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The setting

Let P be a second-order linear elliptic operator (not necessarily symmetric)
with real coefficients defined on a domain M ⊆ Rn (or on a smooth
noncompact (weighted) Riemannian manifold M of dimension n), where
n ≥ 2. So, in local coordinates P has the form

Pu := −div
[
A(x)∇u + ub̃(x)

]
+ b(x) · ∇u + c(x)u.

Denote by

P?u := −div [A(x)∇u + ub(x)] + b̃(x) · ∇u + c(x)u

the formal adjoint of P.
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Green Function

Definition

A function GM
P : M ×M → [−∞,∞] is said to be a Green function

(fundamental solution) of the operator P in M if for any x, y ∈ M

P(x , ∂x)GM
P (x , y) = δy (x), P?(y , ∂y )GM

P (x , y) = δx(y) in M,

and
GM
P?(x , y) = GM

P (y , x) ∀x , y ∈ M,

where δz denotes the Dirac distribution at z ∈ M.

Definition

A positive Green function GM
P (x , y) is said to be a positive minimal Green

function of P in M if any other positive Green function ĜM
P (x , y) of P in

M satisfies 0 < GM
P (x , y) ≤ ĜM

P (x , y) in M ×M.
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Criticality theory

Definition

Let P be an elliptic operator on M (as above).

P is nonnegative (P ≥ 0) in M if the equation Pu = 0 in M admits a
global positive (super)solution.

P ≥ 0 in M is said to be critical in M if P −W 6≥ 0 in M for any
function W 	 0. Otherwise, P is subcritical in M.

If P 6≥ 0 in M, then P is supercritical in M.
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Criticality theory

Remarks
1 In the symmetric case, P ≥ 0 iff the quadratic form associated to P is

nonnegative on C∞0 (M) (i.e.
∫
M Pϕϕdx ≥ 0 ∀ϕ ∈ C∞0 (M)).

2 P is subcritical in M iff it admits a positive minimal Green function
GM
P (x , y) in M.

3 P is subcritical in M iff it admits a positive supersolution u in M
which is not a solution. So, P −W ≥ 0, where W := Pu/u 	 0.

4 If P is critical in M, then the equation Pu =0 admits a unique positive
(super)solution ψ in M, called the (Agmon) ground state of P in M.
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Examples

Example

The Laplacian P := −∆ is subcritical in Rn iff n ≥ 3. The corresponding
positive minimal Green function is given by

GRn

−∆(x , y) = Cn|x − y |2−n,

while for n = 1, 2 the ground state is given by ψ(x) = 1.

Example

Let M b Rn and P be a uniformly elliptic operator with up to the
boundary smooth enough coefficients.
Let λ0 be the principal eigenvalue of P in M.
Then P − λ is subcritical if λ < λ0, critical if λ = λ0, and supercritical if
λ > λ0.
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Examples

Example

Let M := Rn \ {0}, n ≥ 3. Consider the n-dimensional Hardy inequality∫
M
|∇ϕ|2 dx ≥

(
n − 2

2

)2 ∫
M

|ϕ(x)|2

|x |2
dx ∀ϕ ∈ C∞0 (M),

Then P =−∆−
(
n−2

2

)2 |x |−2 is critical in M with ground state

ψ(x) := |x |(2−n)/2.
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The positive minimal Green function

Suppose that P ≥ 0 in M, then the generalized maximum principle holds
in any compact subdomain M̃ b M, and the Dirichlet problem

Puf = f in M̃, uf = 0 on ∂M̃,

is uniquely solvable in M̃; the solution is given by the Dirichlet Green
function G M̃

P (x , y) of P in M̃:

uf (x) =

∫
M̃

G M̃
P (x , y)f (y)dy .

By the generalized maximum principle G M̃
P (x , y) > 0.

Let {Mj}∞j=1 be a (compact) exhaustion of M, i.e. a sequence of smooth,
relatively compact domains in M such that M1 6= ∅, Mj b Mj+1 and
∪∞j=1Mj = M.

