On the invertibility of block matrix operators

Vadim Kostrykin (Johannes Gutenberg-Universität Mainz) based on a joint work with: Lukas Rudolph (Mainz)

Mathematical aspects of the physics with non-self-adjoint operators
Marseille, 5-9 June 2017

What is this talk about?

Is a bounded self-adjoint operator

$$
B=\left(\begin{array}{cc}
A_{0} & V \\
V^{*} & A_{1}
\end{array}\right)
$$

acting on the orthogonal sum of two Hilbert spaces $\mathfrak{H}_{0} \oplus \mathfrak{H}_{1}$ continuously invertible? If yes, what is the norm of its inverse or, equivalently, what is the width of the spectral gap containing zero?

What is this talk about?

Is a bounded self-adjoint operator

$$
B=\left(\begin{array}{cc}
A_{0} & V \\
V^{*} & A_{1}
\end{array}\right)
$$

acting on the orthogonal sum of two Hilbert spaces $\mathfrak{H}_{0} \oplus \mathfrak{H}_{1}$ continuously invertible? If yes, what is the norm of its inverse or, equivalently, what is the width of the spectral gap containing zero?

Two examples:

$$
\text { (i) } B=\left(\begin{array}{cc}
I & V \\
V^{*} & -I
\end{array}\right) \quad V \text { arbitrary } \quad \text { and } \quad \text { (ii) } \quad B=\left(\begin{array}{cc}
0 & V \\
V^{*} & 0
\end{array}\right), \quad V \text { bijection }
$$

What is this talk about?

Is a bounded self-adjoint operator

$$
B=\left(\begin{array}{cc}
A_{0} & V \\
V^{*} & A_{1}
\end{array}\right)
$$

acting on the orthogonal sum of two Hilbert spaces $\mathfrak{H}_{0} \oplus \mathfrak{H}_{1}$ continuously invertible? If yes, what is the norm of its inverse or, equivalently, what is the width of the spectral gap containing zero?

Two examples:

$$
\text { (i) } B=\left(\begin{array}{cc}
I & V \\
V^{*} & -I
\end{array}\right) \quad V \text { arbitrary } \quad \text { and } \quad \text { (ii) } B=\left(\begin{array}{cc}
0 & V \\
V^{*} & 0
\end{array}\right), \quad V \text { bijection }
$$

Perturbation arguments for (i): $\|V\|<1 \Rightarrow(-1+\|V\|, 1-\|V\|) \subset \rho(B)$. Actually $(-1,1) \subset \rho(B)$ [Davis, Kahan (1970)]

Outline

We consider

$$
B=\left(\begin{array}{cc}
A_{0} & V \\
V^{*} & A_{1}
\end{array}\right)
$$

as a perturbation of

$$
A=\left(\begin{array}{cc}
A_{0} & 0 \\
0 & A_{1}
\end{array}\right)
$$

- Perturbing an existing spectral gap containing zero
- Opening a new spectral gap containing zero

Perturbing an existing spectral gap

Notations:

$$
\begin{aligned}
-d_{l} & :=\max \{\lambda<0 \mid \lambda \in \sigma(A)\} \\
d_{r} & :=\min \{\lambda>0 \mid \lambda \in \sigma(A)\}
\end{aligned}
$$

with $\min \varnothing:=+\infty$. The open interval $\left(-d_{l}, d_{r}\right)$ is a spectral gap of the operator A containing zero.

Perturbing an existing spectral gap

Notations:

$$
\begin{aligned}
-d_{l} & :=\max \{\lambda<0 \mid \lambda \in \sigma(A)\} \\
d_{r} & :=\min \{\lambda>0 \mid \lambda \in \sigma(A)\}
\end{aligned}
$$

with $\min \varnothing:=+\infty$. The open interval $\left(-d_{l}, d_{r}\right)$ is a spectral gap of the operator A containing zero.

$$
\begin{aligned}
& c_{l}:=\left|\max \left\{\lambda<0 \mid \lambda \in \sigma\left(A_{0}\right)\right\}-\max \left\{\lambda<0 \mid \lambda \in \sigma\left(A_{1}\right)\right\}\right| \\
& c_{r}:=\left|\min \left\{\lambda>0 \mid \lambda \in \sigma\left(A_{0}\right)\right\}-\min \left\{\lambda>0 \mid \lambda \in \sigma\left(A_{1}\right)\right\}\right|
\end{aligned}
$$

with $\min \varnothing=\max \varnothing=+\infty$ and $\infty-\infty=0$.

