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Non-accretive Schrödinger operators

Context and motivations

Let us consider the electromagnetic Schrödinger operator

(−i∇+ A)2 + V in L2(Ω) ,

subject to Dirichlet boundary conditions on ∂Ω and where

- Ω is an arbitrary open subset of Rd ,

- the functions V : Ω → C and A : Ω → Rd are the scalar
(electric) and (magnetic) vector potentials and they satisfy

(V ,A) ∈ C1(Ω̄;C)× C2(Ω̄;Rd) .

As in many talks of this conference, the important point is
that V takes complex values.
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Context and motivations

The aim of this talk is to describe the spectrum of this operator.



Non-accretive Schrödinger operators

Context and motivations

An example that we can keep in mind is

− d2

dx2 − x2 + ix3 in L2(R) .

Here
V = −x2 + ix3 , A = 0 .

We can show that this operator

- has a nice definition via a sesquilinear form Q and a
representation theorem,

- is not bounded from below,

- has a non-empty resolvent set,

- has compact resolvent,

- has a numerical range equal to C,

{Q(u, u) , u ∈ C∞0 (R) , ‖u‖L2(R) = 1} = C .
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Non-accretive Schrödinger operators

Context and motivations

From the self-adjoint world...

What about the self-adjoint situation?

- If d = 3 and if V is real-valued, the self-adjoint Dirichlet real-
isation is the Hamiltonian of a quantum particle constrained to
a nanostructure Ω and submitted to an external electromagnetic
field (− gradV ,− rotA).

- The literature on the subject is enormous and we may consult, for
instance, the bibliography of the recent book

Bound States of the Magnetic Schrödinger Operator
EMS Tracts (27) (2017),

focused on magnetic spectral effects.
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Context and motivations

... to the non-self-adjoint world

Why considering non-self-adjoint operators?

Ask the organizers!
Non-self-adjoint operators appear in the context of

- quasi-Hermitian quantum mechanics,

- resonances,

- superconductivity,

- the damped wave equation.

If you want to learn how to live without the spectral theorem, you
might be interested in
Elements of spectral theory without the spectral theorem
(D. Krejčǐŕık and P. Siegl, 2015).
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(D. Krejčǐŕık and P. Siegl, 2015).



Non-accretive Schrödinger operators

Context and motivations

... to the non-self-adjoint world

Why considering non-self-adjoint operators?

Ask the organizers!
Non-self-adjoint operators appear in the context of

- quasi-Hermitian quantum mechanics,

- resonances,

- superconductivity,

- the damped wave equation.

If you want to learn how to live without the spectral theorem, you
might be interested in
Elements of spectral theory without the spectral theorem
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A representation theorem by Almog-Helffer

How to define a nice operator?

A Lax-Milgram theorem

Theorem (Almog-Helffer, CPDE, 2015)

Let V be a Hilbert space. Let Q be a continuous sesquilinear form
on V × V. Assume that there exist Φ1,Φ2 ∈ L(V) and α > 0 such
that for all u ∈ V we have

|Q(u, u)|+ |Q(Φ1(u), u)| ≥ α‖u‖2
V ,

|Q(u, u)|+ |Q(u,Φ2(u))| ≥ α‖u‖2
V .

The operator A defined by

∀u, v ∈ V, Q(u, v) = 〈A u, v〉 V

is a continuous isomorphism of V onto V with bounded inverse.
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A representation theorem by Almog-Helffer

How to define a nice operator?

Theorem (Almog-Helffer, CPDE, 2015)

Assume moreover that H is a Hilbert space such that V is contin-
uously embedded and dense in H and that Φ1 and Φ2 extend to
bounded operators on H. Then the operator L defined by

∀u ∈ Dom(L ), ∀v ∈ V, Q(u, v) =: 〈L u, v〉 H ,

Dom(L ) :=
{
u ∈ V :

the map v 7→ Q(u, v) is continuous on V for the norm of H
}
,

satisfies the following properties:

i. L is bijective from Dom(L ) onto H,

ii. Dom(L ) is dense in V and in H,

iii. L is closed.
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A representation theorem by Almog-Helffer

How to define a nice operator?

About the proof

- The usual Lax-Milgram theorem is obtained by replacing Φ1 and
Φ2 by 0.

- Even if the proof is essentially the same as for the usual theorem,
the idea to add the “multipliers” Φj has fruitful consequences in
the applications.

