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The physically important Dirac-type (or simply Dirac) system is
given by the equation

d

dx
y(x , z) = i(zj + jV (x))y(x , z) (x ≥ 0), (1)

where V (x) is an m ×m locally summable matrix function,

j =

[
Im1 0
0 −Im2

]
, V =

[
0 v
v∗ 0

]
, m1 + m2 =: m, (2)

Imk
is the mk ×mk identity matrix and v(x) is an m1 ×m2 m.-f.

The cases m1 = m2 = 1 and m1 = m2 ≥ 1 are well-known. In
those cases, there is a self-adjoint Dirac operator corresponding to
the system (1) and the spectral function τ of this operator in
uniquely determined by the Weyl function ϕ(z), which belongs
to Herglotz class.

Recall the formula (Herglotz-Nevanlinna representation):

ϕ(z) = µz + ν +

∫ ∞
−∞

(
1

t − z
− t

1 + t2

)
dτ(t),

where µ ≥ 0, ν = ν∗,
∫∞
−∞(1 + t2)−1dτ(t) <∞.



Dirac system y ′ = i
(
zj + jV (x)

)
y , j =

[
Im1 0
0 −Im2

]
.

When m1 6= m2, the Dirac system above has deficiency indices
m1 and m2, which means that the corresponding Dirac operator
has not self-adjoint extensions.
However, the main ideas of the Weyl theory work in the case
m1 6= m2 as well, and we have generalized the main direct and
inverse results for the case m1 6= m2. These results are essential
in the initial-boundary value problems for important nonlinear
integrable wave equations.

The skew-self-adjoint Dirac system y ′ =
(
izj + jV (x)

)
y

is equally important for the integrable wave equations theory.
When m1 = m2 = 1, the corresponding Dirac operator H

generated by the expression −ij d
dx + iV is

complex self-adjoint in the Krejcirik-Siegl terminology.

Namely, H = JcHJ
−1
c , where Jc f =

[
0 1
1 0

]
f .



Inverse problems to recover system from the Weyl functions
constitute the most complicated part of the Weyl theory.

The procedures of general-type and of explicit solving inverse
problems are developed for Dirac systems.
We shall demonstrate our methods
by presenting general-type solution of the inverse problem
for the Dirac system y ′ = i

(
zj + jV (x)

)
y ,

and by presenting explicit solution of the inverse problem
for the skew-self-adjoint Dirac system.

Explicit methods (our GBDT approach) may be used also
for the construction of the explicit solutions
of the dynamical Dirac-Weyl system

ψx = ij(−ψy + iv(x)σ2ψ), v = v , σ2 :=

[
0 −i
i 0

]
,

where m1 = m2 = 1 and ψx := ∂
∂xψ.

Such systems are essential in the graphene theory.
The insertion and removal of non-real eigenvalues via GBDT

is also of interest.



I. Dirac system:

y ′ = i
(
zj + jV (x)

)
y , j =

[
Im1 0
0 −Im2

]
. (3)

Let u(x , z) be the fundamental solution of (3) normalized by

u(0, z) = Im, m = m1 + m2.

Definition 1. A Weyl (Weyl-Titchmarsh) function of Dirac system
(3) on [0, ∞), where the potential V is locally integrable,
is an m2 × m1 matrix function ϕ such that∫ ∞

0

[
Im1 ϕ(z)∗

]
u(x , z)∗u(x , z)

[
Im1

ϕ(z)

]
dx <∞, z ∈ C+.

Note that the same definition of the Weyl function works
for the skew-self-adjoint Dirac system.



Our basic formulas: Dirac system y ′ = i
(
zj + jV (x)

)
y ,

Weyl f-ns
∫∞
0

[
Im1 ϕ(z)∗

]
u(x , z)∗u(x , z)

[
Im1

ϕ(z)

]
dx <∞.

Some connections with the previous talks. The interesting
papers on NSA Dirac systems by Cuenin–Laptev–Tretter and
by Cuenin–Siegl have been already mentioned yesterday.

Certain subclasses of Dirac systems are equivalent to
Schrödinger equations.

