On the stability of linearized Euler's equations in compressible flows

Patrick JOLY

UMR CNRS-ENSTA-INRIA

NSA Conference, CIRM, Marseille, June 2017
based on works in collaboration with
Anne-Sophie Bonnet-Ben Dhia, Marc Duruflé Lauris Joubert, Ricardo Weder

Context and motivation

Aeroacoustics : sound propagation in flows
\longrightarrow
Many applications in aeronautics

The mathematical models

Euler $\left\{\left(\partial_{t}+M \cdot \nabla\right) v+(v \cdot \nabla) M+\nabla p=0\right.$
$\left(\partial_{t}+M \cdot \nabla\right) p+\nabla \cdot v=0$

No flow: $\mathrm{M}=0$
Wave equation

$$
\partial_{t} v+\nabla p=0
$$

$$
\partial_{t} p+\nabla \cdot v=0
$$

Uniform flow : $\nabla M=0$
$\left(\partial_{t}+M \cdot \nabla\right) v+\nabla p=0$

Convected wave equation

$$
\left(\partial_{t}+M \cdot \nabla\right) p+\nabla \cdot v=0
$$

The mathematical models

Euler $\left\{\begin{array}{l}\left(\partial_{t}+M \cdot \nabla\right) v+(v \cdot \nabla) M+\nabla p=0 \\ \text { (incompressible fluids) } \quad \nabla \cdot v=0\end{array}\right.$

The mathematical models

Euler $\left\{\begin{array}{l}\left(\partial_{t}+M \cdot \nabla\right) v+(v \cdot \nabla) M+\nabla p=0\end{array}\right.$
 $$
\left(\partial_{t}+M \cdot \nabla\right) p+\nabla \cdot v=0
$$

U is the perturbation of Lagrangian displacement

$$
v=\left(\partial_{t}+M \cdot \nabla\right) U+(U \cdot \nabla) M \quad p=\nabla \cdot U
$$

Galbrun

$$
\left(\partial_{t}+M \cdot \nabla\right)^{2} U-\nabla(\nabla \cdot U)=0
$$

The mathematical models

Galbrun
$\left(\partial_{t}+M \cdot \nabla\right)^{2} U-\nabla(\nabla \cdot U)=0$

Boundary conditions
at rigid walls : $\quad U \cdot n=0$

Non slipping condition

The problem under consideration : Acoustic wave propagation in a thin duct

Galbrun's equations in a 2D thin duct

$(\widetilde{\mathscr{P}})_{\varepsilon}\left\{\begin{array}{l}\left(\partial_{t}+M_{\varepsilon} \partial_{x}\right)^{2} \mathbf{u}_{\varepsilon}-\partial_{x}\left(\partial_{x} \mathbf{u}_{\varepsilon}+\partial_{y} \mathbf{v}_{\varepsilon}\right)=0 \\ \left(\partial_{t}+M_{\varepsilon} \partial_{x}\right)^{2} \mathbf{v}_{\varepsilon}-\partial_{y}\left(\partial_{x} \mathbf{u}_{\varepsilon}+\partial_{y} \mathbf{v}_{\varepsilon}\right)=0\end{array}\right.$

$$
U_{\varepsilon}=\left(\mathbf{u}_{\varepsilon}, \mathbf{v}_{\varepsilon}\right)^{t}
$$

$$
\xrightarrow[\mathrm{u}]{\varepsilon}^{\uparrow_{\varepsilon}^{\mathrm{v}_{\varepsilon}}}
$$

Galbrun's equations in a 2D thin duct

$(\widetilde{\mathscr{P}})_{\varepsilon}\left\{\begin{array}{l}\left(\partial_{t}+M_{\varepsilon} \partial_{x}\right)^{2} \mathbf{u}_{\varepsilon}-\partial_{x}\left(\partial_{x} \mathbf{u}_{\varepsilon}+\partial_{y} \mathbf{v}_{\varepsilon}\right)=0 \\ \left(\partial_{t}+M_{\varepsilon} \partial_{x}\right)^{2} \mathbf{v}_{\varepsilon}-\partial_{y}\left(\partial_{x} \mathbf{u}_{\varepsilon}+\partial_{y} \mathbf{v}_{\varepsilon}\right)=0\end{array}\right.$

