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Outline

Stochastic Processes, elliptic operators and non-local boundary
conditions
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| am probabilist




Apology:
| am probabilist

Goal:

Advertize a class of differential operators with non-local
boundary conditions, which until now mainly was considered by
probabilists.

Try to convince you that this class of problems has some
surprising properties.
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Motivation

When considering a diffusion process in a bounded domain, i.e.
an elliptic operator of the form

d d
Lu = Z a,-,-D,-D,-u+ ijDjU,
= =

one needs to put boundary conditions in order to specify a well
defined process (in analytic terms a one parameter semigroup).
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Motivation

When considering a diffusion process in a bounded domain, i.e.

an elliptic operator of the form

d d
Lu = Z a,-jD,-D,-u+ zbijU,
ij=1 j=1

one needs to put boundary conditions in order to specify a well

defined process (in analytic terms a one parameter semigroup).

Best known types of boundary conditions:
Dirichlet boundary conditions (killing at the boundary)
Neumann boundary conditions (reflection at the boundary)
mixtures of Dirichlet and Neumann.

There are many other ways to produce a well-defined
stochastic process.
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Diffusions with jump boundary

Intuitive description of the process: Let D ¢ RY be a smooth
bounded domain, u(y,-) a probability measure on D for every
y € oD

1) Start a diffusion (X;); at x € D and wait until it hits the
boundary 9D of D at a point y € dD.
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Diffusions with jump boundary

Intuitive description of the process: Let D ¢ RY be a smooth
bounded domain, u(y,-) a probability measure on D for every
y € oD

1) Start a diffusion (X;); at x € D and wait until it hits the
boundary 9D of D at a point y € dD.

2) Choose a new starting point x; according to the distribution
/L(yv )

3) Start an i.i.d. copy of (X;); at x; and wait until it hits the
boundary oD of D.

4) Move to stage 2).
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The stochastic process

Let W0 be a diffusion process on D corresponding to £ killed
at the boundary with initial distribution p. Define

7 =0y =inf{t > 0| W e aD}, 0, = W*(oy)
and
Onit = Inf{t > 0| Wi € DD}, ©py1 = WHer" (o)

Tn+1 = Tn + On41.

Then the process just described intuitively is given by

Xe = Ater . WHer"(t — 1)

n=0
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Some history and motivation

 Processes of this type appeared in Feller’s famous analysis
of all possible extensions of a given one-dimensional
diffusion processes in an interval up to the first hitting time

of the boundary.

*Umberto Picchini, Susanne Ditlevsen, Andrea De Gaetano and Petr
Lansky: Parameters of the diffusion leaky integrate-and-fire neuronal model

for a slowly fluctuating signal. Neural Computation, 20: 2696-2714, 2008
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Some history and motivation

Processes of this type appeared in Feller’s famous analysis
of all possible extensions of a given one-dimensional
diffusion processes in an interval up to the first hitting time
of the boundary.

Used in a number of applications such as e.g.
neuroscience. * Membrane potential of a single neuron
described by diffusion, if this process hits a certain level, it
fires and the membrane potential is set back to zero.

Also appear in mathematical finance in order to describe
double knock out barrier options, in statistical inference of
survival analysis, versions of the google page rank
algorithm...

*Umberto Picchini, Susanne Ditlevsen, Andrea De Gaetano and Petr
Lansky: Parameters of the diffusion leaky integrate-and-fire neuronal model
for a slowly fluctuating signal. Neural Computation, 20: 2696-2714, 2008



Analytic Aspects

Assumptions:
Let

d d
Lu = Z a,'jD,'DjU S Z bijU,
= =
where a; € C>*(RY) and b € C*(RY) and

|\> \

d
Z X)&i&j > 77’6‘2

We furthermore assume that i : 9D — P(D) be continuous
with respect to the weak topology on P(D).
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Analytic Aspects