Moreover, interesting interconnections between boundary
problems and Weyl theory have been discussed in the previous talk.
We could add here the interconnection (see A.S., J. Math. Phys,
2015) between the response function r of the dynamical Dirac

iut + Jux + Vu = 0 J =

[
0 1
−1 0

]
, V =

[
P Q
Q −P

]
,

where v(x) = iQ(x)− P(x), and Weyl function for spectral case:

ϕ(z) = r̂(z)/(r̂(z) + 2i), r̂(z) =

∫ ∞
0

eiztr(t)dt.



Further we give complete description of the Weyl functions of
Dirac systems y ′ = i

(
zj + jV (x)

)
y with locally square-integrable

potentials V and solve the corresponding inverse problem.
The solution of the inverse problem with the only requirement on

V to be locally square-integrable is new even in the case m1 = m2.



Theorem 2. Weyl function ϕ(z) always exists in C+. It is unique,
holomorphic and contractive (i.e., ϕ(z)∗ϕ(z) ≤ Im1).

Moreover, when the potential V is locally square-integrable,
Φ1 given on R by

Φ1

(x
2

)
=

1

π
exηl.i.m.a→∞

∫ a

−a
e−ixζ

ϕ(ζ + iη)

2i(ζ + iη)
dζ (η > 0) (4)

is absolutely continuous, Φ1(x) ≡ 0 for x ≤ 0,
Φ′1 is locally square-integrable on R, and the operators

Sξ = I − 1

2

∫ ξ

0

∫ x+t

|x−t|
Φ′1

(
ζ + x − t

2

)
Φ′1

(
ζ + t − x

2

)∗
dζ · dt

are positive and boundedly invertible in L2(0, ξ) (0 < ξ <∞).
Theorem 3. The properties of the function ϕ(z) described in
Theorem 2 are not only necessary. They are also sufficient for ϕ to
be the Weyl function of some Dirac system on [0, ∞) such that
the potential V of this Dirac system is locally square-integrable.



Note that the procedure to recover the potential V (x) from the
Weyl function ϕ(z) is described by the formulas

V (x) =

[
0 v(x)

v(x)∗ 0

]
, v(x) = iβ′(x)jγ(x)∗.

Here β and γ are the blocks rows of u(0, z), and β(x) is given by

β(x) =
[
Im1 0

]
+

∫ x

0

(
S−1x Φ′1

)
(t)∗

[
Φ1(t) Im2

]
dt.

The block row γ(x) is uniquely recovered from β(x) using
the equalities:

γ(0) =
[
0 Im2

]
, γ′jγ∗ ≡ 0, γjβ∗ ≡ 0.

Recall that Φ1 and Sx were expressed via ϕ on the previous frame.

NB. It is of interest that Φ′1 is the Dirac system analog of the
well-known A-amplitude introduced by B. Simon and coauthors.



The first procedure to recover the continuous potential of Dirac
system from the spectral function was given in the seminal paper

M.G. Krein, Continuous analogues of propositions on
polynomials orthogonal on the unit circle (Russian),
Dokl. Akad. Nauk SSSR 105 (1955) 637–640.
(M.G. Krein considered the case m1 = m2 = 1, where a one to one
correspondence between Weyl and spectral functions exists.)

The inverse problems for Dirac systems where m1 does not
necessarily equals m2 and V are locally bounded were solved in

B. Fritzsche, B. Kirstein, I.Ya. Roitberg and A.L. Sakhnovich,
Recovery of Dirac system from the rectangular Weyl matrix
function, Inverse Problems 28 (2012), 015010, 18 p.

and in
B. Fritzsche, B. Kirstein, I.Ya. Roitberg and A.L. Sakhnovich,

Skew-self-adjoint Dirac systems with a rectangular matrix
potential: Weyl theory, direct and inverse problems,
Integral Equations Operator Theory 74 (2012) 163–187.



For the results of this talk on the complete characterization of the
Weyl f-ns (and solving of the inverse problem) for Dirac systems
with locally square-summable potentials see :

1. A.L. Sakhnovich, Inverse problem for Dirac systems with locally
square-summable potentials and rectangular Weyl functions,
Journal of Spectral Theory 5:3 (2015), 547–569;
2. A.L. Sakhnovich, On accelerants and their analogs, and on the
characterization of the rectangular Weyl functions for Dirac
systems with locally square-integrable potentials on a semi-axis,
arXiv:1611.00550 (Oper. Theory Adv. Appl., volume dedicated to
H. Langer to appear).
Applications of these results to Schrödinger-Type Operators with
Distributional Matrix-Valued Potentials are given in
J. Eckhardt, F. Gesztesy, R. Nichols, A. Sakhnovich, and G. Teschl:
Inverse Spectral Problems for Schrödinger-Type Operators with
Distributional Matrix-Valued Potentials,
Differential Integral Equations 28: 5/6 (2015), 505–522.



