{array}{cc}
A_{+} & W^{*} \\
W & -A_{-}
\end{array}\right)=A+V \quad \text { on } \mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}
$$

$A_{ \pm} \geq 0$ in $\mathcal{H}_{ \pm}$and $\operatorname{Dom}\left(A_{+}^{1 / 2}\right) \subset \operatorname{Dom}(W)$.
Upper dominant Matrix! Diagonalize the form $\mathfrak{s}=\mathfrak{a}+\mathfrak{v}$ on

$$
\begin{aligned}
& \qquad \operatorname{Dom}[\mathfrak{s}]=\operatorname{Dom}[\mathfrak{a}]=\operatorname{Dom}\left(|A|^{1 / 2}\right) \\
& \left.\mathfrak{a}[x, y]=\left.\langle | A\right|^{1 / 2} x,\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)|A|^{1 / 2} y\right\rangle, \quad x, y \in \operatorname{Dom}[\mathfrak{a}]=\operatorname{Dom}\left(|A|^{1 / 2}\right) \\
& \text { and }
\end{aligned}
$$

$$
\begin{gathered}
\mathfrak{v}[x, y]=\left\langle W x_{+}, y_{-}\right\rangle+\left\langle x_{-}, W y_{+}\right\rangle \quad \text { on } \quad \operatorname{Dom}[\mathfrak{v}]=\operatorname{Dom}[\mathfrak{a}] \\
x=x_{+} \oplus x_{-}, \quad y=y_{+} \oplus y_{-}, \quad x_{ \pm}, y_{ \pm} \in \operatorname{Dom}\left(\left|A_{ \pm}\right|^{1 / 2}\right) \subset \mathcal{H}_{ \pm}
\end{gathered}
$$

Diagonalization of forms

The form \mathfrak{s} is associated with a unique self-adjoint operator S, $\operatorname{Dom}(S) \subseteq \operatorname{Dom}\left(|A|^{1 / 2}\right)$,

$$
\mathfrak{s}[x, y]=\langle x, S y\rangle, \quad x \in \operatorname{Dom}[\mathfrak{s}], y \in \operatorname{Dom}(S)
$$

Diagonalization of forms

The form \mathfrak{s} is associated with a unique self-adjoint operator S, $\operatorname{Dom}(S) \subseteq \operatorname{Dom}\left(|A|^{1 / 2}\right)$,

$$
\mathfrak{s}[x, y]=\langle x, S y\rangle, \quad x \in \operatorname{Dom}[\mathfrak{s}], y \in \operatorname{Dom}(S)
$$

If $\operatorname{Dom}\left(|S|^{1 / 2}\right)=\operatorname{Dom}[\mathfrak{s}]$ then \mathfrak{s} is represented by S,

$$
\left.\mathfrak{s}[x, y]=\left.\langle | S\right|^{1 / 2} x, \operatorname{sign}(S)|S|^{1 / 2} y\right\rangle
$$

Diagonalization of forms

The form \mathfrak{s} is associated with a unique self-adjoint operator S, $\operatorname{Dom}(S) \subseteq \operatorname{Dom}\left(|A|^{1 / 2}\right)$,

$$
\mathfrak{s}[x, y]=\langle x, S y\rangle, \quad x \in \operatorname{Dom}[\mathfrak{s}], y \in \operatorname{Dom}(S)
$$

If $\operatorname{Dom}\left(|S|^{1 / 2}\right)=\operatorname{Dom}[\mathfrak{s}]$ then \mathfrak{s} is represented by S,

$$
\left.\mathfrak{s}[x, y]=\left.\langle | S\right|^{1 / 2} x, \operatorname{sign}(S)|S|^{1 / 2} y\right\rangle .
$$

One-To-One correspondence between these forms and operators.

$$
\mathcal{L}_{ \pm}=\operatorname{Ran} E_{S}\left(\mathbb{R}_{ \pm} \backslash\{0\}\right) \oplus\left(\operatorname{Ker}(S) \cap \mathcal{H}_{ \pm}\right)
$$

are reducing graph subspaces of contractions $X,-X^{*}$ for the form and the Operator.

