Spectral properties of certain non-selfadjoint differential operators with non-local boundary conditions: Examples in search of a theory

Martin Kolb
Institute of Mathematics
University of Paderborn

Outline

Stochastic Processes, elliptic operators and non-local boundary conditions

Spectral Analytic Results

Apology:

I am probabilist

Apology:

I am probabilist

Goal:
Advertize a class of differential operators with non-local boundary conditions, which until now mainly was considered by probabilists.
Try to convince you that this class of problems has some surprising properties.

Motivation

When considering a diffusion process in a bounded domain, i.e. an elliptic operator of the form

$$
\mathcal{L} u:=\sum_{i, j=1}^{d} a_{i j} D_{i} D_{j} u+\sum_{j=1}^{d} b_{j} D_{j} u
$$

one needs to put boundary conditions in order to specify a well defined process (in analytic terms a one parameter semigroup).

Motivation

When considering a diffusion process in a bounded domain, i.e. an elliptic operator of the form

$$
\mathcal{L} u:=\sum_{i, j=1}^{d} a_{i j} D_{i} D_{j} u+\sum_{j=1}^{d} b_{j} D_{j} u
$$

one needs to put boundary conditions in order to specify a well defined process (in analytic terms a one parameter semigroup).

Best known types of boundary conditions:

- Dirichlet boundary conditions (killing at the boundary)

Motivation

When considering a diffusion process in a bounded domain, i.e. an elliptic operator of the form

$$
\mathcal{L} u:=\sum_{i, j=1}^{d} a_{i j} D_{i} D_{j} u+\sum_{j=1}^{d} b_{j} D_{j} u
$$

one needs to put boundary conditions in order to specify a well defined process (in analytic terms a one parameter semigroup).

Best known types of boundary conditions:

- Dirichlet boundary conditions (killing at the boundary)
- Neumann boundary conditions (reflection at the boundary)

Motivation

When considering a diffusion process in a bounded domain, i.e. an elliptic operator of the form

$$
\mathcal{L} u:=\sum_{i, j=1}^{d} a_{i j} D_{i} D_{j} u+\sum_{j=1}^{d} b_{j} D_{j} u
$$

one needs to put boundary conditions in order to specify a well defined process (in analytic terms a one parameter semigroup).

Best known types of boundary conditions:

- Dirichlet boundary conditions (killing at the boundary)
- Neumann boundary conditions (reflection at the boundary)
- mixtures of Dirichlet and Neumann.

Motivation

When considering a diffusion process in a bounded domain, i.e. an elliptic operator of the form

$$
\mathcal{L} u:=\sum_{i, j=1}^{d} a_{i j} D_{i} D_{j} u+\sum_{j=1}^{d} b_{j} D_{j} u,
$$

one needs to put boundary conditions in order to specify a well defined process (in analytic terms a one parameter semigroup).

Best known types of boundary conditions:

- Dirichlet boundary conditions (killing at the boundary)
- Neumann boundary conditions (reflection at the boundary)
- mixtures of Dirichlet and Neumann.

There are many other ways to produce a well-defined stochastic process.

Diffusions with jump boundary

Intuitive description of the process: Let $D \subset \mathbb{R}^{d}$ be a smooth bounded domain, $\mu(y, \cdot)$ a probability measure on D for every $y \in \partial D$

1) Start a diffusion $\left(X_{t}\right)_{t}$ at $x \in D$ and wait until it hits the boundary ∂D of D at a point $y \in \partial D$.

Diffusions with jump boundary

Intuitive description of the process: Let $D \subset \mathbb{R}^{d}$ be a smooth bounded domain, $\mu(y, \cdot)$ a probability measure on D for every $y \in \partial D$

1) Start a diffusion $\left(X_{t}\right)_{t}$ at $x \in D$ and wait until it hits the boundary ∂D of D at a point $y \in \partial D$.
2) Choose a new starting point x_{1} according to the distribution $\mu(y, \cdot)$.