$$
\mathbf{v}_{\varepsilon}(x, \pm \varepsilon, t)=0
$$

The problem is well-posed as soon as

$$
M_{\varepsilon} \in W^{1, \infty}(-1,1)
$$

Galbrun's equations in a 2D thin duct

$(\widetilde{\mathscr{P}})_{\varepsilon}\left\{\begin{array}{l}\left(\partial_{t}+M_{\varepsilon} \partial_{x}\right)^{2} \mathbf{u}_{\varepsilon}-\partial_{x}\left(\partial_{x} \mathbf{u}_{\varepsilon}+\partial_{y} \mathbf{v}_{\varepsilon}\right)=0 \\ \left(\partial_{t}+M_{\varepsilon} \partial_{x}\right)^{2} \mathbf{v}_{\varepsilon}-\partial_{y}\left(\partial_{x} \mathbf{u}_{\varepsilon}+\partial_{y} \mathbf{v}_{\varepsilon}\right)=0\end{array}\right.$
Question : is this evolution problem stable or not ?
What conditions on the profile for stability or instability?
Most known results concern the incompressible case: Rayleigh (I879), Fjortoft (1950), Drazin (2004), Schmid-Henningson...

Our approach to the problem Asymptotic analysis for small ε

A preliminary analysis :

 Acoustic wave propagation in a thin duct

Galbrun's equations in a 2D thin duct

$(\widetilde{\mathscr{P}})_{\varepsilon}\left\{\begin{array}{l}\left(\partial_{t}+M_{\varepsilon} \partial_{x}\right)^{2} \mathbf{u}_{\varepsilon}-\partial_{x}\left(\partial_{x} \mathbf{u}_{\varepsilon}+\partial_{y} \mathbf{v}_{\varepsilon}\right)=0 \\ \left(\partial_{t}+M_{\varepsilon} \partial_{x}\right)^{2} \mathbf{v}_{\varepsilon}-\partial_{y}\left(\partial_{x} \mathbf{u}_{\varepsilon}+\partial_{y} \mathbf{v}_{\varepsilon}\right)=0\end{array}\right.$

$$
\mathbf{v}_{\varepsilon}(x, \pm \varepsilon, t)=0
$$

$$
\left\|\mathbf{u}_{\varepsilon}\right\|_{L_{x}^{2}\left(L_{y}^{2}\right)}+\left\|\mathbf{v}_{\varepsilon}\right\|_{L_{x}^{2}\left(L_{y}^{2}\right)} \leq C_{0} e^{\frac{t}{\varepsilon}\left\|M^{\prime}\right\|_{\infty}}
$$

Proof : energy estimates on Linearized Euler's Equations

A dimensionless model

Scaling

$$
\mathbf{u}_{\varepsilon}(x, y, t)=u_{\varepsilon}\left(x, \frac{y}{\varepsilon}, t\right), \quad \mathbf{v}_{\varepsilon}(x, y, t)=\left(\varepsilon v_{\varepsilon}\left(x, \frac{y}{\varepsilon}, t\right)\right.
$$

Scaled model

$(P)_{\varepsilon}\left\{\begin{array}{r}\left(\partial_{t}+M \partial_{x}\right)^{2} u_{\varepsilon}-\partial_{x}\left(\partial_{x} u_{\varepsilon}+\partial_{y} v_{\varepsilon}\right)=0 \\ \varepsilon^{2}\left(\partial_{t}+M \partial_{x}\right)^{2} v_{\varepsilon}-\partial_{y}\left(\partial_{x} u_{\varepsilon}+\partial_{y} v_{\varepsilon}\right)=0\end{array}\right.$

A dimensionless model

Passage to the limit
 $$
u_{\varepsilon} \rightarrow u, \quad v_{\varepsilon} \rightarrow v
$$

Formal limit model

A dimensionless model

$$
\begin{aligned}
& \text { Passage to the limit } \\
& \qquad u_{\varepsilon} \rightarrow u, \quad v_{\varepsilon} \rightarrow v
\end{aligned}
$$

Formal limit model

$$
(\mathbb{P})\left\{\begin{array}{l}
\left(\partial_{t}+M \partial_{x}\right)^{2} u-\partial_{x} d=0 \\
\partial_{x} u+\partial_{y} v=d(x, t)
\end{array}\right.
$$

