Essential spectrum of mixed-order systems of differential operators

Orif Ibrogimov

University College London

Based on:

[1] O.O.Ibrogimov and C.Tretter: Essential spectrum of elliptic systems of pseudo-differential operators on $L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right)$, J. Pseudo-Differ. Oper. Appl. 8(2), 147-166 (2017)
[2] O.O.lbrogimov: Essential spectrum of non-self-adjoint singular matrix differential operators, J. Math. Anal. Appl. 451(1), 473-496 (2017)
[3] O.O.Ibrogimov, P.Siegl and C.Tretter: Analysis of the essential spectrum of singular matrix differential operators, J. Differ. Equ. 260(4), 3881-3926 (2016)

Setting

In a Hilbert space $\mathcal{H}:=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, consider closable linear operator

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad \operatorname{Dom}(\mathcal{A})=W_{1} \oplus W_{2} \quad \text { dense in } \mathcal{H}
$$

Setting

In a Hilbert space $\mathcal{H}:=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, consider closable linear operator

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad \operatorname{Dom}(\mathcal{A})=W_{1} \oplus W_{2} \quad \text { dense in } \mathcal{H}
$$

- $\mathcal{H}_{1}=\mathcal{H}_{2}=L^{2}(\Omega)$ with not necessarily bounded $\Omega \subset \mathbb{R}^{N}$
- A, B, C, D are ordinary, partial or pseudo-differential operators of mixed-orders

Setting

In a Hilbert space $\mathcal{H}:=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, consider closable linear operator

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad \operatorname{Dom}(\mathcal{A})=W_{1} \oplus W_{2} \quad \text { dense in } \mathcal{H}
$$

- $\mathcal{H}_{1}=\mathcal{H}_{2}=L^{2}(\Omega)$ with not necessarily bounded $\Omega \subset \mathbb{R}^{N}$
- A, B, C, D are ordinary, partial or pseudo-differential operators of mixed-orders
- Our aim: to obtain an explicit description of the essential spectrum of \mathcal{A} !

Setting

In a Hilbert space $\mathcal{H}:=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, consider closable linear operator

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad \operatorname{Dom}(\mathcal{A})=W_{1} \oplus W_{2} \quad \text { dense in } \mathcal{H}
$$

- $\mathcal{H}_{1}=\mathcal{H}_{2}=L^{2}(\Omega)$ with not necessarily bounded $\Omega \subset \mathbb{R}^{N}$
- A, B, C, D are ordinary, partial or pseudo-differential operators of mixed-orders
- Our aim: to obtain an explicit description of the essential spectrum of \mathcal{A} !
- Here

$$
\sigma_{\text {ess }}(\mathcal{A}):=\{\lambda \in \mathbb{C}: \mathcal{A}-\lambda \text { is not Fredholm }\}
$$

Setting

In a Hilbert space $\mathcal{H}:=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, consider closable linear operator

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad \operatorname{Dom}(\mathcal{A})=W_{1} \oplus W_{2} \quad \text { dense in } \mathcal{H}
$$

- $\mathcal{H}_{1}=\mathcal{H}_{2}=L^{2}(\Omega)$ with not necessarily bounded $\Omega \subset \mathbb{R}^{N}$
- A, B, C, D are ordinary, partial or pseudo-differential operators of mixed-orders
- Our aim: to obtain an explicit description of the essential spectrum of \mathcal{A} !
- Here

$$
\sigma_{\text {ess }}(\mathcal{A}):=\{\lambda \in \mathbb{C}: \mathcal{A}-\lambda \text { is not Fredholm }\}
$$

- Examples: Stokes system, Ekman problem, ...

Motivation: Astrophysics

[Beyer, J. Math. Phys. 36, 9 (1995)]

- In $\mathcal{H}=L^{2}(0, R) \oplus L^{2}(0, R)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{1} & \frac{\mathrm{~d}}{\mathrm{~d} t} p_{2}+q_{2} \\
-p_{2} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{2} & p_{3}
\end{array}\right)
$$

Motivation: Astrophysics

[Beyer, J. Math. Phys. 36, 9 (1995)]

- In $\mathcal{H}=L^{2}(0, R) \oplus L^{2}(0, R)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{1} & \frac{\mathrm{~d}}{\mathrm{~d} t} p_{2}+q_{2} \\
-p_{2} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{2} & p_{3}
\end{array}\right)
$$

- coefficient functions are related to Lane-Emden equation:

$$
\theta^{\prime \prime}(t)+\frac{2}{t} \theta^{\prime}(t)=-\frac{1}{\alpha^{2}} \theta(t)^{n}, \quad t \in(0, \infty)
$$

Motivation: Astrophysics

[Beyer, J. Math. Phys. 36, 9 (1995)]

- In $\mathcal{H}=L^{2}(0, R) \oplus L^{2}(0, R)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{1} & \frac{\mathrm{~d}}{\mathrm{~d} t} p_{2}+q_{2} \\
-p_{2} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{2} & p_{3}
\end{array}\right)
$$

- coefficient functions are related to Lane-Emden equation:

$$
\theta^{\prime \prime}(t)+\frac{2}{t} \theta^{\prime}(t)=-\frac{1}{\alpha^{2}} \theta(t)^{n}, \quad t \in(0, \infty)
$$