Diffusions with jump boundary

Intuitive description of the process: Let $D \subset \mathbb{R}^{d}$ be a smooth bounded domain, $\mu(y, \cdot)$ a probability measure on D for every $y \in \partial D$

1) Start a diffusion $\left(X_{t}\right)_{t}$ at $x \in D$ and wait until it hits the boundary ∂D of D at a point $y \in \partial D$.
2) Choose a new starting point x_{1} according to the distribution $\mu(y, \cdot)$.
3) Start an i.i.d. copy of $\left(X_{t}\right)_{t}$ at x_{1} and wait until it hits the boundary ∂D of D.

Diffusions with jump boundary

Intuitive description of the process: Let $D \subset \mathbb{R}^{d}$ be a smooth bounded domain, $\mu(y, \cdot)$ a probability measure on D for every $y \in \partial D$

1) Start a diffusion $\left(X_{t}\right)_{t}$ at $x \in D$ and wait until it hits the boundary ∂D of D at a point $y \in \partial D$.
2) Choose a new starting point x_{1} according to the distribution $\mu(y, \cdot)$.
3) Start an i.i.d. copy of $\left(X_{t}\right)_{t}$ at x_{1} and wait until it hits the boundary ∂D of D.
4) Move to stage 2).

The stochastic process

Let $W^{\rho, 0}$ be a diffusion process on D corresponding to \mathcal{L} killed at the boundary with initial distribution ρ. Define

$$
\tau_{1}=\sigma_{1}=\inf \left\{t \geq 0 \mid W_{t}^{\rho, 0} \in \partial D\right\}, \Theta_{1}=W^{\rho, 0}\left(\sigma_{1}\right)
$$

and

$$
\begin{gathered}
\sigma_{n+1}=\inf \left\{t \geq 0 \mid W^{\mu \Theta_{n}, n} \in \partial D\right\}, \Theta_{n+1}=W^{\mu \Theta_{n}, n}\left(\sigma_{n+1}\right) \\
\tau_{n+1}=\tau_{n}+\sigma_{n+1} .
\end{gathered}
$$

Then the process just described intuitively is given by

$$
X_{t}=\sum_{n=0}^{\infty} 1_{t \in\left[\tau_{n}, \tau_{n+1}\right)} W^{\mu \Theta_{n}, n}\left(t-\tau_{n}\right)
$$

Some history and motivation

- Processes of this type appeared in Feller's famous analysis of all possible extensions of a given one-dimensional diffusion processes in an interval up to the first hitting time of the boundary.

[^0]
Some history and motivation

- Processes of this type appeared in Feller's famous analysis of all possible extensions of a given one-dimensional diffusion processes in an interval up to the first hitting time of the boundary.
- Used in a number of applications such as e.g. neuroscience. *

[^1]
Some history and motivation

- Processes of this type appeared in Feller's famous analysis of all possible extensions of a given one-dimensional diffusion processes in an interval up to the first hitting time of the boundary.
- Used in a number of applications such as e.g. neuroscience. * Membrane potential of a single neuron described by diffusion, if this process hits a certain level, it fires and the membrane potential is set back to zero.
- Also appear in mathematical finance in order to describe double knock out barrier options, in statistical inference of survival analysis, versions of the google page rank algorithm...

[^2]
Analytic Aspects

Assumptions:
Let

$$
\mathcal{L} u:=\sum_{i, j=1}^{d} a_{i j} D_{i} D_{j} u+\sum_{j=1}^{d} b_{j} D_{j} u,
$$

where $a_{i j} \in C^{2, \alpha}\left(\mathbb{R}^{d}\right)$ and $b \in C^{1, \alpha}\left(\mathbb{R}^{d}\right)$ and

$$
\frac{1}{2} \sum_{i, j=1}^{d} a_{i j}(x) \xi_{i} \xi_{j} \geq \eta|\xi|^{2}
$$

We furthermore assume that $\mu: \partial D \rightarrow \mathcal{P}(D)$ be continuous with respect to the weak topology on $\mathcal{P}(D)$.