The limit model

$$
(\mathbb{P})\left\{\begin{array}{l}
\left(\partial_{t}+M \partial_{x}\right)^{2} u-\partial_{x} d=0 \\
\partial_{x} u+\partial_{y} v=d(x, t)
\end{array}\right.
$$

Introducing $E(f)(x, t):=\frac{1}{2} \int_{-1}^{1} f(x, y, t) d y$, since $v(\pm 1)=0$

$$
\partial_{x} u+\partial_{y} v=d(x, t) \quad \Longrightarrow \quad d(x, t)=E\left(\partial_{x} u\right)
$$

Since E (mean in y) and ∂_{x} commute, we obtain
(P) $\quad\left(\partial_{t}+M \partial_{x}\right)^{2} u-\partial_{x}^{2}[E(u)]=0$

The quasi ID model

$$
\text { (P) } \quad\left(\partial_{t}+M \partial_{x}\right)^{2} u-\partial_{x}^{2}[E(u)]=0
$$

A quasi-ID model, non local in y

When M is constant, M and E commute :

- One advected ID wave equation

$$
\left(\partial_{t}+M \partial_{x}\right)^{2}[E(u)]-\partial_{x}^{2}[E(u)]=0
$$

- Decoupled ID transport equations

$$
\left(\partial_{t}+M \partial_{x}\right)^{2} u=\partial_{x}^{2}[E(u)]
$$

Main questions relative to this model

For a general Mach profile, is the evolution problem (\mathbb{P}) well-posed?

If not, what are the conditions on the Mach profile for the problem to be well-posed ?

Outline for the rest of the talk

1 Reduction to the spectral analysis of $\mathbf{A}(\mathrm{M})$
Well-posedness \longleftrightarrow spectrum $\subset \mathbb{R}$
2 General structure of the spectrum of $\mathbf{A}(\mathrm{M})$
Non real spectrum is made of eigenvalues
3 Results on the absence of nonreal eigenvalues
Stable Mach profiles
4 Results of existence of nonreal eigenvalues
Unstable Mach profiles

Towards the well-posedness analysis

$$
u(x, y, t) \quad \xrightarrow{\mathcal{F}_{x}} \quad \mathbf{u}(k, y, t)
$$

$$
\mathrm{U}(\mathrm{k}, \mathrm{y}, \mathrm{t})=\left(\mathrm{u}(\mathrm{k}, \mathrm{y}, \mathrm{t}),\left[\left(\partial_{t}+i k M\right) \mathrm{u}\right](k, y, t)\right)^{t}
$$

First order evolution problem: $\mathrm{d}_{t} \mathrm{U}+i k \mathbf{A}(M) \mathrm{U}=0$ where $\mathbf{A}(M)$ is the operator in $L^{2}(-1,1)^{2}$

$$
\mathbf{A}(\mathrm{M})=\left(\begin{array}{cc}
M & I \\
E & M
\end{array}\right)
$$

Towards the well-posedness analysis

As the operator $\mathbf{A}(\mathrm{M})$ is bounded, we can write

$$
\widehat{U}(k, t)=e^{-i k \mathbf{A}(M) t} \widehat{U}_{0}(k)
$$

The problem is to get uniform bounds in k.
As $\mathbf{A}(\mathrm{M})$ is non normal, general theorems from semi-group theory do not apply.

Theorem: if $\sigma(\mathbf{A}(M)) \not \subset \mathbb{R},(\mathbb{P})$ is strongly ill-posed
Conjecture: if $\sigma(\mathbf{A}(M)) \subset \mathbb{R},(\mathbb{)}$ is well-posed
(*) has been proven in some cases (see later)

General properties of $\mathbf{A}(\mathrm{M})=\left(\begin{array}{ll}M & I \\ E & M\end{array}\right)$

Let $S(u, v)=(v, u)$, i.e $S=\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)$ then one has

$$
\mathbf{A}(M)^{*}=S \circ \mathbf{A}(M) \circ S
$$

The spectrum of $\mathbf{A}(M)$ is symmetric w.r.t. the real axis.