Diagonalization of forms

The form \mathfrak{s} is associated with a unique self-adjoint operator S, $\operatorname{Dom}(S) \subseteq \operatorname{Dom}\left(|A|^{1 / 2}\right)$,

$$
\mathfrak{s}[x, y]=\langle x, S y\rangle, \quad x \in \operatorname{Dom}[\mathfrak{s}], y \in \operatorname{Dom}(S)
$$

If $\operatorname{Dom}\left(|S|^{1 / 2}\right)=\operatorname{Dom}[\mathfrak{s}]$ then \mathfrak{s} is represented by S,

$$
\left.\mathfrak{s}[x, y]=\left.\langle | S\right|^{1 / 2} x, \operatorname{sign}(S)|S|^{1 / 2} y\right\rangle .
$$

One-To-One correspondence between these forms and operators.

$$
\mathcal{L}_{ \pm}=\operatorname{Ran} E_{S}\left(\mathbb{R}_{ \pm} \backslash\{0\}\right) \oplus\left(\operatorname{Ker}(S) \cap \mathcal{H}_{ \pm}\right)
$$

are reducing graph subspaces of contractions $X,-X^{*}$ for the form and the Operator. \rightarrow Unitary block diagonalization for S if $I \pm Y$, $|I \pm Y|$ bijective on Dom[s].

Stokes Operator on Lipschitz domain Ω.

Stationary Stokes System: Slow flow of incompressible viscous fluid

$$
-\boldsymbol{\Delta} u+\operatorname{grad} p=f, \quad \operatorname{div} u=0,\left.\quad u\right|_{\partial \Omega}=0
$$

Stokes Operator on Lipschitz domain Ω.

Stationary Stokes System: Slow flow of incompressible viscous fluid

$$
-\Delta u+\operatorname{grad} p=f, \quad \operatorname{div} u=0,\left.\quad u\right|_{\partial \Omega}=0
$$

Construction of the semibounded Stokes Operator

$$
S=\left(\begin{array}{cc}
-\boldsymbol{\Delta} & \text { grad } \\
-\operatorname{div} & 0
\end{array}\right) \text { in } \mathcal{H}=H_{0}^{1}(\Omega)^{n} \oplus L^{2}(\Omega)
$$

Stokes Operator on Lipschitz domain Ω.

Stationary Stokes System: Slow flow of incompressible viscous fluid

$$
-\Delta u+\operatorname{grad} p=f, \quad \operatorname{div} u=0,\left.\quad u\right|_{\partial \Omega}=0
$$

Construction of the semibounded Stokes Operator

$$
S=\left(\begin{array}{cc}
-\boldsymbol{\Delta} & \text { grad } \\
-\operatorname{div} & 0
\end{array}\right) \text { in } \mathcal{H}=H_{0}^{1}(\Omega)^{n} \oplus L^{2}(\Omega)
$$

using the semibounded form

$$
\mathfrak{b}[u \oplus p]=\sum_{j=1}^{n} \int_{\Omega}\left|D_{j} u(x)\right|^{2} d x+2 \operatorname{Re} \int_{\Omega} p(x) \overline{\operatorname{div} u(x)} d x
$$

Spectral Block-Diagonalisation of S

Lemma [GKMSV]

1. $\operatorname{Ran} \mathrm{E}_{S}\left(\mathrm{R}_{+}\right)=\mathcal{G}\left(\mathcal{H}_{+}, X\right)$ graph of a contraction X.

Spectral Block-Diagonalisation of S

Lemma [GKMSV]

1. $\operatorname{Ran} \mathrm{E}_{S}\left(\mathrm{R}_{+}\right)=\mathcal{G}\left(\mathcal{H}_{+}, X\right)$ graph of a contraction X.
2. X is the unique contractive solution to

$$
\mathfrak{a}_{+}\left[X^{*} p, u\right]+\mathfrak{v}\left[-X^{*} p \oplus 0,0 \oplus X u\right]+\mathfrak{v}[0 \oplus p, u \oplus 0]=0 .
$$

Spectral Block-Diagonalisation of S

Lemma [GKMSV]

1. $\operatorname{Ran} \mathrm{E}_{S}\left(\mathrm{R}_{+}\right)=\mathcal{G}\left(\mathcal{H}_{+}, X\right)$ graph of a contraction X.
2. X is the unique contractive solution to

$$
\mathfrak{a}_{+}\left[X^{*} p, u\right]+\mathfrak{v}\left[-X^{*} p \oplus 0,0 \oplus X u\right]+\mathfrak{v}[0 \oplus p, u \oplus 0]=0 .
$$

Form variant of the Operator Riccati Equation.

Spectral Block-Diagonalisation of S

Theorem 3: Unitary Spectral Block-Diagonalisation [GKMSV]

$$
T^{-1} S T=\left(\begin{array}{cc}
S_{+} & 0 \\
0 & S_{-}
\end{array}\right),
$$

Spectral Block-Diagonalisation of S

Theorem 3: Unitary Spectral Block-Diagonalisation [GKMSV]

$$
\begin{gathered}
T^{-1} S T=\left(\begin{array}{cc}
S_{+} & 0 \\
0 & S_{-}
\end{array}\right), \\
S_{+}=\left(I+X^{*} X\right)^{-1 / 2}\left(-\Delta+X^{*} \operatorname{div}\right)\left(I+X^{*} X\right)^{1 / 2} \\
S_{-}=-\left(I+X X^{*}\right)^{-1 / 2}\left(\operatorname{div} X^{*}\right)\left(I+X X^{*}\right)^{1 / 2}
\end{gathered}
$$

Spectral properties

1. $\sigma\left(S_{+}\right)$is discrete, $S_{+} \geq \lambda_{1}(\Omega) /, \lambda_{1}(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.