Analytic Aspects

It is easy to see that for every $f \in L^{\infty}(D)$

$$
\mathbb{E}_{x}\left[f\left(X_{t}\right)\right]=\int_{D} p^{\mu}(t, x, y) f(y) d y
$$

Theorem (Ben-Ari/Pinsky SPA 2009)

The mapping

$$
L^{1}(D) \ni g \mapsto \int_{D} g(x) p^{\mu}(t, x, y) d x \in L^{1}(D)
$$

defines a strongly continuous semigroup.

Analytic Aspects

Setting

$$
W(D):=\bigcap_{1<p<\infty} W_{l o c}^{2, p}(D)
$$

and define an operator in $L^{\infty}(D)$:

$$
\begin{gathered}
\mathcal{D}\left(L_{\mu}\right):=\left\{u \in \mathcal{C}(\bar{D}) \cap W(D) \mid \mathcal{L} u \in L^{\infty}(D)\right. \\
\left.u(z):=\int_{D} u(x) \mu(z, d x) \forall z \in \partial D\right\} \\
L_{\mu} u:=\mathcal{L} u \quad\left(u \in \mathcal{D}\left(L_{\mu}\right)\right.
\end{gathered}
$$

Analytic Aspects

Theorem (Arendt et al. JFA 2017)

- L_{μ} is the generator of a holomorphic semigroup $T_{\mu}(t)$ on $L^{\infty}(D)$.
- The operators $T_{\mu}(t)$ are positive contractions.
- $T_{\mu}(t)$ is compact for every $t>0$
- The semigroup $\left(T_{\mu}(t)\right)_{t \geq 0}$ is strong Feller.
- There exists a positive projection P of rank one and constants $\varepsilon>0$ and $M \geq 1$, such that

$$
\left\|T_{\mu}(t)-P\right\| \leq M e^{-\varepsilon t}
$$

for all $t>0$.

Further Results and Consequences

- First observe that

$$
T_{\mu}(t) 1_{A}(x)=\mathbb{P}_{x}\left(X_{t} \in A\right)
$$

*Important Contributions due to Grigorescu/Kang, Ben-Ari/Pinsky and Leung/Li/Rakesh

Further Results and Consequences

- First observe that

$$
T_{\mu}(t) \mathbf{1}_{A}(x)=\mathbb{P}_{X}\left(X_{t} \in A\right)
$$

- Let us assume now that $\mu(y, \cdot)=\mu$ for every $y \in \partial D$. By the last item of the previous theorem the semigroup T_{μ} has an invariant distribution ν^{μ} :

$$
\frac{1}{C} \int_{D} g^{D}(z, x) d \mu(z) d x
$$

[^3]
Further Results and Consequences

- First observe that

$$
T_{\mu}(t) 1_{A}(x)=\mathbb{P}_{X}\left(X_{t} \in A\right)
$$

- Let us assume now that $\mu(y, \cdot)=\mu$ for every $y \in \partial D$. By the last item of the previous theorem the semigroup T_{μ} has an invariant distribution ν^{μ} :

$$
\frac{1}{C} \int_{D} g^{D}(z, x) d \mu(z) d x
$$

- The process is uniformly ergodic in the sense that

$$
0>\gamma(\mu):=\lim _{t \rightarrow \infty} \frac{1}{t} \log \sup _{x \in D}\left\|\mathbb{P}_{X}\left(X_{t} \in \cdot\right)-\nu^{\mu}\right\|_{T V}
$$

- $\gamma(\mu):=\sup \left\{\Re \lambda \mid 0 \neq \lambda\right.$ is an eigenvalue for $\left.\mathcal{L}_{\mu}\right\}$