The operator $\mathbf{A}(\mathrm{M})$ is a compact perturbation of

$$
\mathbf{A}_{0}(M)=\left(\begin{array}{cc}
M & I \\
0 & M
\end{array}\right)
$$

Structure of the spectrum of $\mathbf{A}(\mathrm{M})=\left(\begin{array}{ll}M & I \\ E & M\end{array}\right)$
2

Structure of the spectrum of $\mathbf{A}(\mathrm{M})=\left(\begin{array}{cc}M & I \\ E & M\end{array}\right)$
2

Eigenvalues of $\mathbf{A}(\mathrm{M})$ (1)

Lemma : A number $\lambda \in \mathbb{C} \backslash \operatorname{Im} M$ is an eigenvalue of $\mathbf{A}(\mathrm{M})$ if and only if:
(E) $\quad F_{M}(\lambda)=1$, where $F_{M}(\lambda):=\frac{1}{2} \int_{-1}^{1} \frac{d y}{(\lambda-M(y))^{2}}$

This eigenvalue is simple associated with

$$
\mathrm{U}_{\lambda}:=\left(\mathbf{u}_{\lambda}, \mathbf{v}_{\lambda}\right)=\left(\frac{1}{(\lambda-M)^{2}}, \frac{1}{(\lambda-M)}\right)
$$

Remark: we can also write $F_{M}(\lambda):=E\left((\lambda-M)^{-2}\right)$

$\mathbf{A}(\mathrm{M})=\left(\begin{array}{ll}M & I \\ E & M\end{array}\right)$

2
$\mathbf{A}(\mathrm{M}) \mathrm{U}=\lambda U \Longleftrightarrow\left\{\begin{array}{l}M u+v=\lambda u \\ E(u)+M v=\lambda v\end{array}\right.$

$\mathbf{A}(\mathrm{M})=\left(\begin{array}{ll}M & I \\ E & M\end{array}\right)$

2

$$
\mathbf{A}(\mathrm{M}) \mathrm{U}=\lambda U \Longleftrightarrow\left\{\begin{array}{l}
u=v /(\lambda-M) \\
v=E(u) /(\lambda-M)
\end{array}\right.
$$

$$
\Longrightarrow \quad u=\frac{E(u)}{(\lambda-M)^{2}} \quad \text { and } \quad v=\frac{E(u)}{(\lambda-M)}
$$

$$
\Longrightarrow \quad E(u)\left[E\left((\lambda-M)^{-2}\right)-1\right]=0
$$

$$
\mathbf{A}(\mathrm{M})=\left(\begin{array}{cc}
M & I \\
E & M
\end{array}\right)
$$

$$
\mathbf{A}(\mathrm{M}) \mathrm{U}=\lambda U \Longleftrightarrow\left\{\begin{array}{l}
u=v /(\lambda-M) \\
E(u)+M v=\lambda v
\end{array}\right.
$$

$$
\Longrightarrow \quad u=\frac{E(u)}{(\lambda-M)^{2}} \quad \text { and } \quad v=\frac{E(u)}{(\lambda-M)}
$$

$U \neq 0 \Longrightarrow E(u) \neq 0$ and $E\left((\lambda-M)^{-2}\right)=1$

Invariance properties

The function $F_{M}(\lambda)=\frac{1}{2} \int_{-1}^{1} \frac{d y}{(\lambda-M(y))^{2}}$ is invariant by

Rearrangement : $\quad M \longrightarrow M_{g}:=M \circ g$

$$
\begin{aligned}
& g:[-1,1] \mapsto[-1,1] \\
& \text { measure preserving bij. }
\end{aligned}
$$

Symmetrization :

Periodization :

The stability / instability of a profile is preserved by such transformations

Eigenvalues of $\mathbf{A}(\mathrm{M})$ (2)

The study of real eigenvalues is easier because $F_{M}(\lambda)$ is real-valued along the real axis

Lemma : The operator $\mathbf{A}(\mathrm{M})$ has exactly two real eigenvalues outside the interval $\left[M_{-}, M_{+}\right]$

$$
\lambda_{-}<M_{-}<M_{+}<\lambda_{+}
$$

2

$$
F_{M}(\lambda)=\frac{1}{2} \int_{-1}^{1} \frac{d y}{(\lambda-M(y))^{2}}
$$

Back to the spectrum of $\mathbf{A}(\mathrm{M})$

Back to the spectrum of $\mathbf{A}(\mathrm{M})$

Definition of a stable profile

Definition : a Mach profile M is unstable if

(E) has non real solutions

and stable if not.