- R is the first zero of θ

Motivation: Astrophysics

[Beyer, J. Math. Phys. 36, 9 (1995)]

- In $\mathcal{H}=L^{2}(0, R) \oplus L^{2}(0, R)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{1} & \frac{\mathrm{~d}}{\mathrm{~d} t} p_{2}+q_{2} \\
-p_{2} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{2} & p_{3}
\end{array}\right)
$$

- coefficient functions are related to Lane-Emden equation:

$$
\theta^{\prime \prime}(t)+\frac{2}{t} \theta^{\prime}(t)=-\frac{1}{\alpha^{2}} \theta(t)^{n}, \quad t \in(0, \infty)
$$

- R is the first zero of θ
- $p_{1}(0)=p_{1}(R)=0, p_{1} p_{3} \equiv p_{2}^{2} \quad \Longrightarrow \quad$ no ellipticity!

Motivation: Astrophysics

[Beyer, J. Math. Phys. 36, 9 (1995)]

- In $\mathcal{H}=L^{2}(0, R) \oplus L^{2}(0, R)$, consider

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{1} & \frac{\mathrm{~d}}{\mathrm{~d} t} p_{2}+q_{2} \\
-p_{2} \frac{\mathrm{~d}}{\mathrm{~d} t}+q_{2} & p_{3}
\end{array}\right)
$$

- coefficient functions are related to Lane-Emden equation:

$$
\theta^{\prime \prime}(t)+\frac{2}{t} \theta^{\prime}(t)=-\frac{1}{\alpha^{2}} \theta(t)^{n}, \quad t \in(0, \infty)
$$

- R is the first zero of θ
- $p_{1}(0)=p_{1}(R)=0, p_{1} p_{3} \equiv p_{2}^{2} \quad \Longrightarrow \quad$ no ellipticity!
- Conjecture: $\sigma_{\text {ess }}(\mathcal{A})=\{0\}$

Motivations: Fluid dynamics

[Pradas et al., Phys. of Fluids 23, (2011)]

$$
\mathcal{A}=\left(\begin{array}{cc}
\phi_{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\phi_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+\phi_{0} & \psi_{3} \frac{\mathrm{~d}^{3}}{\mathrm{~d} t^{3}}+\psi_{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\psi_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+\psi_{0} \\
-\frac{\mathrm{d}}{\mathrm{~d} t} & c_{0} \frac{\mathrm{~d}}{\mathrm{~d} t}
\end{array}\right), \quad \mathcal{H}=L^{2}(\mathbb{R}) \oplus L^{2}(\mathbb{R})
$$

Motivations: Fluid dynamics

[Pradas et al., Phys. of Fluids 23, (2011)]

$$
\mathcal{A}=\left(\begin{array}{cc}
\phi_{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\phi_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+\phi_{0} & \psi_{3} \frac{\mathrm{~d}^{3}}{\mathrm{~d} t^{3}}+\psi_{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\psi_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+\psi_{0} \\
-\frac{\mathrm{d}}{\mathrm{~d} t} & c_{0} \frac{\mathrm{~d}}{\mathrm{~d} t}
\end{array}\right), \quad \mathcal{H}=L^{2}(\mathbb{R}) \oplus L^{2}(\mathbb{R})
$$

Motivations: Fluid dynamics

[Pradas et al., Phys. of Fluids 23, (2011)]

$$
\mathcal{A}=\left(\begin{array}{cc}
\phi_{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\phi_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+\phi_{0} & \psi_{3} \frac{\mathrm{~d}^{3}}{\mathrm{~d} t^{3}}+\psi_{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\psi_{1} \frac{\mathrm{~d}}{\mathrm{~d} t}+\psi_{0} \\
-\frac{\mathrm{d}}{\mathrm{~d} t} & c_{0} \frac{\mathrm{~d}}{\mathrm{~d} t}
\end{array}\right), \quad \mathcal{H}=L^{2}(\mathbb{R}) \oplus L^{2}(\mathbb{R})
$$

Simple Example

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-x^{2}}
\end{array}\right), \quad \mathcal{H}_{m}=L^{2}(-m, m) \oplus L^{2}(-m, m), \quad m \in \mathbb{N}
$$

Simple Example

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-x^{2}}
\end{array}\right), \quad \mathcal{H}_{m}=L^{2}(-m, m) \oplus L^{2}(-m, m), \quad m \in \mathbb{N}
$$

- Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{dx}} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-x^{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =
\end{aligned}
$$

Simple Example

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-x^{2}}
\end{array}\right), \quad \mathcal{H}_{m}=L^{2}(-m, m) \oplus L^{2}(-m, m), \quad m \in \mathbb{N}
$$

- Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-x^{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-x^{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

Simple Example

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-x^{2}}
\end{array}\right), \quad \mathcal{H}_{m}=L^{2}(-m, m) \oplus L^{2}(-m, m), \quad m \in \mathbb{N}
$$

- Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-x^{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-x^{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\Delta([-m, m])=\left[\mathrm{e}^{-m^{2}}-1,0\right]$