- This generalization of the Lax-Migram theorem is itself a general-
ization of the ”T-coercivity” used in
Time harmonic wave diffraction problems in materials with
sign-shifting coefficients
(A. S. Bonnet-Ben Dhia, P. Ciarlet, Jr., and C. M. Zwölf,
2010).
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A representation theorem by Almog-Helffer

How to apply the theorem?

What is the sesquilinear form in the present context?

The variational space is

V :=

{
u ∈ H1

A,0(Ω) : m
1
2
B,V u ∈ L2(Ω)

}
, mB,V :=

√
1 + |B|2 + |V |2

equipped with the norm

‖u‖V :=

√
‖u‖2

H1
A(Ω) +

∫
Ω
mB,V |u|2 dx .

On this space, the sesquilinear form is

Q(u, v) := 〈(−i∇+ A)u, (−i∇+ A)v〉+
∫

Ω Vuv̄ dx .
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A representation theorem by Almog-Helffer

How to apply the theorem?

What are the multipliers?

The multipliers are

Φ1 = Φ2 = Φ :=
ImV

mB,V
.

It is essentially the sign of the imaginary part of the potential.
They were already used by Almog and Helffer to apply their
theorem to a large class of operators including for example

− d2

dx2 − x2 + ix3 in L2(R) .
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A representation theorem by Almog-Helffer

How to apply the theorem?

How do we get the α?

We have extended the class of allowed electro-magnetic fields.

Theorem (Krejčǐŕık-R-Royer-Siegl, Isr. J. Math., 2017)

We assume that

|∇V (x)|+ |∇B(x)| = o
(
m

3
2
B,V (x)

)
,

(ReV )− (x) = o
(
mB,V (x)

)
,

as |x | → +∞.
Then, the theorems by Almog and Helffer can be applied.

In the previous work by Almog and Helffer, the power 3
2 was replaced

by 1 and the small o by a big O. About this power, see also Helffer-
Mohammed (Annales Inst. Fourier, 1988) in the self-adjoint case.
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A representation theorem by Almog-Helffer

How to apply the theorem?

Comments

- Our theorems apply for instance to wilder electric potentials:

− d2

dx2 − ex
2

+ iex
4

in L2(R) .

- The coercivity is not an effect of the real part of V .

- The imaginary part of V and the magnetic field “play at the same
level”: the intensity of the magnetic field, as the imaginary part
of V , can compensate the negative part of the electric potential.
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A representation theorem by Almog-Helffer

How to apply the theorem?

Compact resolvent

As a consequence of our analysis and using our weaker
assumptions, we can extend a result of Almog-Helffer:

Proposition

Under our assumptions, if, moreover,

lim
|x |→+∞

mB,V (x) = +∞ ,

then L is an operator with compact resolvent.



Non-accretive Schrödinger operators

A representation theorem by Almog-Helffer

How to apply the theorem?

Comments

- The possibility to define a nice (non-accretive) non-self-adjoint
operator and its properties related to compactness are strongly
connected to coercivity (and its generalizations).

- When the operator has compact resolvent, the spectrum is discrete
and the functions belonging to the algebraic eigenspaces are in
L2(R) by definition. Their existence is related to coercivity and
so, we can reasonably expect to relate their decay to the coercivity.

- In the last part of this talk, we will discuss these decay estimates
and we will show that the definition of the operator, its compact-
ness properties and the decay of its eigenfunctions can be deduced
from the same weighted coercivity estimate.
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Non-accretive Schrödinger operators

Spectrum and non-self-adjoint Agmon estimates

Statements

Here come our main theorems.
For c ∈ R, we let

ρc := {µ ∈ C : −c − Reµ− |Imµ| > 0} .

We also introduce

m∞ := lim inf
|x |→+∞

mB,V (x) ,

and assume m∞ > 0.
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Spectrum and non-self-adjoint Agmon estimates

Statements

Theorem (Krejčǐŕık-R-Royer-Siegl, Isr. J. Math., 2017)

Under our assumptions, there exist γ1 > 0 and γ2 ∈ R such that we
have

ργ2 ⊂ ρ(L ) .