Spectral properties

1. $\sigma\left(S_{+}\right)$is discrete, $S_{+} \geq \lambda_{1}(\Omega) /, \lambda_{1}(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.
2. $\sigma_{\text {ess }}\left(S_{-}\right)=\sigma_{\text {ess }}\left(-\operatorname{div} \boldsymbol{\Delta}^{-1} \operatorname{grad}\right)$,

Spectral properties

1. $\sigma\left(S_{+}\right)$is discrete, $S_{+} \geq \lambda_{1}(\Omega) I, \lambda_{1}(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.
2. $\sigma_{\text {ess }}\left(S_{-}\right)=\sigma_{\text {ess }}\left(-\operatorname{div} \boldsymbol{\Delta}^{-1} \operatorname{grad}\right), \operatorname{div} \boldsymbol{\Delta}^{-1} \operatorname{grad}$

Cosserat Operator:

Spectral properties

1. $\sigma\left(S_{+}\right)$is discrete, $S_{+} \geq \lambda_{1}(\Omega) /$, $\lambda_{1}(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.
2. $\sigma_{\text {ess }}\left(S_{-}\right)=\sigma_{\text {ess }}\left(-\operatorname{div} \boldsymbol{\Delta}^{-1} \operatorname{grad}\right), \operatorname{div} \boldsymbol{\Delta}^{-1} \operatorname{grad}$

Cosserat Operator:
Band-Spectrum for domains with corners
[Costabel, Crouzeix, Dauge, Lafranche 15]

Spectral properties

1. $\sigma\left(S_{+}\right)$is discrete, $S_{+} \geq \lambda_{1}(\Omega) I, \lambda_{1}(\Omega)$ smallest Dirichlet Eigenvalue of the Laplacian.
2. $\sigma_{\text {ess }}\left(S_{-}\right)=\sigma_{\text {ess }}\left(-\operatorname{div} \boldsymbol{\Delta}^{-1} \operatorname{grad}\right), \operatorname{div} \boldsymbol{\Delta}^{-1} \operatorname{grad}$

Cosserat Operator:
Band-Spectrum for domains with corners
[Costabel, Crouzeix, Dauge, Lafranche 15]
3. $S_{-} \geq-1$ sharp estimate.

Physical interpretation:

Introduce viscosity ν, characteristic velocity ν_{*} and rescale

$$
S=\left(\begin{array}{cc}
-\nu \boldsymbol{\Delta} & v_{*} \operatorname{grad} \\
-v_{*} \operatorname{div} & 0
\end{array}\right):
$$

Physical interpretation:

Introduce viscosity ν, characteristic velocity ν_{*} and rescale

$$
S=\left(\begin{array}{cc}
-\nu \boldsymbol{\Delta} & v_{*} \text { grad } \\
-v_{*} \operatorname{div} & 0
\end{array}\right):
$$

Same physical unit of frequency everywhere.

Physical interpretation:

Introduce viscosity ν, characteristic velocity ν_{*} and rescale

$$
S=\left(\begin{array}{cc}
-\nu \boldsymbol{\Delta} & v_{*} \text { grad } \\
-v_{*} \operatorname{div} & 0
\end{array}\right):
$$

Same physical unit of frequency everywhere.
Generalized Reynolds number
$\operatorname{Re}=\frac{\text { char. velocity. char. length }}{\text { viscosity }}$

Physical interpretation:

Introduce viscosity ν, characteristic velocity ν_{*} and rescale

$$
S=\left(\begin{array}{cc}
-\nu \boldsymbol{\Delta} & v_{*} \text { grad } \\
-v_{*} \operatorname{div} & 0
\end{array}\right):
$$

Same physical unit of frequency everywhere.
Generalized Reynolds number
$\operatorname{Re}=\frac{\text { char. velocity } \cdot \text { char. length }}{\text { viscosity }}=\frac{2 v_{*}}{\nu \sqrt{\lambda_{1}(\Omega)}}$

Physical interpretation:

Introduce viscosity ν, characteristic velocity v_{*} and rescale

$$
S=\left(\begin{array}{cc}
-\nu \boldsymbol{\Delta} & v_{*} \text { grad } \\
-v_{*} \operatorname{div} & 0
\end{array}\right):
$$