Stability results

They have been obtained with the following process
I. The profile M is approximated by a piecewise linear continuous profile M_{h} such that

$$
\left\|M_{h}-M\right\|_{L^{\infty}} \rightarrow 0, \quad h \rightarrow 0
$$

2. One analyzes the equation (\mathcal{E}) for M_{h}

Key point : the function $\mathrm{F}_{M_{h}}(\lambda)$ is a rational fraction
3. One concludes using perturbation theory for eigenvalue problems (Kato)
3. One concludes using perturbation theory for eigenvalue problems (Kato)

$$
\begin{gathered}
\mathbf{A}(M)-\mathbf{A}\left(M_{h}\right)=\left(\begin{array}{cc}
M-M_{h} & 0 \\
0 & M-M_{h}
\end{array}\right) \\
\Longrightarrow\left\|\mathbf{A}(M)-\mathbf{A}\left(M_{h}\right)\right\|=\left\|M-M_{h}\right\|_{L^{\infty}}
\end{gathered}
$$

(Kato) $\Longrightarrow d\left[\sigma(\mathbf{A}(M)), \sigma\left(\mathbf{A}\left(M_{h}\right)\right)\right] \leq\left\|\mathbf{A}(M)-\mathbf{A}\left(M_{h}\right)\right\|$
Assuming that $\sigma\left(\mathbf{A}\left(M_{h}\right)\right) \subset \mathbb{R}$ for any $h>0$, then

$$
d[\sigma(\mathbf{A}(M)), \mathbb{R})] \leq\left\|M-M_{h}\right\|_{L^{\infty}} \underset{h \rightarrow 0}{\Longrightarrow} \quad \sigma(\mathbf{A}(M)) \subset \mathbb{R}
$$

I. The profile M is approximated by a piecewise linear continuous profile M_{h}

I. The profile M is approximated by a piecewise linear continuous profile M_{h}

2. One analyzes the equation (\mathcal{E}) for M_{h}

2. One analyzes the equation (\mathcal{E}) for M_{h}

2. One analyzes the equation (\mathcal{E}) for M_{h}

2. One analyzes the equation (\mathcal{E}) for M_{h}

$$
\int_{y_{j}}^{y_{j+1}} \frac{d y}{\left(\lambda-M_{h}(y)\right)^{2}}=\frac{1}{M_{j+\frac{1}{2}}^{\prime}} \int_{y_{j}}^{y_{j+1}} \frac{M_{h}^{\prime}(y) d y}{\left(\lambda-M_{h}(y)\right)^{2}}
$$

2. One analyzes the equation (\mathcal{E}) for M_{h}

$$
\int_{y_{j}}^{y_{j+1}} \frac{d y}{\left(\lambda-M_{h}(y)\right)^{2}}=\frac{1}{M_{j+\frac{1}{2}}^{\prime}} \int_{y_{j}}^{M_{j+1}} \frac{M_{h}^{\prime}(y) d y}{\left(\lambda-M_{h(y))^{2}}^{y_{j}}\right.}=\frac{1}{M_{1}^{\prime}} \frac{1}{j+\frac{1}{2}} \sum_{1}-\frac{1}{M_{j}}
$$

2. One analyzes the equation (\mathcal{E}) for M_{h}

$$
F_{M_{h}}(\lambda):=\int_{-1}^{1} \frac{d y}{\left(\lambda-M_{h}(y)\right)^{2}}=\sum_{j=0}^{N} \frac{\gamma_{j}}{\lambda-M_{j}}
$$

$$
M_{j}=M\left(x_{i}\right) \quad \gamma_{j}=\frac{1}{2} \frac{M_{i+\frac{1}{2}}^{\prime}-M_{i-\frac{1}{2}}^{\prime}}{M_{i+\frac{1}{2}}^{\prime} M_{i-\frac{1}{2}}^{\prime}}
$$