Simple Example

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-x^{2}}
\end{array}\right), \quad \mathcal{H}_{m}=L^{2}(-m, m) \oplus L^{2}(-m, m), \quad m \in \mathbb{N}
$$

- Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-x^{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-x^{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\Delta([-m, m])=\left[\mathrm{e}^{-m^{2}}-1,0\right]$

Ref: [Atkinson et al. 1994]

Simple Example

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-x^{2}}
\end{array}\right), \quad \mathcal{H}_{m}=L^{2}(-m, m) \oplus L^{2}(-m, m), \quad m \in \mathbb{N}
$$

- Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-x^{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-x^{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\Delta([-m, m])=\left[\mathrm{e}^{-m^{2}}-1,0\right]$

Ref: [Atkinson et al. 1994]

- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)=$

Simple Example

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-x^{2}}
\end{array}\right), \quad \mathcal{H}_{m}=L^{2}(-m, m) \oplus L^{2}(-m, m), \quad m \in \mathbb{N}
$$

- Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-x^{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-x^{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\Delta([-m, m])=\left[\mathrm{e}^{-m^{2}}-1,0\right]$

Ref: [Atkinson et al. 1994]

- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)=[-1,0] \cup(0, \infty)$

Simple Example

$$
\mathcal{A}_{m}:=\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-x^{2}}
\end{array}\right), \quad \mathcal{H}_{m}=L^{2}(-m, m) \oplus L^{2}(-m, m), \quad m \in \mathbb{N}
$$

- Look at the formal determinant of $\mathcal{A}_{m}-\lambda$:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda & -\frac{\mathrm{d}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} & \mathrm{e}^{-\frac{x^{2}}{2}}-\lambda
\end{array}\right) & =\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\lambda\right)\left(\mathrm{e}^{-x^{2}}-\lambda\right)-\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right) \\
& =-(\underbrace{\mathrm{e}^{-x^{2}}-1}_{=: \Delta(x)}-\lambda) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\text { "lower order terms" }
\end{aligned}
$$

- $\sigma_{\text {ess }}\left(\mathcal{A}_{m}\right)=\Delta([-m, m])=\left[\mathrm{e}^{-m^{2}}-1,0\right]$

Ref: [Atkinson et al. 1994]

- $\sigma_{\text {ess }}\left(\mathcal{A}_{\infty}\right)=[-1,0] \cup(0, \infty)=: \sigma_{\text {ess }}^{\mathrm{r}}\left(\mathcal{A}_{\infty}\right) \cup \sigma_{\text {ess }}^{\mathrm{s}}\left(\mathcal{A}_{\infty}\right)$
- Descloux - Geymonat conjecture (1980)
- Descloux - Geymonat conjecture (1980)
- Previous research (~ 1980 - ...):

Adamyan, Atkinson, Chen, Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, M. Langer, Lifshitz, Mennicken, Möller, Naboko, Qi, Raikov, Shkalikov, Tretter, ...

- Descloux - Geymonat conjecture (1980)
- Previous research (1980 - ...):

Adamyan, Atkinson, Chen, Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, M. Langer, Lifshitz, Mennicken, Möller, Naboko, Qi, Raikov, Shkalikov, Tretter, ...

- Singular case (~ 2000 - ...): special models, mostly self-adjoint matrices of ordinary differential operators
- Descloux - Geymonat conjecture (1980)
- Previous research (1980 - ...): Adamyan, Atkinson, Chen, Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, M. Langer, Lifshitz, Mennicken, Möller, Naboko, Qi, Raikov, Shkalikov, Tretter, ...
- Singular case (~ 2000 - ...): special models, mostly self-adjoint matrices of ordinary differential operators
- Lack of the (comprehensive) analysis of the essential spectrum
- general self-adjoint ODE case
- in higher dimensions, non-self-adjoint case
- in \mathbb{R}^{N}, pseudo-differential operator entries
- Descloux - Geymonat conjecture (1980)
- Previous research (1980 - ...):

Adamyan, Atkinson, Chen, Grubb, Hardt, Kako, Konstantinov, Kurasov, H. Langer, M. Langer, Lifshitz, Mennicken, Möller, Naboko, Qi, Raikov, Shkalikov, Tretter, ...

- Singular case (~ 2000 - ...): special models, mostly self-adjoint matrices of ordinary differential operators
- Lack of the (comprehensive) analysis of the essential spectrum
- general self-adjoint ODE case
- in higher dimensions, non-self-adjoint case
- in \mathbb{R}^{N}, pseudo-differential operator entries
- Problems of interest include:
- when $\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \neq \emptyset$?
- explicit description of $\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A})$
- "topological structure" of $\sigma_{\text {ess }}(\mathcal{A})$
- estimates one the essential spectral radius

Part I: The case of Ordinary Differential Operator entries

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right), \quad \operatorname{Dom}(\mathcal{A})=C_{0}^{2}(\alpha, \beta) \oplus C_{0}^{1}(\alpha, \beta)
$$

- $p, q, d:[\alpha, \beta) \rightarrow \mathbb{R}$ and $b, c:[\alpha, \beta) \rightarrow \mathbb{C}$ are sufficiently smooth and $p>0$