Perturbing an existing spectral gap

Theorem 1. Assume that the operator A is invertible. If

$$
\|V\|<\min \left\{\sqrt{d_{l}\left(d_{l}+c_{l}\right)}, \sqrt{d_{r}\left(d_{r}+c_{r}\right)}\right\}
$$

then the operator B is continuously invertible. Moreover, the open interval

$$
\left(-d_{l}+\delta_{l}, d_{r}+\delta_{r}\right)
$$

belongs to the resolvent set of the operator B, where

$$
\delta_{l}:=\|V\| \tan \left(\frac{1}{2} \arctan \frac{2\|V\|}{c_{l}}\right), \quad \delta_{r}:=\|V\| \tan \left(\frac{1}{2} \arctan \frac{2\|V\|}{c_{r}}\right)
$$

with the natural conventions $1 / t=0$ if $t=+\infty, 1 / t=+\infty$ if $t=0$, and $\arctan (+\infty)=\pi / 2$.

Perturbing an existing spectral gap

Examples. (1) $B=\left(\begin{array}{cc}I & V \\ V^{*} & -I\end{array}\right)$. We have $c_{l}=c_{r}=\infty \Rightarrow \delta_{l}=\delta_{r}=0$ and for any V the interval $(-1,1)$ belongs to the resolvent set of the operator B.

Perturbing an existing spectral gap

Examples. (1) $B=\left(\begin{array}{cc}I & V \\ V^{*} & -I\end{array}\right)$. We have $c_{l}=c_{r}=\infty \Rightarrow \delta_{l}=\delta_{r}=0$ and for any V the interval $(-1,1)$ belongs to the resolvent set of the operator B.
(2) Consider the case when $\mathfrak{H}_{0}=\mathfrak{H}_{1}=\mathbb{C}^{2}$,

$$
A_{0}=\left(\begin{array}{cc}
-3 / 2 & 0 \\
0 & 1 / 2
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
-1 / 2 & 0 \\
0 & 3 / 2
\end{array}\right), \quad V=\left(\begin{array}{cc}
\sqrt{3} / 2 & 0 \\
0 & \sqrt{3} / 2
\end{array}\right) .
$$

Then $c_{l}=c_{r}=1, d_{l}=d_{r}=1 / 2$, and, hence, $\sqrt{d_{l, r}\left(d_{l, r}+c_{l, r}\right)}=\sqrt{3} / 2$. The norm of V equals $\sqrt{3} / 2$. Hence, $\delta_{l, r}=1 / 2$. The spectrum of $B=A+V$ consists of three eigenvalues $-2,0$, and 2 . Thus, the result of Theorem 1 is sharp if $c_{l, r}<\infty$.

Perturbing an existing spectral gap

(3) Let $\mathfrak{H}_{0}=\mathbb{C}^{2}, \mathfrak{H}_{1}=\mathbb{C}$,

$$
A_{0}=\left(\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right), \quad A_{1}=-1, \quad V=\binom{\sqrt{2}}{0}
$$

Then $c_{l}=d_{l}=d_{r}=1, c_{r}=\infty$ so that $\sqrt{d_{l}\left(d_{l}+c_{l}\right)}=\sqrt{2}$. The norm of the operator V equals $\sqrt{2}$. Hence $\delta_{l}=1$ and $\delta_{r}=0$. The spectrum of $B=A+V$ consists of three eigenvalues $-3,0$, and 1 . Thus, the result of Theorem 1 is optimal if $c_{r}=\infty$ as well.

Perturbing an existing spectral gap

(3) Let $\mathfrak{H}_{0}=\mathbb{C}^{2}, \mathfrak{H}_{1}=\mathbb{C}$,

$$
A_{0}=\left(\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right), \quad A_{1}=-1, \quad V=\binom{\sqrt{2}}{0}
$$

Then $c_{l}=d_{l}=d_{r}=1, c_{r}=\infty$ so that $\sqrt{d_{l}\left(d_{l}+c_{l}\right)}=\sqrt{2}$. The norm of the operator V equals $\sqrt{2}$. Hence $\delta_{l}=1$ and $\delta_{r}=0$. The spectrum of $B=A+V$ consists of three eigenvalues $-3,0$, and 1 . Thus, the result of Theorem 1 is optimal if $c_{r}=\infty$ as well.

