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Apology:

I am probabilist

Goal:
Advertize a class of differential operators with non-local
boundary conditions, which until now mainly was considered by
probabilists.
Try to convince you that this class of problems has some
surprising properties.
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Motivation
When considering a diffusion process in a bounded domain, i.e.
an elliptic operator of the form

Lu :=
d∑

i ,j=1

aij Di Dj u +
d∑

j=1

bj Dj u,

one needs to put boundary conditions in order to specify a well
defined process (in analytic terms a one parameter semigroup).

Best known types of boundary conditions:
• Dirichlet boundary conditions (killing at the boundary)
• Neumann boundary conditions (reflection at the boundary)
• mixtures of Dirichlet and Neumann.

There are many other ways to produce a well-defined
stochastic process.
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Diffusions with jump boundary

Intuitive description of the process: Let D ⊂ Rd be a smooth
bounded domain, µ(y , ·) a probability measure on D for every
y ∈ ∂D

1) Start a diffusion (Xt )t at x ∈ D and wait until it hits the
boundary ∂D of D at a point y ∈ ∂D.

2) Choose a new starting point x1 according to the distribution
µ(y , ·).

3) Start an i.i.d. copy of (Xt )t at x1 and wait until it hits the
boundary ∂D of D.

4) Move to stage 2).
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The stochastic process
Let W ρ,0 be a diffusion process on D corresponding to L killed
at the boundary with initial distribution ρ. Define

τ1 = σ1 = inf{t ≥ 0 |W ρ,0
t ∈ ∂D},Θ1 = W ρ,0(σ1)

and

σn+1 = inf{t ≥ 0 |W µΘn ,n ∈ ∂D},Θn+1 = W µΘn ,n(σn+1)

τn+1 = τn + σn+1.

Then the process just described intuitively is given by

Xt =
∞∑

n=0

1t∈[τn ,τn+1)W µΘn ,n(t − τn)
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Some history and motivation
• Processes of this type appeared in Feller’s famous analysis

of all possible extensions of a given one-dimensional
diffusion processes in an interval up to the first hitting time
of the boundary.

• Used in a number of applications such as e.g.
neuroscience. ∗ Membrane potential of a single neuron
described by diffusion, if this process hits a certain level, it
fires and the membrane potential is set back to zero.

• Also appear in mathematical finance in order to describe
double knock out barrier options, in statistical inference of
survival analysis, versions of the google page rank
algorithm...

∗Umberto Picchini, Susanne Ditlevsen, Andrea De Gaetano and Petr
Lansky: Parameters of the diffusion leaky integrate-and-fire neuronal model
for a slowly fluctuating signal. Neural Computation, 20: 2696-2714, 2008
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Analytic Aspects

Assumptions:
Let

Lu :=
d∑

i ,j=1

aij Di Dj u +
d∑

j=1

bj Dj u,

where aij ∈ C2,α(Rd ) and b ∈ C1,α(Rd ) and

1
2

d∑
i ,j=1

aij (x )ξiξj ≥ η|ξ|2.

We furthermore assume that µ : ∂D → P(D) be continuous
with respect to the weak topology on P(D).
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Analytic Aspects

It is easy to see that for every f ∈ L∞(D)

Ex [f (Xt )] =

∫
D

pµ(t , x , y )f (y ) dy

Theorem (Ben-Ari/Pinsky SPA 2009)
The mapping

L1(D) 3 g 7→
∫

D
g(x )pµ(t , x , y ) dx ∈ L1(D)

defines a strongly continuous semigroup.
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Analytic Aspects

Setting
W (D) :=

⋂
1<p<∞

W 2,p
loc (D)

and define an operator in L∞(D):

D(Lµ) :=

{
u ∈ C(D̄) ∩W (D) |Lu ∈ L∞(D)

u(z) :=

∫
D

u(x )µ(z ,dx ) ∀z ∈ ∂D
}

Lµu := Lu (u ∈ D(Lµ)
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Analytic Aspects

Theorem (Arendt et al. JFA 2017)

• Lµ is the generator of a holomorphic semigroup Tµ(t ) on
L∞(D).

• The operators Tµ(t ) are positive contractions.
• Tµ(t ) is compact for every t > 0
• The semigroup (Tµ(t ))t≥0 is strong Feller.
• There exists a positive projection P of rank one and

constants ε > 0 and M ≥ 1, such that∥∥Tµ(t )− P‖ ≤ Me−εt

for all t > 0.
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Further Results and Consequences
• First observe that

Tµ(t )1A(x ) = Px (Xt ∈ A).

• Let us assume now that µ(y , ·) = µ for every y ∈ ∂D. By
the last item of the previous theorem the semigroup Tµ has
an invariant distribution νµ:

1
C

∫
D

gD(z , x ) dµ(z)dx .

