Eigenvalue bounds for non-self-adjoint Schrödinger

operators with the inverse square potential

Haruya MIZUTANI
Department of Mathematics, Osaka University, Japan

CIRM conference on
Mathematical aspects of the physics with non-self-adjoint operators

Marseille, June 5, 2017

1. Motivation. Eigenvalue bounds in ℓ^{p} for Schrödinger operators

- $H=-\Delta+V(x)$ on $L^{2}\left(\mathbb{R}^{n}\right), V \in L^{n / 2+\gamma}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ with $\gamma \geq 0$.
- $\sigma_{\text {ess }}(H)=\sigma(-\Delta)=[0, \infty), \sigma_{\mathrm{d}}(H) \subset(-\infty, 0)$.

Theorem (Keller '61, Lieb-Thirring '76, Lieb '76, Rosenbljum '76,

Cwikel '77, Weidl '96)

- Keller inequality: For $\gamma \geq 1 / 2(n=1)$ and $\gamma>0(n \geq 2)$,

$$
\left(-E_{1}\right)^{\gamma} \leq C_{\gamma, n} \int V_{-}(x)^{n / 2+\gamma} d x
$$

where $E_{1}=\inf \sigma_{\mathrm{d}}(H)$ and $V=V_{+}-V_{-}$.

- Lieb-Thirring and Cwikel-Lieb-Rosenblum inequalities:

$$
\begin{gathered}
\text { For } \gamma \geq 1 / 2(n=1), \gamma>0(n=2) \text { and } \gamma \geq 0(n \geq 3), \\
\sum_{E \in \sigma_{\mathrm{d}}(H)}|E|^{\gamma} \leq L_{\gamma, n} \int V_{-}(x)^{n / 2+\gamma} d x .
\end{gathered}
$$

Two generalizations

(1) Keller inequality for complex-valued potentials.

- $H=-\Delta+V(x), V \in L^{n / 2+\gamma}\left(\mathbb{R}^{n} ; \mathbb{C}\right)$.

Theorem (Abramov-Aslanyan-Davies '01, Frank '11, Frank-Simon '15)

(1) Let $\gamma=1 / 2(n=1), 0<\gamma \leq 1 / 2(n \geq 2)$. Then any
eigenvalue $E \in \sigma_{\mathrm{p}}(H)\left(E \in \sigma_{\mathrm{d}}(H)\right.$ if $\left.n=1\right)$ satisfies

$$
\begin{equation*}
|E|^{\gamma} \leq C_{\gamma, n} \int|V(x)|^{n / 2+\gamma} d x \tag{*}
\end{equation*}
$$

If in addition V is radial, $(*)$ also holds for $1 / 2<\gamma<n / 2, n \geq 2$.
(2) When $\gamma=0$ and $n \geq 3, H$ has no eigenvalue if $\|V\|_{L^{n / 2}} \ll 1$.

- Conjecture: $(*)$ holds for $0<\gamma \leq n / 2$ (Laptev-Safronov '09).
- Lieb-Thirring type inequalities for complex-valued potentials: Demuth-Hansmann-Katriel '09, '13, Frank-Sabin '14,...

Two generalizations

(2) Hardy-Lieb-Thirring inequality for real-valued potentials

- $H=-\Delta-\frac{(n-2)^{2}}{4}|x|^{-2}+V(x), V \in L^{n / 2+\gamma}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$

Theorem (Ekholm-Frank '06)

Let $n \geq 3$ and $\gamma>0$. Then

$$
\sum_{E \in \sigma_{\mathrm{d}}(H)}|E|^{\gamma} \leq L_{\gamma, n}^{\prime} \int V_{-}(x)^{n / 2+\gamma} d x
$$

- This inequality fails in general when $\gamma=0$.
- $\frac{(n-2)^{2}}{4}$ is critical in the sense that it is the best constant in Hardy's inequality $\frac{(n-2)^{2}}{4} \int|x|^{-2}|f|^{2} d x \leq \int|\nabla f|^{2} d x$
- HLT inequality suggests that only the part of the potential which is stronger than $-\frac{(n-2)^{2}}{4}|x|^{-2}$ creates negative eigenvalues.

Question: Hardy-Keller and Hardy-Lieb-Thirring type inequalities for complex-valued potentials.