Next, we discuss the explicit solving of inverse problems for
discrete and continuous skew-self-adjoint Dirac systems.

See B. Fritzsche, M.A. Kaashoek, B. Kirstein, and A.S.,
Math. Nachr. 289:14-15 (2016) 1792–1819.
See also:
a) I. Gohberg, M.A. Kaashoek, and A.S., J. Diff. Eqs 146 (1998);
b) M.A. Kaashoek and A.S., J. Funct. Anal. 228 (2005)
for the case m1 = m2.

Recall that skew-self-adjoint Dirac system has the form

y ′(x , z) = (izj + jV (x))y(x , z), x ≥ 0. (5)

The fundamental solution of (5) (normalized by Im at x = 0) is
denoted by u(x , z). The Weyl function ϕ(z) is defined by the
inequality which coincides with the inequality from Definition 1:∫∞
0

[
Im1 ϕ(z)∗

]
u(x , z)∗u(x , z)

[
Im1

ϕ(z)

]
dx <∞.

We assume that v(x) is bounded, i.e. supx∈[0,∞) ‖v(x)‖ ≤ M and
consider ϕ(z) in the semi-plane CM = {z : =(z) > M}.
Then, the Weyl function ϕ(z) exists and is unique. Moreover, ϕ(z)
is holomorphic and contractive in CM .



GBDT (generalized version of Darboux transformation).
Initial system: y ′ = G (x , z)y , G (x , z) = −

∑r
k=0 z

kqk(x).
The initial fundamental solution is denoted by u0(x , z).

A triple of two n × n (n ∈ N) matrices A and S(0) > 0,
and of n ×m matrix Λ(0) such that

AS(0)− S(0)A∗ = iΛ(0)J Λ(0)∗

determines a transformed system.
In the case of the skew-self-adjoint Dirac we have
r = 1, q1 ≡ −ij , q0(x) = V0(x)j , J = Im.
The matrix functions Λ(x) and S(x) are introduced by the
equations:

Λ′(x) = AΛ(x)q1 + Λ(x)q0(x), S ′(x) = Λ(x)jΛ(x)∗.

Theorem 4. The fundamental solution u(x , z) of the transformed
system y ′ = (izj + jV (x))y , where
V (x) = V0(x) + Λ(x)∗S(x)−1Λ(x)− jΛ(x)∗S(x)−1Λ(x)j ,
has the form u(x , z) = wA(x , z)u0(x , z)wA(0, z)−1

(
u(0, z) = Im

)
,

where the Darboux matrix wA is given by

wA(x , z) := Im − iΛ(x)∗S(x)−1(A− zIn)−1Λ(x).



Recall basic formulas: u(x , z) = wA(x , z)u0(x , z)wA(0, z)−1,∫∞
0

[
Im1 ϕ(z)∗

]
u(x , z)∗u(x , z)

[
Im1

ϕ(z)

]
dx <∞.

Explicit solving of the direct problem.
When the initial system is trivial, i.e., V0(x) ≡ 0 we have
u0(x , z) = eizxj , u(x , z) = wA(x , z)eizxjwA(0, z)−1,
and V (x) and wA are expressed explicitly in terms of the triple

{A, S(0),Λ(0)}.
More precisely, we split Λ(0) into the blocks Λ(0) =

[
ϑ1 ϑ2

]
and

V (x) =

[
0 v(x)

v(x)∗ 0

]
, v(x) = 2ϑ ∗1 e

ixA∗
S(x)−1eixAϑ2, (6)

S(x) = S(0) +

∫ x

0
Λ(t)jΛ(t)∗dt, Λ(x) =

[
e−ixAϑ1 eixAϑ2

]
.

