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@ Does H generate a one-parameter semigroup?

o Large t-behaviour of ||e=t |
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28
SELFADJOINT OPERATORS AND THE SPECTRUM ﬁ'

For selfadjoint H, the spectrum contains all sorts of information about H,

such as
@ Does H generate a one-parameter semigroup?
o Large t-behaviour of ||e=t |

@ Norm of the resolvent ||(z — H)™!|| for arbitrary z € p(H)

@ Location of o(H + V) if V is a bounded perturbation

In addition, if H has compact resolvent, the eigenfunctions of H form a
basis.
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NON-SELFADJOINT OPERATORS

If H is not selfadjoint, none of the above results is true in general!

~> Spectrum contains very little information about H!
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A NON-SELFADJOINT EXAMPLE

A3

Consider H : L*(R) D D(L) — L*(R), where
2

d
L=—— +iz3 +ca?, ceR
dx?
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A NON-SELFADJOINT EXAMPLE

A3

Consider H : L*(R) D D(L) — L*(R), where

2

d
L=—— +iz3 +ca?, ceR
dx?

D(L) = {¢ € L*(R) : Ly € L*(R)}
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A NON-SELFADJOINT EXAMPLE
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F1GURE: The spectrum of L
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A NON-SELFADJOINT EXAMPLE

THEOREM ([DOREY, DUNNING, TATEO (2001)],[TA1 (2006)])

The spectrum of L consists of discrete eigenvalues which are real, positive
and algebraically simple.
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A NON-SELFADJOINT EXAMPLE

A3

THEOREM ([DOREY, DUNNING, TATEO (2001)],[TA1 (2006)])

The spectrum of L consists of discrete eigenvalues which are real, positive
and algebraically simple.

v

THEOREM ([Novak (2015)])

The eigenfunctions of L form a complete set in L*(R).
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THE PSEUDOSPECTRUM

A3

This motivates the definition of a finer indicator:

DEFINITION
For € > 0 the set

0e(H) = o(H)U{z € C:||(z — H)7'| > 1}

is called the e-pseudospectrum.
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PROPERTIES OF THE PSEUDOSPECTRUM

o (H — 2)~! compact, o(H) C R, then if o.(H) non-trivial =
Eigenfunctions of H do not form a Riesz basis.
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PROPERTIES OF THE PSEUDOSPECTRUM
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o (H — 2)~! compact, o(H) C R, then if o.(H) non-trivial =
Eigenfunctions of H do not form a Riesz basis.

@ Via the Hille-Yosida theorem o.(H) contains information about the
large t-behaviour of e

@ One has the following characterization:

Us(H) = U J(H+V)
IVil<e

~~ Pseudospectrum contains information about stability of
eigenvalues.
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SCHRODINGER OPERATORS WITH GROWING
POTENTIAL
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THE OPERATOR OF INTEREST

In [Dondl, Dorey, R. (2016)] we are interested in the operator H defined
as the closure of
H=-A+V on C§R")

where V € W1>°(R™) satisfies the following conditions:

loc
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THE OPERATOR OF INTEREST

In [Dondl, Dorey, R. (2016)] we are interested in the operator H defined
as the closure of
H=-A+V on C§R")

where V € W1 (R") satisfies the following conditions:
loc

(1) There exist a,b > 0 such that |[VV|? < a + b|V|?
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THE OPERATOR OF INTEREST

In [Dondl, Dorey, R. (2016)] we are interested in the operator H defined

as the closure of
H=-A+V on C§R")

where V € W1 (R") satisfies the following conditions:
loc

(1) There exist a,b > 0 such that |[VV|? < a + b|V|?
(11) There exist c¢,d > 0 such that Re V(z) > c|z|? — d.

Frank Rosler (Durham) Pseudospectrum of cubic oscillator June 9, 2017 12 /30



A3

KNOWN PROPERTIES OF H

Frank Résler (Durham) Pseudospectrum of cubic oscillator



KNOWN PROPERTIES OF H

THEOREM (BOcGLI, SIEGL, TRETTER (2015))

H has compact resolvent and thus its spectrum is discrete.
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KNOWN PROPERTIES OF H

A3

THEOREM (BOcGLI, SIEGL, TRETTER (2015))

H has compact resolvent and thus its spectrum is discrete.

THEOREM (EDMUNDS, EvANS (1987))

H + d is m-accretive and thus —(H + d) generates a one-parameter
semigroup of contractions.
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ON THE OTHER HAND...