[^4]
Further Spectral Results [Ben-Ari,

 Pinsky]If the differential operator \mathcal{L} is reversible, i.e. if $b:=a \nabla Q$ and

$$
\mathcal{L}:=\frac{1}{2} e^{-2 Q} \nabla \cdot e^{2 Q} \nabla
$$

and without loss of generality $\int_{D} e^{2 Q} d x=1$ and

$$
\mu:=e^{2 Q(x)} d x
$$

then

- All eigenvalues of L_{μ} are real

Further Spectral Results [Ben-Ari,

 Pinsky]If the differential operator \mathcal{L} is reversible, i.e. if $b:=a \nabla Q$ and

$$
\mathcal{L}:=\frac{1}{2} e^{-2 Q} \nabla \cdot e^{2 Q} \nabla
$$

and without loss of generality $\int_{D} e^{2 Q} d x=1$ and

$$
\mu:=e^{2 Q(x)} d x
$$

then

- All eigenvalues of L_{μ} are real
- Let $\left(\lambda_{i}^{D}\right)_{i \in \mathbb{N}_{0}}$ denotes the sequence of the Dirichlet realization of \mathcal{L} in $L^{2}(D, \mu)$. Then

$$
\lambda_{1}^{D} \leq \gamma(\mu)<\lambda_{0}^{D}
$$

Formula for the resolvent

Observe that
$T_{\mu}(t) f(x)=T^{D}(t) f(x)+\int_{0}^{t} \mathbb{P}_{x}\left(\tau_{D} \in d s\right) \int_{D} T_{\mu}(t-s) f(x) \mu(d x)$
where $T^{D}(t)$ denotes the semigroup with Dirichlet boundary conditions.

Formula for the resolvent

Observe that

$$
T_{\mu}(t) f(x)=T^{D}(t) f(x)+\int_{0}^{t} \mathbb{P}_{x}\left(\tau_{D} \in d s\right) \int_{D} T_{\mu}(t-s) f(x) \mu(d x)
$$

where $T^{D}(t)$ denotes the semigroup with Dirichlet boundary conditions.

$$
R_{z} f(x)=R_{z}^{D} f(x)+\frac{\mathbb{E}_{x}\left[e^{-z \tau_{D}}\right]}{1-\int_{D} \mathbb{E}_{y}\left[e^{-z \tau_{D}}\right] \mu(d y)} \int_{D} R_{z}^{D} f(y) \mu(d y)
$$

In the case $\mu=e^{2 Q(x)} d x$ or if μ coincides with the normalized ground state one can show that the resolvent is analytic outside the real axis.

Another surprising (?) result

Theorem (Ben-Ari/Pinsky JFA 2007)

Consider the operator $\frac{1}{2} \Delta$ in the d-dim. cube $(0,1)^{d}$ and let μ be the Lebesgue measure. Then

- If $d \leq 10$ then $\gamma(\mu)=\lambda_{1}^{D}$.
- If $d>10$ then $\lambda_{1}^{D}<\gamma(\mu)<\lambda_{0}^{D}$.

Another surprising (?) result

Theorem (Ben-Ari/Pinsky JFA 2007)

Consider the operator $\frac{1}{2} \Delta$ in the d-dim. cube $(0,1)^{d}$ and let μ be the Lebesgue measure. Then

- If $d \leq 10$ then $\gamma(\mu)=\lambda_{1}^{D}$.
- If $d>10$ then $\lambda_{1}^{D}<\gamma(\mu)<\lambda_{0}^{D}$.

Theorem (Ben-Ari/Pinsky JFA 2007)

In general if the spectral gap corresponds to a real eigenvalue, then

$$
\gamma(\mu)<\lambda_{0}^{D} .
$$

The case of one dimension

Let us consider the problem

$$
\begin{gathered}
\frac{1}{2} u^{\prime \prime}=\lambda u \text { in }(a, b) \\
u(a)=\int_{a}^{b} u(y) \mu_{a}(d y) \text { and } u(b)=\int_{a}^{b} u(y) \mu_{b}(d y)
\end{gathered}
$$

The case of one dimension

Let us consider the problem

$$
\begin{gathered}
\frac{1}{2} u^{\prime \prime}=\lambda u \text { in }(a, b) \\
u(a)=\int_{a}^{b} u(y) \mu_{a}(d y) \text { and } u(b)=\int_{a}^{b} u(y) \mu_{b}(d y)
\end{gathered}
$$