The invertibility of S(x) follows from S(0) > 0 and the identity
AS(x)− S(x)A∗ = iΛ(x)jΛ(x)∗.

Then, ϕ(z) is a strictly proper rational function also expressed
in terms of the triple (see the next frame).



Recall that S(0) > 0, Λ(0) =
[
ϑ1 ϑ2

]
;

V (x) =

[
0 v(x)

v(x)∗ 0

]
, v(x) = 2ϑ ∗1 e

ixA∗
S(x)−1eixAϑ2, (7)

S(x) = S(0) +

∫ x

0
Λ(t)jΛ(t)∗dt, Λ(x) =

[
e−ixAϑ1 eixAϑ2

]
.

Theorem 5. Let the potential V of the system
y ′ = (izj + jV (x))y be given by (7).

Then, the Weyl function ϕ(z) is a strictly proper rational
m2 ×m1 matrix function given by the formula

ϕ(z) = iϑ∗2S(0)−1(zIn − θ)−1ϑ1, θ := A− iϑ1ϑ
∗
1S(0)−1. (8)

NB. All strictly proper rational m2 ×m1 matrix functions admit
representation (8).



Theorem 6. Let ϕ(z) be a strictly proper rational m2 ×m1 matrix
function. Then, ϕ(z) is the Weyl function of some system

y ′ = (izj + jV (x))y .
The potential V (x) is uniquely recovered in two steps.

First step. Assuming that ϕ(z) = C(zIn −A)−1B is a minimal
realization of ϕ and choosing a positive solution X > 0 of

XC∗CX + i(AX − XA∗)− BB∗ = 0, (9)

we put

A = A+ iBB∗X−1, S0 = X , ϑ1 = B, ϑ2 = iXC∗. (10)

Second step. Using the quadruple {A,S0, ϑ1, ϑ2} generate V :

V (x) =

[
0 v(x)

v(x)∗ 0

]
, v(x) = 2ϑ ∗1 e

ixA∗
S(x)−1eixAϑ2, (11)

S(x) = S(0) +

∫ x

0
Λ(t)jΛ(t)∗dt, Λ(x) =

[
e−ixAϑ1 eixAϑ2

]
.



The procedure in Theorem 6 (explicit solution of the inverse
problem) is stable.
See B. Fritzsche, B. Kirstein, I.Ya. Roitberg and A.S.,
arXiv:1510.00793 v.2.

Scheme of the proof. Using stability Theorem 5.4 in
H. Langer, A.C.M. Ran, and D. Temme, LAA 261 (1997)
and some results in Lancaster-Rodman book we show that
there is a unique solution X > 0 of the Riccati eq-n on the
previous frame and this solution is stable.

In the proof of stability of the second step (construction of V ) we
show that V (x)→ 0 (x →∞), whereas only boundedness of V
was proved in our earlier works on the skew-self-adjoint case.



We discussed earlier Darboux transformation for the
skew-self-adjoint Dirac. An important intermediate relation here is(

Λ∗S−1
)′

= ijΛ∗S−1A + jVΛ∗S−1. (12)

Thus, for the eigenfunction f of A: Af = λf we have(
Λ(x)∗S(x)−1f

)′
=
(
iλj + jV (x)

)
Λ(x)∗S(x)−1f .

In this way, the eigenvalue λ is inserted under natural conditions.
We may choose its algebraic multiplicity as well.

The same equation (12) is used in order to construct solutions

ψ(x) = Λ(x)∗S(x)−1e−yA

of the Dirac-Weyl system

ψx = ij(−ψy + iv(x)σ2ψ), v = v , σ2 :=

[
0 −i
i 0

]
.



Discrete skew-selfadjoint Dirac system is given by the formula:

yk+1(z) =

(
Im +

i

z
Ck

)
yk(z), Ck = U∗k jUk (k ≥ 0),

where the matrices Uk are unitary.

This system is an auxiliary linear system for the discrete isotropic
Heisenberg magnet model and its generalization.

The procedure to recover the potential {Ck} from the rational
Weyl function is similar to the continuous case and is stable as well.

The same Riccati equation as in the continuous case appears in
the first step of the procedure, namely

XC∗CX + i(AX − XA∗)− BB∗ = 0.

However, the proof of the second step of the procedure is more
complicated than in the continuous case.