THEOREM ([NovAK (2015)], [KREJCIRIK ET. AL. (2014)])

The operator L := —di:g +ix3 + 2% on L%(R) has the following
properties:

A3
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o The eigenfunctions of L do not form a (Schauder) basis in L?(R).
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ON THE OTHER HAND...

THEOREM ([NovAK (2015)], [KREJCIRIK ET. AL. (2014)])

The operator L := —di;g +ix3 + 2% on L%(R) has the following
properties:

o The eigenfunctions of L do not form a (Schauder) basis in L?(R).

@ —iL does not generate a bounded semigroup.

o For any 0 > 0 there exist A, B > 0 such that for all € > 0

oe(Ly)D {ZGC i |2] > A, |arg(z)| < arctan(Re z) -4, |2| > B(log %)%}
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Re

FIGURE: The pseudospectrum of the harmonic oscillator with imaginary cubic
potential contains a set of the above shape.
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FIGURE: The pseudospectrum of the harmonic oscillator with imaginary cubic
potential contains a set of the above shape.
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NUMERICAL RESULTS
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FIGURE: Numerical computation of the pseudospectrum of —-L + iz® + 22,

Frank Résler (Durham) Pseudospectrum of cubic oscillator



NUMERICAL RESULTS
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FIGURE: Numerical computation of the pseudospectrum of —-L + iz® + 22,

~~ Complementary inclusion result?
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OUR RESULT

A3

THEOREM
For every 6 > 0, R > 0 there exists an € > 0 such that

o(-A+V) Cc{z:Re(z) >R}U ] {z:lz=A<d} (1)
Ao (—A+V)

In particular, the unbounded part of the pseudospectrum is contained in a
half plane which moves towards +occo as € decreases.

Frank Rosler (Durham) Pseudospectrum of cubic oscillator June 9, 2017 19 / 30



o P
A ‘\\ ):3 i
\ >\O'/ I
A
‘\‘)\.2

Re

A3

FIGURE: The pseudospectrum of H is contained in sets of the above shape.
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FIGURE: The pseudospectrum of H is contained in sets of the above shape.
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IDEA OF PROOF
(inspired by [Boulton (2002)])
(only for d = 0)

Use the standard estimate

THEOREM (HILLE-YOSIDA)

Let —H be the generator of a one-parameter semigroup with
le=*H|| < Me= " for allt > 0. Then

A3

M
—1
z—H < — Vz:Rez < p. 2
Iz = D)7 < s p )
v
and show that g > 0 is possible.
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IDEA OF PROOF

THEOREM ([DAVIES (1980)])

If T} is a one-parameter semigroup on a Banach space then
a:= lim t~log || T3l
t—00
exists with —oo < a < 0o. Moreover

r(T;) == max{|\| : A € o(T})} = e Vit > 0.

A3
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IDEA OF PROOF

THEOREM ([DAVIES (1980)])

If T} is a one-parameter semigroup on a Banach space then
a:= lim t~!log | T3
t—00
exists with —oo < a < 0o. Moreover

r(T;) == max{|\| : A € o(T})} = e Vit > 0.

A3

@ ~ Can determine a if we know the spectral radius of et/
@ ~~ If a turns out to be negative, can choose 0 < u < —a

@ ~ Obtain a bound on [[(H — 2)71|| for Re(z) < i
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IDEA OF PROOF

How do we obtain r(e~t)?
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IDEA OF PROOF

How do we obtain r(e~t)?

THEOREM ([DAVIES (1980)])

Let e=*H be compact for some t > 0. Then, the following spectral
mapping theorem holds:

ole )y ={0tu{e™: Neco(H)}
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IDEA OF PROOF

How do we obtain r(e~)?

THEOREM ([DAVIES (1980)])

Let e=*H be compact for some t > 0. Then, the following spectral
mapping theorem holds:

ole )y ={0tu{e™: Neco(H)}

H

~s |f e—t (e—tH) — e—tRe)\o.

is compact, we have r
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IDEA OF PROOF

How do we obtain r(e~)?

THEOREM ([DAVIES (1980)])

Let e=*H be compact for some t > 0. Then, the following spectral
mapping theorem holds:

ole )y ={0tu{e™: Neco(H)}

tH ) —t Re )\0.