Theorem (PAMS 2008, Li-Leung-Rakesh)

All eigenvalues are real and non-positive. Furthermore,

$$
\sup _{\mu_{a}, \mu_{b}} \gamma\left(\mu_{a}, \mu_{b}\right)=\lambda_{0}^{D}=-\frac{\pi^{2}}{2(b-a)^{2}}
$$

and if $\mu=\mu_{a}=\mu_{b}$ we have

$$
\gamma(\mu, \mu)=\lambda_{1}^{D}=-\frac{2 \pi^{2}}{(b-a)^{2}}
$$

The spectrum is real

This is shown in the following way: $z^{2} / 2=\lambda,(a, b)=(0,1)$, general solution of eigenvalue problem

$$
u(t)=A \cos (z t)+B \sin (z t)
$$

Boundary conditions can be satisfied if and only if

$$
\begin{aligned}
F(z):= & \sin (z)-\int_{0}^{1} \sin (z t) \mu_{1}(d t)-\int_{0}^{1} \sin (z(1-s)) \mu_{0}(d s) \\
& +\int_{0}^{1} \int_{0}^{1} \sin (z(t-s)) \mu_{0}(d s) \mu_{1}(d t)
\end{aligned}
$$

is zero. Approximate the integrals by a Riemann sum and follow a strategy of Pólya ${ }^{\dagger}$

[^5]
Theorem (Li-Leung, unpublished)

$$
\sup _{\mu_{a}, \mu_{b}} \gamma\left(\mu_{a}, \mu_{b}\right)=\underline{\lambda_{0}^{D}}=-\frac{\pi^{2}}{2(b-a)^{2}},
$$

if $\mu=\mu_{a}=\mu_{b}$ we have

$$
\gamma(\mu, \mu)=\underline{\lambda_{1}^{D}}=-{\frac{2 \pi^{2}}{(b-a)^{2}}}^{a}
$$

and

$$
\inf _{\mu_{a}, \mu_{b}} \gamma\left(\mu_{a}, \mu_{b}\right)=\underline{\lambda_{2}^{D}} .
$$

afirst two results have probabilistic proofs K/Wübker EJP 2011

Simple bound

The case $\mu_{a}=\mu=\mu_{b}$: Instead of considering

$$
\sup _{x \in(a, b)}\left\|\mathbb{P}_{x}\left(X_{t} \in \cdot\right)-\nu^{\mu}\right\|_{T V}
$$

we look at

$$
\sup _{x, y \in(a, b)}\left\|\mathbb{P}_{x}\left(X_{t} \in \cdot\right)-\mathbb{P}_{y}\left(X_{t} \in \cdot\right)\right\|_{T V}
$$

Simple bound

The case $\mu_{a}=\mu=\mu_{b}$: Instead of considering

$$
\sup _{x \in(a, b)}\left\|\mathbb{P}_{x}\left(X_{t} \in \cdot\right)-\nu^{\mu}\right\|_{T V}
$$

we look at

$$
\sup _{x, y \in(a, b)}\left\|\mathbb{P}_{x}\left(X_{t} \in \cdot\right)-\mathbb{P}_{y}\left(X_{t} \in \cdot\right)\right\|_{T V}
$$

Observe that for two points $x<y$ symmetric with respect to $c=\frac{a+b}{2}$ we have for every A

$$
\left\|\mathbb{P}_{x}\left(X_{t} \in \cdot\right)-\mathbb{P}_{y}\left(X_{t} \in \cdot\right)\right\|_{T V}=\mathbb{P}_{x}(\tau(a, c)>t)=e^{-t H_{(a, c)}^{D} \mathbf{1}_{(a, c)}(x)}
$$

where $H_{(a, c)}^{D}$ denotes the operator $\frac{1}{2} \frac{d^{2}}{d x^{2}}$ in (a, c) with Dirichlet boundary conditions.