It is easy to see that for every f € L>°(D)
B0 = [ (X)) dy

Theorem (Ben-Ari/Pinsky SPA 2009)
The mapping

L'(D)5 g / g(x)p(t, X, y) dx & L(D)
D

defines a strongly continuous semigroup.
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Analytic Aspects

Setting
= 1 WD)
1<p<oo
and define an operator in L>(D):
I, = {u € C(D)N W(D) |Lu € L=(D)
u(z) = / u(x)u(z,dx)vz € 8D}
D

Lyu:=Lu (ueD(L,)
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Analytic Aspects

Theorem (Arendt et al. JFA 2017)
* L, is the generator of a holomorphic semigroup T,(t) on
L>(D).
* The operators T,(t) are positive contractions.
* T,(t) is compact for every t > 0
* The semigroup (T,(t)):>0 is strong Feller.

* There exists a positive projection P of rank one and
constants e > 0 and M > 1, such that

| T.(t) = P < Me—*!

for all t > 0.
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Further Results and Consequences

* First observe that
T.()1a(x) = Px(X; € A).

*Important Contributions due to Grigorescu/Kang, Ben-Ari/Pinsky and

Leung/Li/Rakesh
12/31



Further Results and Consequences

* First observe that
T.()1a(x) = Px(X; € A).

* Let us assume now that u(y,-) = p for every y € 0D. By
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Further Results and Consequences

* First observe that
T.()1a(x) = Px(X; € A).

* Let us assume now that u(y,-) = p for every y € 0D. By
the last item of the previous theorem the semigroup 7, has
an invariant distribution v#:

& [ %@ x) duz)ax.
CJp
* The process is uniformly ergodic in the sense that
1
0> vy(p) := tll[rgo? log iggHPX(Xt €-)—vh|n
© y(p) := sup{RA | 0 # Xis an eigenvalue for £, }

*Important Contributions due to Grigorescu/Kang, Ben-Ari/Pinsky and
Leung/Li/Rakesh
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Further Spectral Results [Ben-Ari,
Pinsk

If the differential operator L is reversible, i.e. if b := avVQ and

1
L= ée‘ZQV .29y

and without loss of generality |, e?@dx =1 and
= e2Q(x) gx

then
* All eigenvalues of L, are real
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Further Spectral Results [Ben-Ari,
Pinsk

If the differential operator L is reversible, i.e. if b := avVQ and

1
L= ée‘ZQV .29y

and without loss of generality |, e?@dx =1 and
= e2Q(x) gx

then
* All eigenvalues of L, are real

- Let (AP);en, denotes the sequence of the Dirichlet
realization of £ in L2(D, 1). Then

AP < y(p) < AG.
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Formula for the resolvent
Observe that
t
T.(t)f(x) = TD(t)f(x)Jr/O Px(7p € ds)/DTu(t—s)f(x)u(dx)

where TP(t) denotes the semigroup with Dirichlet boundary
conditions.
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Formula for the resolvent
Observe that
t
T.(t)f(x) = TD(t)f(x)Jr/O Px(7p € ds)/DT#(t—s)f(x)u(dx)

where TP(t) denotes the semigroup with Dirichlet boundary
conditions.

EX [e—ZTD]
1— [pEy[e=2™]u

Rf(x) = RP/(x) + 1 o FETn(ay)

In the case p = 2@ dx or if 1 coincides with the normalized
ground state one can show that the resolvent is analytic outside
the real axis.
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Another surprising (?) result

Theorem (Ben-Ari/Pinsky JFA 2007)

Consider the operator %A in the d-dim. cube (0,1)9 and let ;1
be the Lebesgue measure. Then

- Ifd <10 then v(u) = AP.
 Ifd > 10 then AP < ~v(u) < AD.
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Another surprising (?) result

Theorem (Ben-Ari/Pinsky JFA 2007)

Consider the operator %A in the d-dim. cube (0,1)9 and let ;1
be the Lebesgue measure. Then

- Ifd <10 then v(u) = AP.
 Ifd > 10 then AP < ~v(u) < AD.