Part I: The case of Ordinary Differential Operator entries

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right), \quad \operatorname{Dom}(\mathcal{A})=C_{0}^{2}(\alpha, \beta) \oplus C_{0}^{1}(\alpha, \beta)
$$

- $p, q, d:[\alpha, \beta) \rightarrow \mathbb{R}$ and $b, c:[\alpha, \beta) \rightarrow \mathbb{C}$ are sufficiently smooth and $p>0$
- Ellipticity of the formal determinant is violated at the range of the function

$$
\Delta=d-\frac{|b|^{2}}{p}
$$

Part I: The case of Ordinary Differential Operator entries

$$
\mathcal{A}=\left(\begin{array}{cc}
-\frac{\mathrm{d}}{\mathrm{~d} t} p \frac{\mathrm{~d}}{\mathrm{~d} t}+q & -\frac{\mathrm{d}}{\mathrm{~d} t} \bar{b}+\bar{c} \\
b \frac{\mathrm{~d}}{\mathrm{~d} t}+c & d
\end{array}\right), \quad \operatorname{Dom}(\mathcal{A})=C_{0}^{2}(\alpha, \beta) \oplus C_{0}^{1}(\alpha, \beta)
$$

- $p, q, d:[\alpha, \beta) \rightarrow \mathbb{R}$ and $b, c:[\alpha, \beta) \rightarrow \mathbb{C}$ are sufficiently smooth and $p>0$
- Ellipticity of the formal determinant is violated at the range of the function

$$
\Delta=d-\frac{|b|^{2}}{p}
$$

- The Schur complement is given by, for $\lambda \in \mathbb{C} \backslash \sigma(\bar{d})$,

$$
\tau_{S}(\lambda)=-\frac{\partial}{\partial t} \pi(\cdot, \lambda) \frac{\partial}{\partial t}+\mathrm{i}\left(r(\cdot, \lambda) \frac{\partial}{\partial t}+\frac{\partial}{\partial t} r(\cdot, \lambda)\right)+\varkappa(\cdot, \lambda)
$$

$\pi(\cdot, \lambda):=p-\frac{|b|^{2}}{d-\lambda}, r(\cdot, \lambda):=\operatorname{lm}\left(\frac{\bar{b} c}{d-\lambda}\right), \varkappa(\cdot, \lambda):=q-\lambda-\frac{|c|^{2}}{d-\lambda}+\frac{\partial}{\partial t} \operatorname{Re}\left(\frac{\bar{b} c}{d-\lambda}\right)$

Main results

Main results

(-) $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\left\{\operatorname{ran}\left(d-\frac{|b|^{2}}{p}\right)\right\}$

Main results

(1) $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\left\{\operatorname{ran}\left(d-\frac{|b|^{2}}{p}\right)\right\}$
(2) If $\pi(t, \lambda)=\pi_{0}(\lambda)+\pi_{1}(\lambda)(t-\beta)+\mathcal{R}(t, \lambda)$ as $t \nearrow \beta$, then one has

Main results

(1) $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\left\{\operatorname{ran}\left(d-\frac{|b|^{2}}{p}\right)\right\}$
(2) If $\pi(t, \lambda)=\pi_{0}(\lambda)+\pi_{1}(\lambda)(t-\beta)+\mathcal{R}(t, \lambda)$ as $t \nearrow \beta$, then one has

$$
\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \neq \emptyset \quad \Longleftrightarrow \quad \pi_{0}(\lambda) \equiv \pi_{1}(\lambda) \equiv 0
$$

Main results

(1) $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\left\{\operatorname{ran}\left(d-\frac{|b|^{2}}{p}\right)\right\}$
(2) If $\pi(t, \lambda)=\pi_{0}(\lambda)+\pi_{1}(\lambda)(t-\beta)+\mathcal{R}(t, \lambda)$ as $t \nearrow \beta$, then one has

$$
\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \neq \emptyset \quad \Longleftrightarrow \quad \pi_{0}(\lambda) \equiv \pi_{1}(\lambda) \equiv 0 .
$$

(3) If for every $\lambda \in \mathbb{R} \backslash c \left\lvert\,\left\{\operatorname{ran}\left(d-\frac{|b|^{2}}{p}\right)\right\}\right.$, the limits exists and are finite

$$
\begin{array}{ll}
r_{\beta}(\lambda):=\lim _{t \nearrow \beta}(\beta-t) \frac{r(t, \lambda)}{\pi(t, \lambda)}, & \varkappa_{\beta}(\lambda):=\lim _{t \nmid \beta}(\beta-t)^{2} \frac{\varkappa(t, \lambda)}{\pi(t, \lambda)}, \\
\Phi_{1}(t, \lambda):=(\beta-t) \frac{\frac{\partial}{\partial t} \pi(t, \lambda)}{\pi(t, \lambda)}, & \Phi_{2}(t, \lambda):=(\beta-t)^{2} \frac{\frac{\partial}{\partial t} r(t, \lambda)}{\pi(t, \lambda)},
\end{array}
$$

then

Main results

(-) $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\left\{\operatorname{ran}\left(d-\frac{|b|^{2}}{p}\right)\right\}$
(2) If $\pi(t, \lambda)=\pi_{0}(\lambda)+\pi_{1}(\lambda)(t-\beta)+\mathcal{R}(t, \lambda)$ as $t \nearrow \beta$, then one has

$$
\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \neq \emptyset \quad \Longleftrightarrow \quad \pi_{0}(\lambda) \equiv \pi_{1}(\lambda) \equiv 0 .
$$