Upper bound

Definition

- A coupling of the process $\left(X_{t}\right)_{t \geq 0}$ is a pair of processes $\left(\left(X_{t}^{1}, X_{t}^{2}\right)\right)_{t \geq}$, which are defined on the same probability space, such that the marginals X^{1} and X^{2} have the same distribution as $\left(X_{t}\right)_{t \geq 0}$.

Upper bound

Definition

- A coupling of the process $\left(X_{t}\right)_{t \geq 0}$ is a pair of processes $\left(\left(X_{t}^{1}, X_{t}^{2}\right)\right)_{t \geq}$, which are defined on the same probability space, such that the marginals X^{1} and X^{2} have the same distribution as $\left(X_{t}\right)_{t \geq 0}$.
- The coupling is called successful, if the random time

$$
\tau=\inf \left\{t \geq 0 \mid \forall s \geq t: X_{s}^{1}=X_{s}^{2}\right\}
$$

is finite almost surely.

Lemma (Coupling inequality)

$$
d_{t}(x, y):=\left\|\mathbb{P}_{x}\left(X_{t} \in \cdot\right)-\mathbb{P}_{y}\left(X_{t} \in \cdot\right)\right\|_{T V} \leq 2 \mathbb{P}_{x y}(\tau>t)
$$

Method of Proof: Coupling

Coupling of two Brownian motions

Coupling of two Brownian motions

Coupling of two Brownian motions

Theorem (Li-Leung-Rakesh)

Suppose that $d>1$ is odd and μ is an absolutely continuous probability measure on the open unit ball $B \subset \mathbb{R}^{d}$ with an L^{2}-density. If

$$
(0,1) \ni r \mapsto r^{-d} \mu\left(\left\{x \in \mathbb{R}^{d}| | x \mid<r\right\}\right)
$$

is an increasing function of r, then the eigenvalues are real.

Theorem (Li-Leung-Rakesh)

Suppose that $d>1$ is odd and μ is an absolutely continuous probability measure on the open unit ball $B \subset \mathbb{R}^{d}$ with an L^{2}-density. If

$$
(0,1) \ni r \mapsto r^{-d} \mu\left(\left\{x \in \mathbb{R}^{d}| | x \mid<r\right\}\right)
$$

is an increasing function of r, then the eigenvalues are real.

In the higher dim. situation there can be complex eigenvalues, but the examples solved by Li-Leung-Rakesh always give that the eigenvalue giving the spectral gap is real.

Open problem: Is it possible to characterize all jump distributions giving rise to purely real spectrum?

Brownian motion with constant drift and random jumps

In many cases

$$
\lambda_{1}^{D} \leq \gamma(\mu)<\lambda_{0}^{D}
$$

₹Questions formulated by Ben-Ari/Pinsky JFA 2007

Brownian motion with constant drift and random jumps

In many cases

$$
\lambda_{1}^{D} \leq \gamma(\mu)<\lambda_{0}^{D}
$$

This motivates the question, whether

$$
\gamma(\mu) \leq \lambda_{0}^{D}
$$

holds true for general elliptic diffusions and general jump distributions μ.

[^6]
Brownian motion with constant drift and random jumps

In many cases

$$
\lambda_{1}^{D} \leq \gamma(\mu)<\lambda_{0}^{D}
$$

This motivates the question, whether

$$
\gamma(\mu) \leq \lambda_{0}^{D}
$$

holds true for general elliptic diffusions and general jump distributions μ.

Is it true that the eigenvalue corresponding to the spectral gap is real? ${ }^{\ddagger}$

[^7]This is not true!

Spectral Analysis of the 1d case with deterministic jumps

Let us consider in the interval $(0,1)$

$$
L^{\sigma, b}=\frac{\sigma^{2}}{2} \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}
$$

with $\mu=\delta_{1 / 2}$.

[^8]
Spectral Analysis of the 1d case with deterministic jumps

Let us consider in the interval $(0,1)$

$$
L^{\sigma, b}=\frac{\sigma^{2}}{2} \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}
$$

with $\mu=\delta_{1 / 2}$.
Then

- $\lambda_{0}^{D, \sigma, b} \rightarrow \infty$ as $b \rightarrow \infty$.