• The process is uniformly ergodic in the sense that

0 > γ(µ) := lim
t→∞

1
t

log sup
x∈D

∥∥Px
(
Xt ∈ ·

)
− νµ

∥∥
TV

• γ(µ) := sup
{
<λ | 0 6= λ is an eigenvalue for Lµ

}

∗Important Contributions due to Grigorescu/Kang, Ben-Ari/Pinsky and
Leung/Li/Rakesh
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Further Spectral Results [Ben-Ari,
Pinsky]

If the differential operator L is reversible, i.e. if b := a∇Q and

L :=
1
2

e−2Q∇ · e2Q∇

and without loss of generality
∫

D e2Q dx = 1 and

µ := e2Q(x ) dx

then
• All eigenvalues of Lµ are real

• Let (λD
i )i∈N0 denotes the sequence of the Dirichlet

realization of L in L2(D, µ). Then

λD
1 ≤ γ(µ) < λD

0 .
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Formula for the resolvent

Observe that

Tµ(t )f (x ) = T D(t )f (x ) +

∫ t

0
Px (τD ∈ ds

) ∫
D

Tµ(t − s)f (x )µ(dx )

where T D(t ) denotes the semigroup with Dirichlet boundary
conditions.

Rz f (x ) = RD
z f (x ) +

Ex
[
e−zτD ]

1−
∫

D Ey
[
e−zτD ]µ(dy )

∫
D

RD
z f (y )µ(dy )

In the case µ = e2Q(x )dx or if µ coincides with the normalized
ground state one can show that the resolvent is analytic outside
the real axis.

14 /31



Formula for the resolvent

Observe that

Tµ(t )f (x ) = T D(t )f (x ) +

∫ t

0
Px (τD ∈ ds

) ∫
D

Tµ(t − s)f (x )µ(dx )

where T D(t ) denotes the semigroup with Dirichlet boundary
conditions.

Rz f (x ) = RD
z f (x ) +

Ex
[
e−zτD ]

1−
∫

D Ey
[
e−zτD ]µ(dy )

∫
D

RD
z f (y )µ(dy )

In the case µ = e2Q(x )dx or if µ coincides with the normalized
ground state one can show that the resolvent is analytic outside
the real axis.

14 /31



Another surprising (?) result

Theorem (Ben-Ari/Pinsky JFA 2007)
Consider the operator 1

2∆ in the d-dim. cube (0,1)d and let µ
be the Lebesgue measure. Then

• If d ≤ 10 then γ(µ) = λD
1 .

• If d > 10 then λD
1 < γ(µ) < λD

0 .

Theorem (Ben-Ari/Pinsky JFA 2007)
In general if the spectral gap corresponds to a real eigenvalue,
then

γ(µ) < λD
0 .
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The case of one dimension
Let us consider the problem

1
2

u ′′ = λu in (a,b)

u(a) =

∫ b

a
u(y )µa(dy ) and u(b) =

∫ b

a
u(y )µb(dy )

Theorem (PAMS 2008, Li-Leung-Rakesh)
All eigenvalues are real and non-positive. Furthermore,

sup
µa,µb

γ(µa, µb) = λD
0 = − π2

2(b − a)2

and if µ = µa = µb we have

γ(µ, µ) = λD
1 = − 2π2

(b − a)2
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The spectrum is real
This is shown in the following way: z2/2 = λ, (a,b) = (0,1),
general solution of eigenvalue problem

u(t ) = A cos(zt ) + B sin(zt ),

Boundary conditions can be satisfied if and only if

F (z) := sin(z)−
∫ 1

0
sin(zt )µ1(dt )−

∫ 1

0
sin(z(1− s))µ0(ds)

+

∫ 1

0

∫ 1

0
sin(z(t − s))µ0(ds)µ1(dt )

is zero. Approximate the integrals by a Riemann sum and follow
a strategy of Pólya †

†Über die Nullstellen gewisser ganzer Funktionen, Math. Z. 2 (1918)
17 /31



Theorem (Li-Leung, unpublished)

sup
µa,µb

γ(µa, µb) = λD
0 = − π2

2(b − a)2 ,

if µ = µa = µb we have

γ(µ, µ) = λD
1 = − 2π2

(b − a)2
a

and
inf
µa,µb

γ(µa, µb) = λD
2 .

afirst two results have probabilistic proofs K/Wübker EJP 2011
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Simple bound
The case µa = µ = µb : Instead of considering

sup
x∈(a,b)

‖Px
(
Xt ∈ ·

)
− νµ

∥∥
TV

we look at

sup
x ,y∈(a,b)

‖Px
(
Xt ∈ ·

)
− Py

(
Xt ∈ ·

)∥∥
TV

Observe that for two points x < y symmetric with respect to
c = a+b

2 we have for every A

‖Px
(
Xt ∈ ·

)
−Py

(
Xt ∈ ·

)
‖TV = Px

(
τ(a,c) > t

)
= e−tHD

(a,c)1(a,c)(x ),

where HD
(a,c) denotes the operator 1

2
d 2

dx 2 in (a, c) with Dirichlet
boundary conditions.
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Upper bound
Definition

• A coupling of the process (Xt )t≥0 is a pair of processes
((X 1

t ,X
2
t ))t≥, which are defined on the same probability

space, such that the marginals X 1 and X 2 have the same
distribution as (Xt )t≥0.