The idea of the proof: The local version of geometric arguments from V. K, K.A. Makarov, A.K. Motovilov, [Trans. Amer. Math. Soc. 359 (2007), 77 - 89].

Opening a new spectral gap. The case when V is bijective

If $V: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{0}$ is bijective, then \mathfrak{H}_{0} and \mathfrak{H}_{1} are isomorphic.

Theorem 2. Let the self-adjoint bounded operators A_{0} and A_{1} satisfy $A_{0} \geq a_{0}, A_{1} \leq a_{1}$ for some $a_{0} \geq 0$ and $a_{1} \leq 0$. If $V: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{0}$ is a bijection, then the operator B is boundedly invertible and the interval $\left(\lambda_{-}, \lambda_{+}\right)$belongs to its resolvent set, where

$$
\begin{aligned}
& \lambda_{+}:=-\frac{\left\|A_{1}\right\|-a_{0}}{2}+\sqrt{\left(\left\|A_{1}\right\|+a_{0}\right)^{2} / 4+\left\|V^{-1}\right\|^{-2}} \\
& \lambda_{-}:=\frac{\left\|A_{0}\right\|+a_{1}}{2}-\sqrt{\left(\left\|A_{0}\right\|-a_{1}\right)^{2} / 4+\left\|V^{-1}\right\|^{-2}} .
\end{aligned}
$$

Opening a new spectral gap. The case when V is bijective

If $V: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{0}$ is bijective, then \mathfrak{H}_{0} and \mathfrak{H}_{1} are isomorphic.

Theorem 2. Let the self-adjoint bounded operators A_{0} and A_{1} satisfy $A_{0} \geq a_{0}, A_{1} \leq a_{1}$ for some $a_{0} \geq 0$ and $a_{1} \leq 0$. If $V: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{0}$ is a bijection, then the operator B is boundedly invertible and the interval $\left(\lambda_{-}, \lambda_{+}\right)$belongs to its resolvent set, where

$$
\begin{aligned}
& \lambda_{+}:=-\frac{\left\|A_{1}\right\|-a_{0}}{2}+\sqrt{\left(\left\|A_{1}\right\|+a_{0}\right)^{2} / 4+\left\|V^{-1}\right\|^{-2}}, \\
& \lambda_{-}:=\frac{\left\|A_{0}\right\|+a_{1}}{2}-\sqrt{\left(\left\|A_{0}\right\|-a_{1}\right)^{2} / 4+\left\|V^{-1}\right\|^{-2}} .
\end{aligned}
$$

In particular, if $a_{0}>0$ or $a_{1}<0$, that is the interval $\left(a_{1}, a_{0}\right)$ belongs to the resolvent set of the diagonal operator

$$
A=\left(\begin{array}{cc}
A_{0} & 0 \\
0 & A_{1}
\end{array}\right),
$$

then $\lambda_{+}>a_{0}$ and $\lambda_{-}<a_{1}$.

Opening a new spectral gap. The case when V is bijective

M. Winklmeier [Ph.D. Thesis (2005), Corollary 3.18] proved that $\left(-\lambda_{W}, \lambda_{W}\right) \in \rho(B)$ with

$$
\lambda_{W}:=-\frac{\left\|A_{0}\right\|+\left\|A_{1}\right\|}{2}+\sqrt{\frac{\left(\left\|A_{0}\right\|+\left\|A_{1}\right\|\right)^{2}}{4}+\left\|V^{-1}\right\|^{-2}}
$$

Theorem 2 gives a larger width of the spectral gap,

$$
\lambda_{W} \leq \min \left\{\lambda_{+},-\lambda_{-}\right\}
$$

where

$$
\begin{aligned}
& \lambda_{+}:=-\frac{\left\|A_{1}\right\|-a_{0}}{2}+\sqrt{\left(\left\|A_{1}\right\|+a_{0}\right)^{2} / 4+\left\|V^{-1}\right\|^{-2}}, \\
& \lambda_{-}:=\frac{\left\|A_{0}\right\|+a_{1}}{2}-\sqrt{\left(\left\|A_{0}\right\|-a_{1}\right)^{2} / 4+\left\|V^{-1}\right\|^{-2}} .
\end{aligned}
$$

The equality $\lambda_{W}=\min \left\{\lambda_{+},-\lambda_{-}\right\}$holds if and only if $A_{0}=0$ or $A_{1}=0$.