- $H_{a}=-\Delta-a|x|^{-2}$ on $\mathbb{R}^{n}, V \in L^{n / 2+\gamma}\left(\mathbb{R}^{n} ; \mathbb{C}\right)$ with $\gamma>0$
- V is $H_{a^{-}}$form compact (cf. Frank '09)

Theorem 1 (H. '16, preprint in arxiv)
Let $n \geq 3, a \leq(n-2)^{2} / 4$ and

- $0<\gamma \leq 1 / 2$
or
- $0<\gamma<n / 2$ and V is radially symmetric.

Then, any $E \in \sigma_{\mathrm{d}}\left(H_{a}+V\right)$ satisfies

$$
|E|^{\gamma} \leq C_{\gamma, n, a} \int|V(x)|^{n / 2+\gamma} d x
$$

Remarks

$$
|E|^{\gamma} \leq C_{\gamma, n, a} \int|V(x)|^{n / 2+\gamma} d x . \quad 0<\gamma \leq 1 / 2
$$

- When $\gamma=0$ and $a=(n-2)^{2} / 4, H_{a}+V$ may have eigenvalues as soon as $V<0$ even if $\|V\|_{L^{n / 2}} \ll 1$ and V : real-valued.
- For $\gamma>1 / 2$, one has

$$
\operatorname{dist}(E,[0, \infty))^{1 / 2}|E|^{\gamma-1 / 2} \leq C_{\gamma, n, a} \int|V(x)|^{n / 2+\gamma} d x
$$

The case $-\Delta+V$ is due to Frank '15.

- The inverse-square potential $-a|x|^{-2}$ can be replaced by more larger class of potentials V_{0} such that either
(i) $V_{0} \in L_{\text {weak }}^{n / 2}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ with $|x| V_{0} \in L_{\text {weak }}^{n}, x \cdot \nabla V \in L_{\text {weak }}^{n / 2}$ and

$$
-\Delta+V_{0} \geq-\delta \Delta, \quad-\Delta-\partial_{r}\left(r V_{0}\right) \geq-\delta \Delta \quad(\delta>0, r=|x|)
$$

(ii) or $V_{0} \in L^{n / 2}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$.

Proof of Theorem 1: the method by AAD '01 and Frank '11

- Decompose $V=|V|^{\frac{1}{2}} \cdot \operatorname{sgn} V|V|^{\frac{1}{2}}=: V_{1} V_{2}$.
- The Birman-Schwinger principle implies that

$$
\begin{equation*}
E \in \sigma_{\mathrm{d}}(H) \Leftrightarrow-1 \in \sigma_{\mathrm{d}}\left(V_{1}\left(H_{a}-E\right)^{-1} V_{2}\right) \Rightarrow\left\|V_{1}\left(H_{a}-E\right)^{-1} V_{2}\right\| \geq \tag{1}
\end{equation*}
$$

- It suffices to show $\left\|V_{1}\left(H_{a}-E\right)^{-1} V_{2}\right\|^{\frac{n}{2}+\gamma} \lesssim|E|^{-\gamma} \int|V|^{\frac{n}{2}+\gamma} d x$. This weighted resolvent estimate follows from Hölder's inequality and the following uniform Sobolev estimate with $\frac{1}{p}=\frac{1}{n+2 \gamma}+\frac{1}{2}$.

Theorem 2 (Uniform Sobolev estimates (H. '16))

Let $n \geq 3, H_{a}=-\Delta-a|x|^{-2}$ and $a \leq(n-2)^{2} / 4$. Then

$$
\left\|\left(H_{a}-z\right)^{-1}\right\|_{L^{p} \rightarrow L^{p^{\prime}}} \leq C_{p, n, a}|z|^{-\frac{n+2}{2}+\frac{n}{p}}, \quad z \in \mathbb{C} \backslash[0, \infty)
$$

for all $\frac{2 n}{n+2}<p \leq \frac{2(n+1)}{n+3}$. (The case $p=\frac{2 n}{n+2}$ can fail.)