Same physical unit of frequency everywhere.
Generalized Reynolds number
$\operatorname{Re}=\frac{\text { char. velocity } \cdot \text { char. length }}{\text { viscosity }}=\frac{2 v_{*}}{\nu \sqrt{\lambda_{1}(\Omega)}}$
Angle Θ between $\operatorname{Ran} E_{S}\left(\mathbb{R}_{+}\right)$and \mathcal{H}_{+}satisfies a Tan2 Θ theorem

$$
\tan 2\|\Theta\| \leq \operatorname{Re}
$$

Physical interpretation:

Introduce viscosity ν, characteristic velocity v_{*} and rescale

$$
S=\left(\begin{array}{cc}
-\nu \boldsymbol{\Delta} & v_{*} \text { grad } \\
-v_{*} \operatorname{div} & 0
\end{array}\right):
$$

Same physical unit of frequency everywhere.
Generalized Reynolds number
$\operatorname{Re}=\frac{\text { char. velocity } \cdot \text { char. length }}{\text { viscosity }}=\frac{2 v_{*}}{\nu \sqrt{\lambda_{1}(\Omega)}}$
Angle Θ between $\operatorname{Ran} E_{S}\left(\mathbb{R}_{+}\right)$and \mathcal{H}_{+}satisfies a $\operatorname{Tan} 2 \Theta$ theorem

$$
\tan 2\|\Theta\| \leq \operatorname{Re}
$$

\rightarrow Geometric interpretation of Ladyzhenskaya's Stability Result

Ladyzhenskaya:

v^{s} stationary solution of the 2D-Navier-Stokes equation

$$
\frac{\partial}{\partial t} v_{s}+\left(v^{s} \cdot \operatorname{grad}\right) v^{s}-\nu \boldsymbol{\Delta} v^{s}+\frac{1}{\rho} \operatorname{grad} p=f, \quad \operatorname{div} v^{s}=0
$$

Ladyzhenskaya:

v^{s} stationary solution of the 2D-Navier-Stokes equation

$$
\frac{\partial}{\partial t} v_{s}+\left(v^{s} \cdot \operatorname{grad}\right) v^{s}-\nu \boldsymbol{\Delta} v^{s}+\frac{1}{\rho} \operatorname{grad} p=f, \quad \operatorname{div} v^{s}=0
$$

If $\operatorname{Re}<1 \quad\left(\|\Theta\|<\frac{\pi}{8}\right)$, where

$$
v_{*}=\left(\int_{\Omega}\left|v_{x}^{s}\right|^{2}+\left|v_{y}^{s}\right|^{2} d x d y\right)^{1 / 2}
$$

then the non-stationary solution v converges to v^{s} exponentially

Ladyzhenskaya:

v^{s} stationary solution of the 2D-Navier-Stokes equation

$$
\frac{\partial}{\partial t} v_{s}+\left(v^{s} \cdot \operatorname{grad}\right) v^{s}-\nu \boldsymbol{\Delta} v^{s}+\frac{1}{\rho} \operatorname{grad} p=f, \quad \operatorname{div} v^{s}=0
$$

If $\operatorname{Re}<1 \quad\left(\|\Theta\|<\frac{\pi}{8}\right)$, where

$$
v_{*}=\left(\int_{\Omega}\left|v_{x}^{s}\right|^{2}+\left|v_{y}^{s}\right|^{2} d x d y\right)^{1 / 2}
$$

then the non-stationary solution v converges to v^{s} exponentially

$$
\left(v-v^{s}\right)(x, t) \leq\left(v-v^{s}\right)(x, 0) \exp (-\alpha t)
$$

Ladyzhenskaya:

v^{s} stationary solution of the 2D-Navier-Stokes equation

$$
\frac{\partial}{\partial t} v_{s}+\left(v^{s} \cdot \operatorname{grad}\right) v^{s}-\nu \boldsymbol{\Delta} v^{s}+\frac{1}{\rho} \operatorname{grad} p=f, \quad \operatorname{div} v^{s}=0
$$

If $\operatorname{Re}<1 \quad\left(\|\Theta\|<\frac{\pi}{8}\right)$, where

$$
v_{*}=\left(\int_{\Omega}\left|v_{x}^{s}\right|^{2}+\left|v_{y}^{s}\right|^{2} d x d y\right)^{1 / 2}
$$

then the non-stationary solution v converges to v^{s} exponentially

$$
\begin{gathered}
\left(v-v^{s}\right)(x, t) \leq\left(v-v^{s}\right)(x, 0) \exp (-\alpha t) \\
\alpha=\nu \lambda_{1}(\Omega)(1-\operatorname{Re})
\end{gathered}
$$

Thank You!