Opening a new spectral gap. The general case

Assumptions. Let the self-adjoint bounded operators A_{0} and A_{1} satisfy $A_{0} \geq 0, A_{1} \leq 0$. Let $V: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{0}$ be a bounded operator with a closed range. If $\operatorname{Ker} V^{*} \neq\{0\}$ we assume that the operator

$$
A_{0, \mathrm{Ker}}:=\left.P_{\mathrm{Ker} V^{*}} A_{0}\right|_{\operatorname{Ker} V^{*}}: \operatorname{Ker} V^{*} \rightarrow \operatorname{Ker}^{*}
$$

is bijective. Similarly, if $\operatorname{Ker} V \neq\{0\}$ we assume that the operator

$$
A_{1, \mathrm{Ker}}:=\left.P_{\mathrm{Ker} V} A_{1}\right|_{\mathrm{Ker} V}: \operatorname{Ker} V \rightarrow \operatorname{Ker} V
$$

is bijective.

Under these assumptions the operator

$$
\mathcal{V}:=\left.P_{\operatorname{Ran} V} V\right|_{\operatorname{Ran} V^{*}}: \operatorname{Ran} V^{*} \rightarrow \operatorname{Ran} V
$$

is continuously invertible.

Opening a new spectral gap. The general case

If $\operatorname{Ker} V^{*} \neq\{0\}$, the operator A_{0} can be represented as the block operator matrix

$$
A_{0}=\left(\begin{array}{cc}
A_{0, \text { Ker }} & W_{0} \\
W_{0}^{*} & A_{0, \text { Ran }}
\end{array}\right)
$$

with respect to the orthogonal decomposition $\mathfrak{H}_{0}=\operatorname{Ker} V^{*} \oplus \operatorname{Ran} V$.
Similarly, if $\operatorname{Ker} V \neq\{0\}$, the operator A_{1} can be represented as the block operator matrix

$$
A_{1}=\left(\begin{array}{cc}
A_{1, \text { Ker }} & W_{1} \\
W_{1}^{*} & A_{1, \text { Ran }}
\end{array}\right)
$$

with respect to the orthogonal decomposition $\mathfrak{H}_{1}=\operatorname{Ker} V \oplus \operatorname{Ran} V^{*}$.

Opening a new spectral gap. The general case

Denote

$$
\mathcal{A}_{0}:= \begin{cases}A_{0, \mathrm{Ran}}-W_{0}^{*} A_{0, \mathrm{Ker}}^{-1} W_{0} & \text { if } \quad \operatorname{Ker} V^{*} \neq\{0\}, \\ A_{0} & \text { if } \quad \operatorname{Ker} V^{*}=\{0\}\end{cases}
$$

and

$$
\mathcal{A}_{1}:= \begin{cases}A_{1, \operatorname{Ran}}-W_{1}^{*} A_{1, \mathrm{Ker}}^{-1} W_{1} & \text { if } \quad \operatorname{Ker} V \neq\{0\} \\ A_{1} & \text { if } \operatorname{Ker} V=\{0\}\end{cases}
$$

Opening a new spectral gap. The general case

Theorem 3. Under thee above assumptions the operator B is boundedly invertible and