Proof of Theorem 2 (1)

Theorem 2

$\left\|\left(H_{a}-z\right)^{-1}\right\|_{L^{p} \rightarrow L^{p^{\prime}}} \leq C_{p, n, a}|z|^{-\frac{n+2}{2}+\frac{n}{p}}, \quad \frac{2 n}{n+2}<p \leq \frac{2(n+1)}{n+3}$

- Let $a=(n-2)^{2} / 4$ (critical case) and $P_{r}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L_{\mathrm{rad}}^{2}\left(\mathbb{R}^{n}\right)$ be the projection, $P_{r}^{\perp}=1-P_{r}$. Decompose

$$
H_{a}=P_{r} H_{a} P_{r}+P_{r}^{\perp} H_{a} P_{r}^{\perp}
$$

- The radial part $P_{r} H_{a} P_{r}$ is unitarily equivalent to the radial part of $-\Delta_{\mathbb{R}^{2}}$ and the estimates for $P_{r}\left(H_{a}-z\right)^{-1} P_{r}$ follow from the following estimates for the 2D free resolvent $\left(-\Delta_{\mathbb{R}^{2}}-z\right)^{-1}$:
$\left\|\left(-\Delta_{\mathbb{R}^{2}}-z\right)^{-1}\right\|_{L_{r}^{p_{2}} L_{\theta}^{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{r}^{p_{2}^{\prime}} L_{\theta}^{2}\left(\mathbb{R}^{2}\right)} \lesssim|z|^{-2-2 / p_{2}}, \quad 1<p_{2}<4 / 3$.
(Frank-Simon '15)

Proof of Theorem 2 (2)

- For the "non-radial" part $P_{r}^{\perp}\left(H_{a}-z\right)^{-1} P_{r}^{\perp}$, we use an iterated resolvent equation
$R_{a}=R_{0}+a R_{0}|x|^{-1} \cdot|x|^{-1} R_{0}+a^{2} R_{0}|x|^{-1} \cdot|x|^{-1} R_{a}|x|^{-1} \cdot|x|^{-1} R_{0}$
where $R_{0}=\left(-\Delta_{\mathbb{R}^{n}}-z\right)^{-1}$ and $R_{a}=\left(H_{a}-z\right)^{-1}$.
- Desired estimates for $P_{r}^{\perp} R_{a} P_{r}^{\perp}$ follow from $P_{r}^{\perp} \in \mathbb{B}\left(L^{p}\right)$ and
(i) $R_{0} \in \mathbb{B}\left(L^{p}, L^{p^{\prime}}\right), R_{0}|x|^{-1} \in \mathbb{B}\left(L^{2}, L^{p^{\prime}}\right)$ (and its dual)

Cf. Kenig-Ruiz-Sogge '87, Gutiérrez '04
(ii) $P_{r}^{\perp}|x|^{-1} R_{a}|x|^{-1} P_{r}^{\perp} \in \mathbb{B}\left(L^{2}\right)$

- On $\operatorname{Ran} P_{r}^{\perp},-c_{1} \Delta_{\mathbb{R}^{n}} \leq H_{a} \leq-c_{2} \Delta_{\mathbb{R}^{n}}$ and we can use a multiplier method (integration by parts) to obtain (ii).
cf. Burq, Planchon, Stalker \& Tahvildar-Zadeh '04,
Barceló, Vega \& Zubeldia '13.

Remarks and future topics

Remark:

- Theorem 2 (uniform Sobolev estimates) can be also applied to study the Schrödinger equation $\left(i \partial_{t}-H_{a}\right) u=F,\left.u\right|_{t=0}=\psi$.
- Endpoint Strichartz estimates for $a<(n-2)^{2} / 4$

$$
\|u\|_{L^{2}\left(\mathbb{R} ; L^{\frac{2 n}{n-2}}\left(\mathbb{R}^{n}\right)\right.} \lesssim\|\psi\|_{L^{2}}+\|F\|_{L^{2}\left(\mathbb{R} ; L^{\frac{2 n}{n+2}}\left(\mathbb{R}^{n}\right)\right)}
$$

(The case $F \equiv 0$ is due to B-P-S-T '03, '04)

- Non-endpoint Strichartz estimates and weak-type endpoint Strichartz estimates for $a=(n-2)^{2} / 4$.

Future topic:

- Hardy-Lieb-Thirring inequality for complex-valued potentials
- Other models with scaling-critical perturbation such as the Aharonov-Bohm Hamiltonian or Dirac operators with Coulomb singularities.

Thank you very much for your attention