Theorem (Ben-Ari/Pinsky JFA 2007)

In general if the spectral gap corresponds to a real eigenvalue,
then

Y1) < A
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The case of one dimension

Let us consider the problem

1
EUH =u in(a,b)

b b
u(a) = / u(y)naldy) and u(b) = / u(y) o)




The case of one dimension

Let us consider the problem

1 .
EUN =\u in(a,b)

b b
u(a) = / u(y)ualdy) and u(b) = / u(y)un(dy)

Theorem (PAMS 2008, Li-Leung-Rakesh)
All eigenvalues are real and non-positive. Furthermore,
2

s
SUp (pua, pip) = A2 = ——
ua,l?b (Ha Mb) 0 2(b — 3)2

and if u = pg = up we have

272
Ypop) = A7 = “b-ap
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The spectrum is real

This is shown in the following way: z2/2 = ), (a,b) = (0, 1),
general solution of eigenvalue problem

u(t) = Acos(zt) + Bsin(zt),
Boundary conditions can be satisfied if and only if
F(z) :=sin(z) — /1 sin(zt) py(dt) — /1 sin(z(1 — s))uo(ds)
0 0
1 1
+ [ [ sinz(t = s)pofds)us(a)

is zero. Approximate the integrals by a Riemann sum and follow
a strategy of Polya

TUber die Nullstellen gewisser ganzer Funktionen, Math. Z. 2 (1918)
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Theorem (Li-Leung, unpublished)

2

D
Sup v(ka, o) = Ao = — 57—z
Hashb Vi) =da 2(b — a)?
if = pg = pp we have

272
_\b _ _
7(:“'7“) - )\1 - (b _ 3)2

a

and
inf y(ua, ip) = A3-
Ha,Hp -

2first two results have probabilistic proofs K/Wiibker EJP 2011
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Simple bound

The case 1z = 1 = up: Instead of considering

sup ||[Py(X; € ) —v*
Xe(a?b)” x(Xe e ) =ty

we look at

sup [IPx(X: € ) —Py (Xt €)1y
x,y€(a,b)




Simple bound

The case 1z = 1 = up: Instead of considering

sup ||Px(X; € -) — v
Xe(a?b)” x(Xe € ) — ||y,

we look at

sup |[Px(X; € ) —Py(Xi €

s Mz

Observe that for two points x < y symmetric with respect to
c = 22 we have for every A

||PX(X1‘ S ) *Py(Xt S ‘)HTV = Px (T(a,c) > t) = eitH@’c)“(a,c)(X)a

where H(a e denotes the operator %d—z in (a, c) with Dirichlet
boundary conditions.
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Upper bound

Definition

* A coupling of the process (X;):>o is a pair of processes
((X{', X?))t>, which are defined on the same probability
space, such that the marginals X' and X? have the same
distribution as (Xt)¢>o-
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Upper bound

Definition

* A coupling of the process (X;):>o is a pair of processes
((X{', X?))t>, which are defined on the same probability
space, such that the marginals X' and X? have the same
distribution as (Xt)¢>o-

+ The coupling is called successful, if the random time
T=inf{t>0|Vs>t: XJ = X2}
is finite almost surely.
Lemma (Coupling inequality)

h(x,y) 1= [P (X € )~ By (X% €)1y < 2By (7 > 1)
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Method of Proof: Coupling

Coupling of two Brownian motions Coupling of two Brownian motions

and BM2
BM1 and BM2

=1
=
=1
B oo
o
o
=]

00 02 040

Coupling of two Brownian motions

and BM2
BM1 and BM2

00 02 04 0




Suppose that d > 1 is odd and 1. is an absolutely continuous
probability measure on the open unit ball B c RY with an
L?-density. If

(0,1)3r—r9u({x eR?||x| <r})

is an increasing function of r, then the eigenvalues are real.
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Suppose that d > 1 is odd and 1. is an absolutely continuous
probability measure on the open unit ball B c RY with an
L?-density. If

(0,1)3r—r9u({x eR?||x| <r})
is an increasing function of r, then the eigenvalues are real.
In the higher dim. situation there can be complex eigenvalues,

but the examples solved by Li-Leung-Rakesh always give that
the eigenvalue giving the spectral gap is real.