Let G
Mj

P (x , y) be the Dirichlet Green function of P in Mj .
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The positive minimal Green function

By the generalized maximum principle, {GMj

P (x , y)}∞j=1 is an increasing
sequence of positive functions which (by the Harnack principle) converges
locally uniformly in M ×M \ {(x , x) | x ∈ M}, and

lim
j→∞

G
Mj

P (x , y) =

 GM
P (x , y) if P is subcritical in M,

∞ if P is critical in M.

In the subcritical case, GM
P (x , y) is the unique positive minimal Green

function, while in the critical case there is no positive Green function.

Question: Does there exist a Green function in the critical case?

The existence of a fundamental solution for differential operators with
constant coefficients has been proved by L. Ehrenpreis (1954) and
B. Malgrange (1955), and for elliptic operators with analytic coefficients
by F. John (1955) using the unique continuation property.
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Li-Tam’s Green Function

Theorem (Peter Li & Luen-Fai Tam, AJM, 1987)

Let M be a complete noncompact Riemannian manifold. Then for the
Laplace-Beltrami operator there exists a symmetric Green function
GM
−∆(x , y). In particular, GM

−∆(x , y) satisfies equation

−∆x

(
GM
−∆(x , y)

)
= δy (x) ∀y ∈ M.

The proof relies on the unique continuation property and the completeness
of M, and hinges on a construction of a converging sequence of the form{

G
Mj

−∆(x , y)− aj

}∞
j=1

,

where {aj} is an appropriate sequence (in the critical case lim aj =∞).

We call a Green function that is obtained by such a construction a Li-Tam
(LT) Green function.
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The main theorem

Theorem

Let P be a critical operator on a noncompact Riemannian manifold M of
dimension n ≥ 2. Denote by Φ and Φ? the ground states of P and P?.

1 P admits a LT Green function GM
P (x , y) in M.

2 Any LT Green function GM
P (x , y) satisfies the following boundedness

property: For any y ∈ M and any neighborhood Uy of y there exists
C > 0 depending on Uy such that

GM
P (x , y) ≤ C Φ(x) and GM

P?(x , y) ≤ C Φ?(x) ∀x ∈ M \ Uy .

3 For any Green function ĜM
P and y ∈ M, we have

lim inf
x→∞̄

ĜM
P (x ,y)
Φ(x) = −∞.

4 For any z ∈ M there exists an LT Green function ĜM
P (x , y) such that

in some neighborhood Uz of z we have

ĜM
P (x , z) < 0 ∀x ∈ M \ Uz .
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Uniqueness

Theorem

Let P be a critical operator in M, and let G̃M
P , and GM

P be two LT Green
functions. Then there exists C ∈ R such that

ĜM
P (x , y) = GM

P (x , y) + C Φ(x)Φ?(y) ∀x , y ∈ M.

In particular, if G̃M
P (x0, y0) = GM

P (x0, y0) for some x0, y0 ∈ M, then
G̃M
P = GM

P .
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Key Lemma

Lemma (Key lemma)

Suppose that P(1) = 0 in M (in particular, P ≥ 0 in M). Fix p ∈ M.

Then the sequence of Green functions {GMj

P (·, p)}∞j=j0
has locally uniform

bounded oscillation in M \ {p}.
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Outline of the proof of the main Theorem

1 Reduction: Use a modified ground state transform to define the
critical operator

L(u) := Φ?P(Φu),

where Φ and Φ? denote the ground state of the operator P and P?,
respectively. So, L(1) = L?(1) = 0, with ground states Φ̃ = Φ̃? = 1.

2 Claim: Fix p ∈ M1, then, up to a subsequence,

J
Mj

L (x , p) := G
Mj

L (x , p)− α(p)
j

−→
j→∞ GM

L (x , p)

locally uniformly in M \ {p}, where α
(p)
j := infx∈∂M1 G

Mj

L (x , p).

3 L
[
GM
L (x , p)

]
= δp(x).

4 For any fixed y ∈ M, the sequence
{

G
Mj

L (x , y)− α(p)
j

}
converges for

all x 6= y to a function GM
L (x , y).

5 GM
P (x , y) := Φ(x)GM

L (x , y)Φ?(y) is a Green function of P in M.
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J
Mj

L (x , p) := G
Mj

L (x , p)− α(p)
j

−→
j→∞ GM

L (x , p)

locally uniformly in M \ {p}, where α
(p)
j := infx∈∂M1 G

Mj

L (x , p).