(3) If for every $\lambda \in \mathbb{R} \backslash c \left\lvert\,\left\{\operatorname{ran}\left(d-\frac{|b|^{2}}{p}\right)\right\}\right.$, the limits exists and are finite

$$
\begin{array}{ll}
r_{\beta}(\lambda):=\lim _{t \neq \beta}(\beta-t) \frac{r(t, \lambda)}{\pi(t, \lambda)}, & \varkappa_{\beta}(\lambda):=\lim _{t \nmid \beta}(\beta-t)^{2} \frac{\varkappa(t, \lambda)}{\pi(t, \lambda)}, \\
\Phi_{1}(t, \lambda):=(\beta-t) \frac{\frac{\partial}{\partial t} \pi(t, \lambda)}{\pi(t, \lambda)}, & \Phi_{2}(t, \lambda):=(\beta-t)^{2} \frac{\frac{\partial}{\partial t} r(t, \lambda)}{\pi(t, \lambda)},
\end{array}
$$

then

$$
\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A})=\left\{\lambda \in \mathbb{R} \backslash \sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A}): \quad r_{\beta}(\lambda)^{2}-\varkappa_{\beta}(\lambda) \geq \frac{1}{4}\right\}
$$

Main results

(1) $\sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A})=\operatorname{cl}\left\{\operatorname{ran}\left(d-\frac{|b|^{2}}{p}\right)\right\}$
(2) If $\pi(t, \lambda)=\pi_{0}(\lambda)+\pi_{1}(\lambda)(t-\beta)+\mathcal{R}(t, \lambda)$ as $t \nearrow \beta$, then one has

$$
\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A}) \neq \emptyset \quad \Longleftrightarrow \quad \pi_{0}(\lambda) \equiv \pi_{1}(\lambda) \equiv 0 .
$$

(3) If for every $\lambda \in \mathbb{R} \backslash \mathrm{cl}\left\{\operatorname{ran}\left(d-\frac{|b|^{2}}{\rho}\right)\right\}$, the limits exists and are finite

$$
\begin{array}{ll}
r_{\beta}(\lambda):=\lim _{t / \beta}(\beta-t) \frac{r(t, \lambda)}{\pi(t, \lambda)}, & \varkappa_{\beta}(\lambda):=\lim _{t \neq \beta}(\beta-t)^{2} \frac{\varkappa(t, \lambda)}{\pi(t, \lambda)}, \\
\Phi_{1}(t, \lambda):=(\beta-t) \frac{\frac{\partial}{\partial t} \pi(t, \lambda)}{\pi(t, \lambda)}, & \Phi_{2}(t, \lambda):=(\beta-t)^{2} \frac{\frac{\partial}{\partial t} r(t, \lambda)}{\pi(t, \lambda)},
\end{array}
$$

then

$$
\sigma_{\text {ess }}^{\mathrm{s}}(\mathcal{A})=\left\{\lambda \in \mathbb{R} \backslash \sigma_{\text {ess }}^{\mathrm{r}}(\mathcal{A}): \quad r_{\beta}(\lambda)^{2}-\varkappa_{\beta}(\lambda) \geq \frac{1}{4}\right\} .
$$

Remark: In the Astrophysics Model: $\pi_{0}(\lambda) \equiv 0$ and $\pi_{1}(\lambda) \equiv \frac{p_{c}}{e_{c}} \Gamma_{1}(R) \theta^{\prime}(R) \neq 0$.

Part II: Pseudo-differential operators on \mathbb{R}^{N}

Part II: Pseudo-differential operators on \mathbb{R}^{N}

- The Hörmander symbol class $\mathcal{S}^{k}=\mathcal{S}_{1,0}^{k}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right), k \in \mathbb{R}$, is defined to be the set of $\sigma \in C^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ s.t. for all $\alpha, \beta \in \mathbb{N}_{0}^{N}$ there exists $C_{\alpha, \beta}>0$ with

$$
\left|\left(\partial_{x}^{\beta} \partial_{\xi}^{\alpha}\right) \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{k-|\alpha|}, \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N} .
$$

Part II: Pseudo-differential operators on \mathbb{R}^{N}

- The Hörmander symbol class $\mathcal{S}^{k}=\mathcal{S}_{1,0}^{k}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right), k \in \mathbb{R}$, is defined to be the set of $\sigma \in C^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ s.t. for all $\alpha, \beta \in \mathbb{N}_{0}^{N}$ there exists $C_{\alpha, \beta}>0$ with

$$
\left|\left(\partial_{x}^{\beta} \partial_{\xi}^{\alpha}\right) \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{k-|\alpha|}, \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N} .
$$