Open problem: |s it possible to characterize all jump
distributions giving rise to purely real spectrum?
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Brownian motion with constant drift
and random jumps

In many cases

AT < y(p) < AG

*Questions formulated by Ben-Ari/Pinsky JFA 2007
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Brownian motion with constant drift
and random jumps

In many cases

AT < y(p) < AG

This motivates the question, whether

() <A\

holds true for general elliptic diffusions and general jump
distributions p.

Is it true that the eigenvalue corresponding to the spectral gap
is real?*

*Questions formulated by Ben-Ari/Pinsky JFA 2007
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This is not true!




Spectral Analysis of the 1d case with
deterministic jumps
Let us consider in the interval (0, 1)

La,b _ 0_2 d2 i

= 5o oo
Wlth M= (51/2.

Ssee K/Wiibker JFA 2011, Ben-Ari ECP 2014
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La,b: ¢ el
2 dx? +bdx
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Then
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Spectral Analysis of the 1d case with

deterministic jumps

Let us consider in the interval (0, 1)

2 g? d
La,b: T o7 el
2 dx? +bdx
W|th,u:51/2
Then
. )\g’o’b—>ooasb—>oo.

. V51/2707b — 2 . 1[1/271)(X) dX as b — O0.

5 =
Y 1/2) {8027r2 otherwise

20°72 + %2 if |b| < V320272 5

$see K/Wiibker JFA 2011, Ben-Ari ECP 2014
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Set
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2

L
L=~ inL3((=/2,7/2)), 11 = Samse

Set
D(L,) = {¢ € H*((—n/2,7/2)) | ¥(—n/2) = ¢(an/2) = (7 /2)}.

¢ L, is densely defined and closed
¢ L, is quasi-accretive,

1 2
R(9, Lutt) > ~llv]

oty ={(77) m?, (1) 1 me o
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Theorem (K/DK, 2016)
The algebraic multiplicites are algebraically simple if and only if
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If a € Q then the eigenfunctions do not form a minimal
complete set

If a ¢ Q then the eigenfunctions form a minimal complete
set, but do not form a conditional (Schauder) basis.
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The algebraic multiplicites are algebraically simple if and only if

a¢Q

If a € Q then the eigenfunctions do not form a minimal
complete set

If a ¢ Q then the eigenfunctions form a minimal complete
set, but do not form a conditional (Schauder) basis.

Open problem: If a € Q do the eigenfunctions together with the
generalized eigenfunctions form a conditional basis?
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Theorem (K/DK 2016,quasi-selfadjointness)

There exists an rather explicit positive bounded injective
operator © such that
H*© = OH.

(© is not bounded invertible)
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Conclusion and open problems

- Differential operators with non-local boundary conditions
are most natural at least from a probabilistic point of view.
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Conclusion and open problems

- Differential operators with non-local boundary conditions
are most natural at least from a probabilistic point of view.

* These operators turn out to have interesting spectral
properties.

* There does not seem to exist a general approach, which
can be used to answer basic spectral questions such as,
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Thank you for your attention!




A complete set (v;); in a Hilbert space is minimal complete
if the removal of any term makes it incomplete. A minmal
set is complete if there exists a sequence (y;); such that
(1, ¢;) is biorthogonal.

A minimal complete set (v;); is a conditional basis if for all
f in the Hilbert space there exists uniquely («;); € C such

that
f=> oy
j

(v); normalized sequence in a Hilbert space # is an
unconditional (Riesz) basis if it is a conditional basis and
forall f € H

CTUIfI? < D 1w, O < CIIf|I?
j
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