Moreover,
ργ2 ⊂ ργ2−γ1m̌∞ ⊂ Fred0(L )

for all m̌∞ ∈ (0,m∞).
In particular, the spectrum of L contained in ργ2−γ1m̌∞ , if it exists,
is formed by isolated eigenvalues with finite algebraic multiplicity.
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Spectrum and non-self-adjoint Agmon estimates

Statements

Comments

- This theorem is a non-self-adjoint generalization of the Persson
theorem (Mathematica Scandinavica, 1960). In the self-adjoint
case, it states more precisely that m∞ is related to the bottom of
the essential spectrum.

- In practice, γ1 and γ2 can be computed explicitly.
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Spectrum and non-self-adjoint Agmon estimates

Statements

Once we know that the spectrum is discrete in some regions of the
complex plane, it is natural to try to estimate the decay of the
corresponding eigenfunctions.
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Spectrum and non-self-adjoint Agmon estimates

Statements

Theorem (Krejčǐŕık-R-Royer-Siegl, Isr. J. Math., 2017)

Let us assume that

sp(L ) ∩ ργ2−γ1m̌∞ 6= ∅

and consider λ in this set. Let us define the metric

g(x) := (γ1mB,V (x)− Re (λ)− |Im (λ)| − γ2) + dx2 ,

and the corresponding Agmon distance (to any fixed point of Ω)
dAg(x). It satisfies

|∇dAg|2 = (γ1mB,V − Re (λ)− |Im (λ)| − γ2) + .
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Spectrum and non-self-adjoint Agmon estimates

Statements

Theorem (continued)

Pick up any ε ∈ (0, 1). If ψ is an eigenfunction associated with λ,
we have

e
1−ε

3
dAg ψ ∈ L2(Ω) .

The same conclusion holds for all ψ in the algebraic eigenspace
associated with λ.
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Spectrum and non-self-adjoint Agmon estimates

Statements

Comments

- This theorem is a non-self-adjoint generalization of the Agmon
estimates (Lecture Notes in Math., 1985). In the self-adjoint case,
if λ is an eigenvalue strictly below the bottom of the essential
spectrum, the corresponding eigenfunctions have an exponential
decay (which can be measured in terms of the distance between
λ and the essential spectrum).

- If we apply our theorem to the example

− d2

dx2 − x2 + ix3 in L2(R) ,

we get that, for all eigenvalue λ, there exists δ > 0 such that, for
all ψ in the characteristic space of λ,

eδ|x |
5
2 ψ ∈ L2(R) .
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Non-accretive Schrödinger operators

Spectrum and non-self-adjoint Agmon estimates

Ideas of the proofs

The main idea is to exploit the weighted coercivity (use the real
part of the form and the imaginary part of the weighted form) and
to combine it with the principle behind the Agmon estimates.
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Spectrum and non-self-adjoint Agmon estimates

Ideas of the proofs

For any complex number µ, consider the shifted form

Qµ(u, v) := Q(u, v)− µ 〈u, v〉 .

Let

Φ =
ImV

mB,V
, Ψ =

B

mB,V
.
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Spectrum and non-self-adjoint Agmon estimates

Ideas of the proofs

All the above mentioned results can be deduced from the following
explicit estimate.

Theorem (Weighted coercivity)

For every µ ∈ C, W ∈W 1,∞(Ω;R) and all u ∈ C∞0 (Ω), we have

Re
[
Qµ(u, e2W u)

]
+ Im

[
Qµ(u,Φe2W u)

]
≥ 1

2

∥∥∥(−i∇+ A)eW u
∥∥∥2

+

∫
Ω

∣∣∣eW u
∣∣∣2 [V 2

2 + 1
12d |B|

2

mB,V
+ V1 − Reµ− |Imµ|

− 9
(
|∇Φ| 2 + |∇Ψ|2 + |∇W | 2

)]
dx ,

where V1 = ReV and V2 = ImV .
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Ideas of the proofs

All the above mentioned results can be deduced from the following
explicit estimate.

Theorem (Weighted coercivity)

For every µ ∈ C, W ∈W 1,∞(Ω;R) and all u ∈ C∞0 (Ω), we have

Re
[
Qµ(u, e2W u)

]
+ Im

[
Qµ(u,Φe2W u)

]
≥
∫

Ω
(γ1mB,V − γ2 − Reµ− |Imµ| − 9|∇W |2)e2W |u|2 dx ,

where V1 = ReV and V2 = ImV .
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Free afternoon?

Credits: J. Royer
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