$$
\begin{aligned}
\left\|B^{-1}\right\| \leq & \left(1+\max \left\{\left\|W_{0}^{*} A_{0, \text { Ker }}^{-1}\right\|,\left\|W_{1}^{*} A_{1, \text { Ker }}^{-1}\right\|\right\}\right)^{2} \\
& \cdot \max \left\{\left\|A_{0, \text { Ker }}^{-1}\right\|,\left\|A_{1, \text { Ker }}^{-1}\right\|, \lambda_{+}^{-1},-\lambda_{-}^{-1}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \lambda_{+}:=-\frac{\left\|\mathcal{A}_{1}\right\|-a_{0}}{2}+\sqrt{\left(\left\|\mathscr{A}_{1}\right\|+a_{0}\right)^{2} / 4+\left\|\mathcal{V}^{-1}\right\|^{-2}}, \\
& \lambda_{-}:=\frac{\left\|\mathcal{A}_{0}\right\|+a_{1}}{2}-\sqrt{\left(\left\|\mathcal{A}_{0}\right\|-a_{1}\right)^{2} / 4+\left\|\mathcal{V}^{-1}\right\|^{-2}}
\end{aligned}
$$

with

$$
a_{0}=\min \operatorname{spec}\left(\mathscr{A}_{0}\right) \geq 0 \quad \text { and } \quad a_{1}=\max \operatorname{spec}\left(\mathscr{A}_{1}\right) \leq 0
$$

Opening a new spectral gap. The general case

I. and K. Veselić in [Operators and Matrices 9 (2015), 241 - 275] used a different decomposition of the Hilbert space:
Let the self-adjoint bounded operators A_{0} and A_{1} satisfy $A_{0} \geq 0, A_{1} \leq 0$. Let $V: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{0}$ be bounded. In addition, assume that
(i) the subspaces $\operatorname{Ker} A_{0} \subset \mathfrak{H}_{0}$ and $\operatorname{Ker} A_{1} \subset \mathfrak{H}_{1}$ are isomorphic and

$$
V_{\operatorname{Ker}_{0}, \operatorname{Ker} A_{1}}:=\left.P_{\operatorname{Ker} A_{0}} V\right|_{\operatorname{Ker}_{1}}: \operatorname{Ker} A_{1} \rightarrow \operatorname{Ker} A_{0}
$$

is a bijection;
(ii) the operators A_{0} and A_{1} have closed range. Therefore,

$$
A_{0, \operatorname{Ran} A_{0}}:=\left.A_{0}\right|_{\operatorname{Ran} A_{0}}: \operatorname{Ran} A_{0} \rightarrow \operatorname{Ran} A_{0}
$$

and

$$
A_{1, \operatorname{Ran} A_{1}}:=\left.A_{1}\right|_{\operatorname{Ran} A_{1}}: \operatorname{Ran} A_{1} \rightarrow \operatorname{Ran} A_{1}
$$

are bijections.

Opening a new spectral gap. The general case

Theorem. (I. and K. Veselić (2015)) Under the above assumptions the operator B is boundedly invertible with

$$
\begin{align*}
\left\|B^{-1}\right\| & \leq\left(1+\max \left\{\left\|V_{\operatorname{Ran} A_{0}, \operatorname{Ker} A_{1}} V_{\operatorname{Ker} A_{0}, \operatorname{Ker} A_{1}}^{-1}\right\|,\left\|V_{\operatorname{Ker} A_{0}, \operatorname{Ran} A_{1}}^{*} V_{\operatorname{Ker} A_{0}, \operatorname{Ker} A_{1}}^{-*}\right\|\right\}\right)^{2} \tag{1}\\
& \max \left\{\left\|A_{0, \operatorname{Ran} A_{0}}^{-1}\right\|,\left\|A_{1, \operatorname{Ran} A_{1}}^{-1}\right\|,\left\|V_{\operatorname{Ker} A_{0}, \operatorname{Ker} A_{1}}^{-1}\right\|\right\}
\end{align*}
$$

where

$$
\begin{aligned}
V_{\operatorname{Ran} A_{0}, \operatorname{Ker} A_{1}} & :=\left.P_{\operatorname{Ran} A_{0}} V\right|_{\operatorname{Ker} A_{1}}: \operatorname{Ker} A_{1} \rightarrow \operatorname{Ran} A_{0} \\
V_{\operatorname{Ker} A_{0}, \operatorname{Ran} A_{1}} & :=\left.P_{\operatorname{Ker} A_{0}} V\right|_{\operatorname{Ran} A_{1}}: \operatorname{Ran} A_{1} \rightarrow \operatorname{Ker} A_{0}
\end{aligned}
$$

Proposition. If the operator $V: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{0}$ has a closed range, then our assumptions are weaker than those of Veselić's.

Thank You for Your Attention!