- $\Psi D O T_{\sigma}$ with symbol $\sigma \in \mathcal{S}^{k}$ on $\mathscr{S}\left(\mathbb{R}^{N}\right)$ is defined by

$$
\left(T_{\sigma} \phi\right)(x):=\frac{1}{(2 \pi)^{\frac{N}{2}}} \int_{\mathbb{R}^{N}} \mathrm{e}^{\mathrm{i} \mathrm{x} \cdot \xi} \sigma(x, \xi) \widehat{\phi}(\xi) \mathrm{d} \xi, \quad \phi \in \operatorname{Dom}\left(T_{\sigma}\right)=\mathscr{S}\left(\mathbb{R}^{N}\right),
$$

where $\widehat{\phi}$ is the Fourier transform of $\phi \in \mathscr{S}\left(\mathbb{R}^{N}\right)$,

$$
\widehat{\phi}(\xi):=\frac{1}{(2 \pi)^{\frac{N}{2}}} \int_{\mathbb{R}^{N}} \mathrm{e}^{-\mathrm{i} \mathrm{x} \cdot \xi} \phi(x) \mathrm{d} x, \quad \xi \in \mathbb{R}^{N} .
$$

Part II: Pseudo-differential operators on \mathbb{R}^{N}

- The Hörmander symbol class $\mathcal{S}^{k}=\mathcal{S}_{1,0}^{k}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right), k \in \mathbb{R}$, is defined to be the set of $\sigma \in C^{\infty}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ s.t. for all $\alpha, \beta \in \mathbb{N}_{0}^{N}$ there exists $C_{\alpha, \beta}>0$ with

$$
\left|\left(\partial_{x}^{\beta} \partial_{\xi}^{\alpha}\right) \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{k-|\alpha|}, \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N} .
$$

- $\Psi \mathrm{DO} T_{\sigma}$ with symbol $\sigma \in \mathcal{S}^{k}$ on $\mathscr{S}\left(\mathbb{R}^{N}\right)$ is defined by

$$
\left(T_{\sigma} \phi\right)(x):=\frac{1}{(2 \pi)^{\frac{N}{2}}} \int_{\mathbb{R}^{N}} \mathrm{e}^{\mathrm{i} \mathrm{x} \cdot \xi} \sigma(x, \xi) \widehat{\phi}(\xi) \mathrm{d} \xi, \quad \phi \in \operatorname{Dom}\left(T_{\sigma}\right)=\mathscr{S}\left(\mathbb{R}^{N}\right),
$$

where $\widehat{\phi}$ is the Fourier transform of $\phi \in \mathscr{S}\left(\mathbb{R}^{N}\right)$,

$$
\widehat{\phi}(\xi):=\frac{1}{(2 \pi)^{\frac{N}{2}}} \int_{\mathbb{R}^{N}} \mathrm{e}^{-\mathrm{i} \mathrm{x} \cdot \xi} \phi(x) \mathrm{d} x, \quad \xi \in \mathbb{R}^{N} .
$$

- $\Psi D O T_{\sigma}$ with symbol $\sigma \in \mathcal{S}^{k}$ is called (uniformly) elliptic if

$$
|\sigma(x, \xi)| \gtrsim\langle\xi\rangle^{k}, \quad x \in \mathbb{R}^{N},|\xi| \gtrsim 1 .
$$

Matrix pseudo-differential operator

$$
T_{0}:=\left(\begin{array}{ll}
T_{a} & T_{b} \\
T_{c} & T_{d}
\end{array}\right), \quad \operatorname{Dom}\left(T_{0}\right):=\mathscr{S}\left(\mathbb{R}^{N}\right) \oplus \mathscr{S}\left(\mathbb{R}^{N}\right) \subset L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right)=\mathcal{H}
$$

- $T_{a}, T_{b}, T_{c}, T_{d}$ are $\Psi \mathrm{DO} s$ with classical symbols of orders m, n, p, q, respectiely

Matrix pseudo-differential operator

$$
T_{0}:=\left(\begin{array}{ll}
T_{a} & T_{b} \\
T_{c} & T_{d}
\end{array}\right), \quad \operatorname{Dom}\left(T_{0}\right):=\mathscr{S}\left(\mathbb{R}^{N}\right) \oplus \mathscr{S}\left(\mathbb{R}^{N}\right) \subset L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right)=\mathcal{H}
$$

- $T_{a}, T_{b}, T_{c}, T_{d}$ are $\Psi \mathrm{DO} s$ with classical symbols of orders m, n, p, q, respectiely
- $m \geq q \geq 0$ and $m+q \geq n+p$

Matrix pseudo-differential operator

$$
T_{0}:=\left(\begin{array}{ll}
T_{a} & T_{b} \\
T_{c} & T_{d}
\end{array}\right), \quad \operatorname{Dom}\left(T_{0}\right):=\mathscr{S}\left(\mathbb{R}^{N}\right) \oplus \mathscr{S}\left(\mathbb{R}^{N}\right) \subset L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right)=\mathcal{H}
$$

- $T_{a}, T_{b}, T_{c}, T_{d}$ are Ψ DO s with classical symbols of orders m, n, p, q, respectiely
- $m \geq q \geq 0$ and $m+q \geq n+p$

Douglis-Nirenberg ellipticity

T_{0} is called (uniformly) Douglis-Nirenberg elliptic on \mathbb{R}^{N} if

$$
|\operatorname{det} M(x, \xi)| \gtrsim\langle\xi\rangle^{m+q}, \quad x \in \mathbb{R}^{N},|\xi| \gtrsim 1,
$$

where $M(\cdot, \cdot)$ is the matrix of the principal symbols of the corresponding entries