[^9]
Spectral Analysis of the 1d case with deterministic jumps

Let us consider in the interval $(0,1)$

$$
L^{\sigma, b}=\frac{\sigma^{2}}{2} \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}
$$

with $\mu=\delta_{1 / 2}$.
Then

- $\lambda_{0}^{D, \sigma, b} \rightarrow \infty$ as $b \rightarrow \infty$.
- $\nu^{\delta_{1 / 2}, \sigma, b} \rightarrow 2 \cdot \mathbf{1}_{[1 / 2,1)}(x) d x$ as $b \rightarrow \infty$.

[^10]
Spectral Analysis of the 1d case with deterministic jumps

Let us consider in the interval $(0,1)$

$$
L^{\sigma, b}=\frac{\sigma^{2}}{2} \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}
$$

with $\mu=\delta_{1 / 2}$.
Then

- $\lambda_{0}^{D, \sigma, b} \rightarrow \infty$ as $b \rightarrow \infty$.
- $\nu^{\delta_{1 / 2}, \sigma, b} \rightarrow 2 \cdot 1_{[1 / 2,1)}(x) d x$ as $b \rightarrow \infty$.

$$
\gamma\left(\delta_{1 / 2}\right)= \begin{cases}2 \sigma^{2} \pi^{2}+\frac{b^{2}}{2} & \text { if }|b| \leq \sqrt{3} 2 \sigma^{2} \pi^{2} \\ 8 \sigma^{2} \pi^{2} & \text { otherwise }\end{cases}
$$

[^11]
Further detailed spectral properties

 Let us finally come back to the simplest case$$
\mathcal{L}=-\frac{d^{2}}{d x^{2}} \text { in } L^{2}((-\pi / 2, \pi / 2)), \mu=\delta_{a \pi / 2}
$$

Further detailed spectral properties

Let us finally come back to the simplest case

$$
\mathcal{L}=-\frac{d^{2}}{d x^{2}} \text { in } L^{2}((-\pi / 2, \pi / 2)), \mu=\delta_{a \pi / 2}
$$

Set

$$
\mathcal{D}\left(L_{\mu}\right)=\left\{\psi \in H^{2}((-\pi / 2, \pi / 2)) \mid \psi(-\pi / 2)=\psi(a \pi / 2)=\psi(\pi / 2)\right\} .
$$

- L_{μ} is densely defined and closed
- L_{μ} is quasi-accretive,

$$
\Re\left(\psi, L_{\mu} \psi\right) \geq-\frac{1}{16}\|\psi\|^{2}
$$

Further detailed spectral properties

Let us finally come back to the simplest case

$$
\mathcal{L}=-\frac{d^{2}}{d x^{2}} \text { in } L^{2}((-\pi / 2, \pi / 2)), \mu=\delta_{a \pi / 2}
$$

Set

$$
\mathcal{D}\left(L_{\mu}\right)=\left\{\psi \in H^{2}((-\pi / 2, \pi / 2)) \mid \psi(-\pi / 2)=\psi(a \pi / 2)=\psi(\pi / 2)\right\} .
$$

- L_{μ} is densely defined and closed
- L_{μ} is quasi-accretive,

$$
\begin{gathered}
\Re\left(\psi, L_{\mu} \psi\right) \geq-\frac{1}{16}\|\psi\|^{2} \\
\sigma\left(L_{\mu}\right)=\left\{\left(\frac{4 m}{1-a}\right)^{2},(2 m)^{2}, \left.\left(\frac{4 m}{1+a}\right)^{2} \right\rvert\, m \in \mathbb{N}_{0}\right\}
\end{gathered}
$$

Theorem (K/DK, 2016)
The algebraic multiplicites are algebraically simple if and only if $a \notin \mathbb{Q}$

Theorem (K/DK, 2016)

The algebraic multiplicites are algebraically simple if and only if $a \notin \mathbb{Q}$

Theorem (K/DK,2016)

- If $a \in \mathbb{Q}$ then the eigenfunctions do not form a minimal complete set
- If $a \notin \mathbb{Q}$ then the eigenfunctions form a minimal complete set, but do not form a conditional (Schauder) basis.