~ If e is compact, we have r(e~
& a=—Relg
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IDEA OF PROOF

A3

@ Compactness Proof: Very technical; uses space-cutoff function,
Galerkin-approximation and lower growth-bound on V' to construct
sequence of compact operators converging to et/

Frank Résler (Durham) Pseudospectrum of cubic oscillator June 9, 2017 25 / 30



A3

IDEA OF PROOF

@ Compactness Proof: Very technical; uses space-cutoff function,
Galerkin-approximation and lower growth-bound on V' to construct
sequence of compact operators converging to et/

@ To show that unbounded part of the pseudospectrum moves to +o0:

Frank Rosler (Durham) Pseudospectrum of cubic oscillator June 9, 2017 25 / 30



A3

IDEA OF PROOF

@ Compactness Proof: Very technical; uses space-cutoff function,
Galerkin-approximation and lower growth-bound on V' to construct
sequence of compact operators converging to et/

@ To show that unbounded part of the pseudospectrum moves to +o0:

o Recall that bound on ||(H — z)~!|| follows from compactness of the
semigroup for Re z < Ag;

Frank Rosler (Durham) Pseudospectrum of cubic oscillator June 9, 2017 25 / 30



A3

IDEA OF PROOF
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sequence of compact operators converging to et/

@ To show that unbounded part of the pseudospectrum moves to +o0:

o Recall that bound on ||(H — z)~!|| follows from compactness of the
semigroup for Re z < Ag;
@ Project out eigenspaces corresponding to A1, ..., An,
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IDEA OF PROOF

@ Compactness Proof: Very technical; uses space-cutoff function,
Galerkin-approximation and lower growth-bound on V' to construct
sequence of compact operators converging to et/

@ To show that unbounded part of the pseudospectrum moves to +o0:

o Recall that bound on ||(H — z)~!|| follows from compactness of the
semigroup for Re z < Ag;

@ Project out eigenspaces corresponding to A1, ..., An,

@ The restriction of H to the remaining space generates compact
semigroup again, but has lowest eigenvalue Ay, 41
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IDEA OF PROOF
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@ Compactness Proof: Very technical; uses space-cutoff function,
Galerkin-approximation and lower growth-bound on V' to construct
sequence of compact operators converging to et/

@ To show that unbounded part of the pseudospectrum moves to +o0:

o Recall that bound on ||(H — z)~!|| follows from compactness of the
semigroup for Re z < Ag;

@ Project out eigenspaces corresponding to A1, ..., An,

@ The restriction of H to the remaining space generates compact
semigroup again, but has lowest eigenvalue Ay, 41

@ ~» Obtain bound on the resolvent for Rez < A\,11.
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Can we relax the condition Re V (z) > c|z|? — d ?
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OPEN QUESTIONS

Can we relax the condition Re V (z) > c|z|? — d ?

o Consider the operator L_ := —%22 + iz — 22 on L%(R).
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OPEN QUESTIONS

Can we relax the condition Re V (z) > c|z|? — d ?

o Consider the operator L_ := _¢$c_22 + iz — 22 on L%(R).
® |ts pseudospectrum looks like this: ‘ ‘
20 |~
ol
—20 |-
| |
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OPEN QUESTIONS

Can we relax the condition Re V (z) > c|z|? — d ?

o Consider the operator L_ := _¢$c_22 + iz — 22 on L%(R).

® |ts pseudospectrum looks like this: ‘ ‘

~> No analogue of our theorem possible. 20

—20 |-

30
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FURTHER RESULTS AND OPEN QUESTIONS

Indeed, using the methods of [Krejcitik, Siegl, Tater, Viola (2015)], we
have the following theorem:
THEOREM

For every C, R, M > 0 there exists z € C such that Rez < —R, |z| > M
and

I(Z- = =2)7H = C. (4)

In particular, L_ does not generate a one-parameter semigroup.
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@ Now, consider the operator Lg := —(gg—zz +ix3 on L2(R).
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OPEN QUESTIONS
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@ Now, consider the operator Lg := —% +ix3 on L2(R).

@ We have the following theorem:
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OPEN QUESTIONS ﬁ;

Can we relax the condition Re V (z) > c|z|? —d ?

@ Now, consider the operator L := —% +ix3 on L2(R).

@ We have the following theorem:

THEOREM

For the pseudospectrum of Lg the inclusion (1) holds and in addition there
exists a C > 0 such that for every § > 0 there is an € > 0 such that

1\ 6/5
UE(Lo)C{Z:ReZZC<lOgE> }U U {z:|z=X<d}. (5)

A€o (Lo)

In particular, apart from disks around the eigenvalues, the

g-pseudospectrum is contained in the half plane {Rez >C (log %)6/5}.

v

(based on [Henry (2014)].)
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