Matrix pseudo-differential operator

$$
T_{0}:=\left(\begin{array}{ll}
T_{a} & T_{b} \\
T_{c} & T_{d}
\end{array}\right), \quad \operatorname{Dom}\left(T_{0}\right):=\mathscr{S}\left(\mathbb{R}^{N}\right) \oplus \mathscr{S}\left(\mathbb{R}^{N}\right) \subset L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right)=\mathcal{H}
$$

- $T_{a}, T_{b}, T_{c}, T_{d}$ are Ψ DO s with classical symbols of orders m, n, p, q, respectiely
- $m \geq q \geq 0$ and $m+q \geq n+p$

Douglis-Nirenberg ellipticity

T_{0} is called (uniformly) Douglis-Nirenberg elliptic on \mathbb{R}^{N} if

$$
|\operatorname{det} M(x, \xi)| \gtrsim\langle\xi\rangle^{m+q}, \quad x \in \mathbb{R}^{N},|\xi| \gtrsim 1,
$$

where $M(\cdot, \cdot)$ is the matrix of the principal symbols of the corresponding entries

- Remark: Principal symbol of $T_{0}-\lambda$ depends on λ only if $q=0$.

Matrix pseudo-differential operator

$$
T_{0}:=\left(\begin{array}{ll}
T_{a} & T_{b} \\
T_{c} & T_{d}
\end{array}\right), \quad \operatorname{Dom}\left(T_{0}\right):=\mathscr{S}\left(\mathbb{R}^{N}\right) \oplus \mathscr{S}\left(\mathbb{R}^{N}\right) \subset L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right)=\mathcal{H}
$$

- $T_{a}, T_{b}, T_{c}, T_{d}$ are Ψ DO s with classical symbols of orders m, n, p, q, respectiely
- $m \geq q \geq 0$ and $m+q \geq n+p$

Douglis-Nirenberg ellipticity

T_{0} is called (uniformly) Douglis-Nirenberg elliptic on \mathbb{R}^{N} if

$$
|\operatorname{det} M(x, \xi)| \gtrsim\langle\xi\rangle^{m+q}, \quad x \in \mathbb{R}^{N},|\xi| \gtrsim 1,
$$

where $M(\cdot, \cdot)$ is the matrix of the principal symbols of the corresponding entries

- Remark: Principal symbol of $T_{0}-\lambda$ depends on λ only if $q=0$.
- Previous studies: Grubb and Geymonat (1977), Rabier (2012)

The case of $q=0$

Principal symbol of $T_{0}-\lambda$ is

$$
M_{\lambda}(x, \xi)=\left(\begin{array}{cc}
a_{m}(x, \xi) & b_{n}(x, \xi) \\
c_{p}(x, \xi) & d_{q}(x, \xi)-\lambda
\end{array}\right), \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N}
$$

The case of $q=0$

Principal symbol of $T_{0}-\lambda$ is

$$
M_{\lambda}(x, \xi)=\left(\begin{array}{cc}
a_{m}(x, \xi) & b_{n}(x, \xi) \\
c_{p}(x, \xi) & d_{q}(x, \xi)-\lambda
\end{array}\right), \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N}
$$

- Whenever T_{a} is elliptic on \mathbb{R}^{N}, one has

$$
\operatorname{det} M_{\lambda}(x, \xi)=a_{m}(x, \xi)(\Delta(x, \xi)-\lambda)
$$

where

$$
\Delta(x, \xi):=d_{q}(x, \xi)-\frac{b_{n}(x, \xi) c_{p}(x, \xi)}{a_{m}(x, \xi)}, \quad x \in \mathbb{R}^{N},|\xi| \gtrsim 1
$$

The case of $q=0$

Principal symbol of $T_{0}-\lambda$ is

$$
M_{\lambda}(x, \xi)=\left(\begin{array}{cc}
a_{m}(x, \xi) & b_{n}(x, \xi) \\
c_{p}(x, \xi) & d_{q}(x, \xi)-\lambda
\end{array}\right), \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N} .
$$

- Whenever T_{a} is elliptic on \mathbb{R}^{N}, one has

$$
\operatorname{det} M_{\lambda}(x, \xi)=a_{m}(x, \xi)(\Delta(x, \xi)-\lambda),
$$

where

$$
\Delta(x, \xi):=d_{q}(x, \xi)-\frac{b_{n}(x, \xi) c_{p}(x, \xi)}{a_{m}(x, \xi)}, \quad x \in \mathbb{R}^{N},|\xi| \gtrsim 1 .
$$

- $T_{0}-\lambda$ is not D.N. elliptic $\Longleftrightarrow \exists x \in \mathbb{R}^{N}$ s.t. $\Delta(x, \xi) \rightarrow \lambda,|\xi| \rightarrow \infty$

The case of $q=0$

Principal symbol of $T_{0}-\lambda$ is

$$
M_{\lambda}(x, \xi)=\left(\begin{array}{cc}
a_{m}(x, \xi) & b_{n}(x, \xi) \\
c_{p}(x, \xi) & d_{q}(x, \xi)-\lambda
\end{array}\right), \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N} .
$$