3 L
[
GM
L (x , p)

]
= δp(x).

4 For any fixed y ∈ M, the sequence
{

G
Mj

L (x , y)− α(p)
j

}
converges for

all x 6= y to a function GM
L (x , y).

5 GM
P (x , y) := Φ(x)GM

L (x , y)Φ?(y) is a Green function of P in M.
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The behavior of the LT Green function at ∞

Problem

Let GM
P be a LT Green function of a critical operator P in M with a

ground state Φ. Does the following assertion hold true?

lim
x→∞̄

GM
P (x , y)

Φ(x)
= −∞.

Theorem

Let GM
P (x , y) be a LT Green function of a symmetric (or even

quasi-symmetric) critical operator P in M. Suppose that for
0 � W ∈ C∞0 (M), the Martin boundary of P + W in M is a singleton.

Then limx→∞̄
GM
P (x ,y)
Φ(x) = −∞.
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Examples

Example

GR1

−∆(x , y) = −1

2
|x − y |+ C , GR2

−∆(x , y) = − 1

2π
log |x − y |+ C .

Example

Let M = Rn \ {0}, where n ≥ 3, and consider the critical Hardy operator

P := −∆− (n − 2)2

4

1

|x |2
.

with the ground state v(x) = |x |(2−n)/2.

For ζ = 0 or ζ =∞ the limit lim
x→ζ

GM
P (x ,x0)

|x |(2−n)/2 exists. Moreover, the limit is

equal to −∞ at least at one of these points. We do not know whether the
limit is equal to −∞ at both ends.
Note that lim

x→∞
GM
P (x , x0) = 0 but lim

x→0
GM
P (x , x0) = −∞.
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Key Lemma

Lemma (Key lemma)

Suppose that P(1) = 0 in M (in particular, P ≥ 0 in M). Fix p ∈ M.

Then the sequence of Green functions {GMj

P (·, p)}∞j=j0
has locally uniform

bounded oscillation in M \ {p}.
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Proof of the key lemma

Consider ‘annuli’ of the form Ap(k) := Mk \ B(p, 1
k ), k ≥ 1.

For j > k , denote by ωj(k) the oscillation of G
Mj

P (x , p) on Ap(k):

ωj(k) = sup
x∈Ap(k)

{GMj

P (x , p)} − inf
x∈Ap(k)

{GMj

P (x , p)}.

It suffices to prove that for ∀k ≥ 1, the sequence {ωj(k)}j>k is bounded.

Fix k . Suppose that there exists a subsequence of ωj := ωj(k) such that
ωj →∞.

Define for j > k functions hj by

hj(x) := ω−1
j G

Mj

P (x , p)− ω−1
j inf

z∈Mk

{GMj

P (z , p)}.

Clearly, Phj = 0 in Mj \ {p}, and Osc(hj) = 1 in Ap(k).
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Proof of the key lemma (continued)
Note that for a fixed j

hj(x) := ω−1
j G

Mj

P (x , p)− ω−1
j inf

z∈Mk

{GMj

P (z , p)} ∼
x→p ω−1

j GM1
P (x , p).

Furthermore, by the WMP on the domain Mk

inf{hj(x) : x ∈ Mk} = inf{hj(x) : x ∈ ∂Mk} = 0.
On the other hand, it follows that

ω−1
j GMk

P (x , p) ≤ hj(x) ≤ ω−1
j GMk

P (x , p) + 1 ∀x ∈ Mk ,

{hj} converges in Mk \ {p} to a function h satisfying Ph = 0 in Mk \ {p}
and 0 ≤ h ≤ 1. By a removable singularity theorem, h can be extended to
h̄ which satisfies Ph̄ = 0 in Mk

Since h̄ has maximum at p, SMP implies h̄ = constant = C in Mk .
Further, WMP implies that fj := C + 1− hj ≥ 0 in Mj . Hence, it
converges to a positive solution f in M.
Note that f = 1 on Mk , hence Osc(f ) = 0 in Ap(k). This contradicts that

Osc(f ) = Osc(hj) = 1 in Ap(k).
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Thank you for your attention!
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