2. One analyzes the equation (\mathcal{E}) for M_{h}

$$
F_{M_{h}}(\lambda):=\int_{-1}^{1} \frac{d y}{\left(\lambda-M_{h}(y)\right)^{2}}=\sum_{j=0}^{N} \frac{\gamma_{j}}{\lambda-M_{j}}
$$

$F_{M_{h}}(\lambda)=1 \quad$ polynomial equation of degree $N+1$
2. One analyzes the equation (\mathcal{E}) for M_{h}

If one shows that the equation $F_{M_{h}}(\lambda)=2$ has has one real root in $N-1$ intervals, all roots are real
\Longrightarrow the profile M_{h} is stable
2. One analyzes the equation (\mathcal{E}) for M_{h}

If one shows that the equation $F_{M_{h}}(\lambda)=2$ has has one real root in $N-1$ intervals, all roots are real
\Longrightarrow the profile M_{h} is stable
2. One analyzes the equation (E) for M_{h}

Stability results

Theorem : the profile M is stable in the following 3 cases
I. M is convex or concave in $[-1,1]$

corresponds to the Rayleigh criterion in the incompressible case

The convex case

The concave case

Stability results

Theorem : the profile M is stable in the following 3 cases
I. M is convex or concave in $[-1,1]$
2. M is decreasing and convex-concave
3. M is increasing and concave - convex

corresponds to the Fjorjtoft criterion in the incompressible case

The concave-convex case

inflexion point

Instability results (I)

The stability property of a profile in unstable in L^{∞}-norm

Let M be continuous and $\left\{y_{j}\right\}$ be a regular mesh of $[-1,1]$ of stepsize $h>0$.

Let M_{h} be the piecewise constant profile given by

$$
M_{h}(y)=\frac{1}{h} \int_{y_{j}}^{y_{j+1}} M(y) d y, \quad y \in\left[y_{j}, y_{j+1}\right]
$$

Then, for h small enough, M_{h} is unstable.

Instability results (2)

Note that if M is unstable, $M+C$ is unstable too.
One can always impose $M(0)=0$ for instance
If M is unstable, \widetilde{M} is unstable for $\|\widetilde{M}-M\|_{L^{\infty}}$ small enough

Instability results (2)

Instability results : hard for general smooth profiles
However, it is possible to obtain several results in the case of odd profiles, for which one has

$$
\forall \nu \in \mathbb{R}, \quad F_{M}(i \nu)=\int_{0}^{1} \frac{M(y)^{2}+\nu^{2}}{\left(M(y)^{2}+\nu^{2}\right)^{2}} d y
$$

which leads to looking for purely imaginary roots of (\mathcal{E}).

$$
\lim _{\nu \rightarrow \pm \infty} F_{M}(i \nu)=0
$$

\Longrightarrow sufficient instability condition $\lim \sup _{\nu \rightarrow 0} F_{M}(i \nu)>1$

Instability results (2)

Theorem : Assume that M is odd, of class C^{2} and

$$
\int_{-1}^{1} \frac{M^{\prime}(0)^{2} y^{2}-M(y)^{2}}{y^{2} M(y)^{2}} d y>1+M^{\prime}(0)^{2}
$$

the profile M is unstable.
If moreover, M is increasing and concave for $y>0$ the condition is also necessary.

Instability results (I)

Application : $M(y)=a \tanh (\alpha y), \quad a>0, \quad \alpha>0$.

Instability results (I)

Application : $M(y)=a \tanh (\alpha y), \quad a>0, \quad \alpha>0$.
Let α^{*} the unique solution of

$$
\alpha \tanh \alpha=1 \quad\left(\alpha^{*} \simeq 1.1996\right)
$$

The profile M is unstable if and only if $\quad\left(^{*}\right)$

$$
\alpha>\alpha^{*} \quad \text { and } \quad a<[1-\alpha \tanh \alpha]^{\frac{1}{2}}
$$

(*)
$\alpha>\alpha^{*}$
$\Longrightarrow \alpha \tanh \alpha<1$.