Theorem (K/DK, 2016)

The algebraic multiplicites are algebraically simple if and only if $a \notin \mathbb{Q}$

Theorem (K/DK,2016)

- If $a \in \mathbb{Q}$ then the eigenfunctions do not form a minimal complete set
- If a $\notin \mathbb{Q}$ then the eigenfunctions form a minimal complete set, but do not form a conditional (Schauder) basis.

Open problem: If $a \in \mathbb{Q}$ do the eigenfunctions together with the generalized eigenfunctions form a conditional basis?

Theorem (K/DK 2016,quasi-selfadjointness)

There exists an rather explicit positive bounded injective operator Θ such that

$$
H^{*} \Theta=\Theta H .
$$

(Θ is not bounded invertible)

Conclusion and open problems

- Differential operators with non-local boundary conditions are most natural at least from a probabilistic point of view.

Conclusion and open problems

- Differential operators with non-local boundary conditions are most natural at least from a probabilistic point of view.
- These operators turn out to have interesting spectral properties.

Conclusion and open problems

- Differential operators with non-local boundary conditions are most natural at least from a probabilistic point of view.
- These operators turn out to have interesting spectral properties.
- There does not seem to exist a general approach, which can be used to answer basic spectral questions such as,

Thank you for your attention!

- A complete set $\left(\psi_{j}\right)_{j}$ in a Hilbert space is minimal complete if the removal of any term makes it incomplete. A minmal set is complete if there exists a sequence $\left(\varphi_{j}\right)_{j}$ such that (ψ_{j}, φ_{j}) is biorthogonal.
- A minimal complete set $\left(\psi_{j}\right)_{j}$ is a conditional basis if for all f in the Hilbert space there exists uniquely $\left(\alpha_{j}\right)_{j} \subset \mathbb{C}$ such that

$$
f=\sum_{j} \alpha_{j} \psi_{j}
$$

- $\left(\psi_{i}\right)_{j}$ normalized sequence in a Hilbert space \mathcal{H} is an unconditional (Riesz) basis if it is a conditional basis and for all $f \in \mathcal{H}$

$$
c^{-1}\|f\|^{2} \leq \sum_{j}|(\psi, f)|^{2} \leq C\|f\|^{2}
$$

[^0]: *Umberto Picchini, Susanne Ditlevsen, Andrea De Gaetano and Petr Lansky: Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal. Neural Computation, 20: 2696-2714, 2008

[^1]: *Umberto Picchini, Susanne Ditlevsen, Andrea De Gaetano and Petr Lansky: Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal. Neural Computation, 20: 2696-2714, 2008

[^2]: *Umberto Picchini, Susanne Ditlevsen, Andrea De Gaetano and Petr Lansky: Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal. Neural Computation, 20: 2696-2714, 2008

[^3]: *Important Contributions due to Grigorescu/Kang, Ben-Ari/Pinsky and Leung/Li/Rakesh

[^4]: *Important Contributions due to Grigorescu/Kang, Ben-Ari/Pinsky and Leung/Li/Rakesh

[^5]: †Über die Nullstellen gewisser ganzer Funktionen, Math. Z. 2 (1918)

[^6]: ${ }^{\ddagger}$ Questions formulated by Ben-Ari/Pinsky JFA 2007

[^7]: ${ }^{\ddagger}$ Questions formulated by Ben-Ari/Pinsky JFA 2007

[^8]: §see K/Wübker JFA 2011, Ben-Ari ECP 2014

[^9]: §see K/Wübker JFA 2011, Ben-Ari ECP 2014

[^10]: §see K/Wübker JFA 2011, Ben-Ari ECP 2014

[^11]: §see K/Wübker JFA 2011, Ben-Ari ECP 2014