• The coupling is called successful, if the random time

τ = inf
{

t ≥ 0 | ∀s ≥ t : X 1
s = X 2

s
}

is finite almost surely.

Lemma (Coupling inequality)

dt (x , y ) :=
∥∥Px

(
Xt ∈ ·

)
− Py

(
Xt ∈ ·

)∥∥
TV ≤ 2Pxy

(
τ > t

)
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Method of Proof: Coupling
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Theorem (Li-Leung-Rakesh)
Suppose that d > 1 is odd and µ is an absolutely continuous
probability measure on the open unit ball B ⊂ Rd with an
L2-density. If

(0,1) 3 r 7→ r−dµ({x ∈ Rd | |x | < r})

is an increasing function of r , then the eigenvalues are real.

In the higher dim. situation there can be complex eigenvalues,
but the examples solved by Li-Leung-Rakesh always give that
the eigenvalue giving the spectral gap is real.

Open problem: Is it possible to characterize all jump
distributions giving rise to purely real spectrum?
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Brownian motion with constant drift
and random jumps

In many cases
λD

1 ≤ γ(µ) < λD
0

This motivates the question, whether

γ(µ) ≤ λD
0

holds true for general elliptic diffusions and general jump
distributions µ.

Is it true that the eigenvalue corresponding to the spectral gap
is real?‡

‡Questions formulated by Ben-Ari/Pinsky JFA 2007
23 /31



Brownian motion with constant drift
and random jumps

In many cases
λD

1 ≤ γ(µ) < λD
0

This motivates the question, whether

γ(µ) ≤ λD
0

holds true for general elliptic diffusions and general jump
distributions µ.

Is it true that the eigenvalue corresponding to the spectral gap
is real?‡

‡Questions formulated by Ben-Ari/Pinsky JFA 2007
23 /31



Brownian motion with constant drift
and random jumps

In many cases
λD

1 ≤ γ(µ) < λD
0

This motivates the question, whether

γ(µ) ≤ λD
0

holds true for general elliptic diffusions and general jump
distributions µ.

Is it true that the eigenvalue corresponding to the spectral gap
is real?‡

‡Questions formulated by Ben-Ari/Pinsky JFA 2007
23 /31



This is not true!
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Spectral Analysis of the 1d case with
deterministic jumps

Let us consider in the interval (0,1)

Lσ,b =
σ2

2
d 2

dx 2 + b
d
dx

with µ = δ1/2.

Then
• λD,σ,b

0 →∞ as b →∞.

• νδ1/2,σ,b → 2 · 1[1/2,1)(x ) dx as b →∞.
•

γ(δ1/2) =

{
2σ2π2 + b2

2 if |b| ≤
√

32σ2π2

8σ2π2 otherwise
§

§see K/Wübker JFA 2011, Ben-Ari ECP 2014
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Further detailed spectral properties
Let us finally come back to the simplest case

L = − d 2

dx 2 in L2((−π/2, π/2)), µ = δaπ/2

Set

D(Lµ) = {ψ ∈ H2((−π/2, π/2)) | ψ(−π/2) = ψ(aπ/2) = ψ(π/2)}.

• Lµ is densely defined and closed
• Lµ is quasi-accretive,

<(ψ,Lµψ) ≥ − 1
16
‖ψ‖2

σ(Lµ) =

{(
4m

1− a

)2

, (2m)2,

(
4m

1 + a

)2

| m ∈ N0

}
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Theorem (K/DK, 2016)
The algebraic multiplicites are algebraically simple if and only if
a /∈ Q

Theorem (K/DK,2016)

• If a ∈ Q then the eigenfunctions do not form a minimal
complete set

• If a /∈ Q then the eigenfunctions form a minimal complete
set, but do not form a conditional (Schauder) basis.

Open problem: If a ∈ Q do the eigenfunctions together with the
generalized eigenfunctions form a conditional basis?
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Theorem (K/DK 2016,quasi-selfadjointness)
There exists an rather explicit positive bounded injective
operator Θ such that

H∗Θ = ΘH .

(Θ is not bounded invertible)
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Conclusion and open problems

• Differential operators with non-local boundary conditions
are most natural at least from a probabilistic point of view.

• These operators turn out to have interesting spectral
properties.

• There does not seem to exist a general approach, which
can be used to answer basic spectral questions such as,
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Thank you for your attention!
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• A complete set (ψj )j in a Hilbert space is minimal complete
if the removal of any term makes it incomplete. A minmal
set is complete if there exists a sequence (ϕj )j such that
(ψj , ϕj ) is biorthogonal.

• A minimal complete set (ψj )j is a conditional basis if for all
f in the Hilbert space there exists uniquely (αj )j ⊂ C such
that

f =
∑

j

αjψj

• (ψi )j normalized sequence in a Hilbert space H is an
unconditional (Riesz) basis if it is a conditional basis and
for all f ∈ H

C−1‖f ‖2 ≤
∑

j

|(ψ, f )|2 ≤ C‖f ‖2
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