A by-product : hydrodynamic instabilities

Theorem : if M is unstable, $(\mathbb{P})_{\varepsilon}$ is unstable, i. e.

$$
\begin{aligned}
& (P)_{\varepsilon}\left\{\begin{array}{c}
\left(\partial_{t}+M \partial_{x}\right)^{2} u_{\varepsilon}-\partial_{x}\left(\partial_{x} u_{\varepsilon}+\partial_{y} v_{\varepsilon}\right)=0 \\
\varepsilon^{2}\left(\partial_{t}+M \partial_{x}\right)^{2} v_{\varepsilon}-\partial_{y}\left(\partial_{x} u_{\varepsilon}+\partial_{y} v_{\varepsilon}\right)=0
\end{array}\right. \\
& \left\|u_{\varepsilon}\right\|_{L_{x}^{2}\left(L_{y}^{2}\right)}+\left\|v_{\varepsilon}\right\|_{L_{x}^{2}\left(L_{y}^{2}\right)} \geq C\left(u_{0}, u_{1}\right) e^{\alpha \frac{t}{\varepsilon}}
\end{aligned}
$$

These are new results for hydrodynamic instabilities in compressible fluids, proven by perturbation theory

Computation of discrete spectra

With finite dimension approximation spaces $V_{h} \subset L^{2}(-1,1)$ one constructs discrete approximations $\mathbf{A}_{h}(M)$ of $\mathbf{A}(\mathrm{M})$
One computes the spectrum of $\mathbf{A}_{h}(M)$

$$
M u+v=\lambda u \quad E(u)+M v=\lambda v
$$

\downarrow
Find $\left(u_{h}, v_{h}\right) \in V_{h} \times V_{h} \backslash\{0\}$ and $\lambda \in \mathbb{C}$ such that

$$
\begin{array}{ll}
\int M u_{h} \widetilde{v}_{h} d y+\int v_{h} \widetilde{u}_{h} d y=\lambda \int u_{h} \widetilde{u}_{h} d y & \forall \widetilde{u}_{h} \in V_{h} \\
\frac{1}{2} \iint u_{h}(y) \widetilde{v}_{h}\left(y^{\prime}\right) d y d y^{\prime}+\int M v_{h} \widetilde{v}_{h} d y=\lambda \int v_{h} \widetilde{v}_{h} d y & \forall \widetilde{v}_{h} \in V_{h}
\end{array}
$$

The case of a linear profile $M(y)=y$

The case of a linear profile $M(y)=y$

The case of a stable tanh profile

The case of an unstable tanh profile

A well-posedness result

(A) M is stable $(\Longleftrightarrow(\mathbb{E})$ only has real solutions. $)$
(B) $\quad M \in C^{3, \gamma}(-1,1), M^{\prime} \neq 0, M^{\prime \prime} \neq 0$ in $[-1,1]$

Theorem : Under assumptions (A) and (B), (P) is weakly well-posed :if $\left(u_{0}, u_{1}\right) \in H_{x}^{4}\left(L_{y}^{2}\right) \times H_{x}^{3}\left(L_{y}^{2}\right)$, there exists a unique solution

$$
u \in C^{0}\left(\mathbb{R}^{+} ; H_{x}^{1}\left(L_{y}^{2}\right)\right) \times C^{1}\left(\mathbb{R}^{+} ; L_{x}^{2}\left(L_{y}^{2}\right)\right)
$$

$$
\|u(\cdot, t)\|_{H_{x}^{1}\left(L_{y}^{2}\right)} \leq C(M)\left(1+t^{3}\right)\left(\left\|u_{0}\right\|_{H_{x}^{4}\left(L_{y}^{2}\right)}+\left\|u_{1}\right\|_{H_{x}^{3}\left(L_{y}^{2}\right)}\right)
$$

$$
U(x, t)=U_{p}(x, t)+U_{c}(x, t)
$$

U_{p} is a solution of the generalized wave equation

$$
\left[\left(\partial_{t}-\lambda_{+} \partial_{x}\right)\left(\partial_{t}-\lambda_{-} \partial_{x}\right)\right] U_{p}=0
$$

U_{c} is a continuous superposition on λ of solutions of squared transport equations

$$
U_{c}=\int_{M_{-}}^{M_{+}} U_{c, \lambda} d \lambda \quad\left(\partial_{t}-\lambda \partial_{x}\right)^{2} U_{c, \lambda}=0
$$

Thank you for your attention