- Whenever T_{a} is elliptic on \mathbb{R}^{N}, one has

$$
\operatorname{det} M_{\lambda}(x, \xi)=a_{m}(x, \xi)(\Delta(x, \xi)-\lambda),
$$

where

$$
\Delta(x, \xi):=d_{q}(x, \xi)-\frac{b_{n}(x, \xi) c_{p}(x, \xi)}{a_{m}(x, \xi)}, \quad x \in \mathbb{R}^{N},|\xi| \gtrsim 1 .
$$

- $T_{0}-\lambda$ is not D.N. elliptic $\Longleftrightarrow \exists x \in \mathbb{R}^{N}$ s.t. $\Delta(x, \xi) \rightarrow \lambda,|\xi| \rightarrow \infty$

Theorem

Let $q=0$ and let T_{a} be uniformly elliptic on \mathbb{R}^{N}. Then

$$
\left\{\lambda \in \mathbb{C}: T_{0}-\lambda \text { is not Douglis-Nirenberg elliptic }\right\} \subset \sigma_{\text {ess }}(T)
$$

Strategy of the proof:

Strategy of the proof:

(1) for $\lambda \in \Omega$, show that $\hat{S}_{2}(\lambda):=T_{d}-\lambda-T_{c} T_{a}^{p}(\lambda) T_{b}$ has a singular sequence,

Strategy of the proof:

(1) for $\lambda \in \Omega$, show that $\widehat{S}_{2}(\lambda):=T_{d}-\lambda-T_{c} T_{a}^{p}(\lambda) T_{b}$ has a singular sequence, i.e. there exists $\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \subset \mathscr{S}\left(\mathbb{R}^{n}\right)$ with $\left\|\phi_{k}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=1, k \in \mathbb{N}$, and such that

$$
\phi_{k} \xrightarrow{\mathrm{w}} 0 \quad \text { in } \quad L^{2}\left(\mathbb{R}^{n}\right), \quad\left\|\widehat{S}_{2}(\lambda) \phi_{k}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \rightarrow 0, \quad k \rightarrow \infty .
$$

(2) show that the normalization of the sequence

$$
\left(-T_{a}^{p}(\lambda) T_{b} \phi_{k}, \phi_{k}\right)^{t} \in \mathscr{S}\left(\mathbb{R}^{n}\right) \oplus \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

yields a singular sequence for $T_{0}-\lambda$.

Strategy of the proof:

(1) for $\lambda \in \Omega$, show that $\widehat{S}_{2}(\lambda):=T_{d}-\lambda-T_{c} T_{a}^{p}(\lambda) T_{b}$ has a singular sequence, i.e. there exists $\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \subset \mathscr{S}\left(\mathbb{R}^{n}\right)$ with $\left\|\phi_{k}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=1, k \in \mathbb{N}$, and such that

$$
\phi_{k} \xrightarrow{w} 0 \quad \text { in } \quad L^{2}\left(\mathbb{R}^{n}\right), \quad\left\|\widehat{S}_{2}(\lambda) \phi_{k}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \rightarrow 0, \quad k \rightarrow \infty .
$$

(2) show that the normalization of the sequence

$$
\left(-T_{a}^{p}(\lambda) T_{b} \phi_{k}, \phi_{k}\right)^{t} \in \mathscr{S}\left(\mathbb{R}^{n}\right) \oplus \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

yields a singular sequence for $T_{0}-\lambda$.

Key Lemma

Let $T_{0}-\lambda$ be uniformly D.N. elliptic. Then $\lambda \in \sigma_{\text {ess }}(T) \quad \Longleftrightarrow \quad 0 \in \sigma_{\text {ess }}(S(\lambda))$

Strategy of the proof:

(1) for $\lambda \in \Omega$, show that $\widehat{S}_{2}(\lambda):=T_{d}-\lambda-T_{c} T_{a}^{p}(\lambda) T_{b}$ has a singular sequence, i.e. there exists $\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \subset \mathscr{S}\left(\mathbb{R}^{n}\right)$ with $\left\|\phi_{k}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=1, k \in \mathbb{N}$, and such that

$$
\phi_{k} \xrightarrow{\mathrm{w}} 0 \quad \text { in } \quad L^{2}\left(\mathbb{R}^{n}\right), \quad\left\|\widehat{S}_{2}(\lambda) \phi_{k}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \rightarrow 0, \quad k \rightarrow \infty .
$$

(2) show that the normalization of the sequence

$$
\left(-T_{a}^{p}(\lambda) T_{b} \phi_{k}, \phi_{k}\right)^{t} \in \mathscr{S}\left(\mathbb{R}^{n}\right) \oplus \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

yields a singular sequence for $T_{0}-\lambda$.

Key Lemma

Let $T_{0}-\lambda$ be uniformly D.N. elliptic. Then $\lambda \in \sigma_{\text {ess }}(T) \quad \Longleftrightarrow \quad 0 \in \sigma_{\text {ess }}(S(\lambda))$

Remark

$T_{0}-\lambda$ be uniformly D.N. elliptic $\Longrightarrow S(\lambda)$ is uniformly elliptic

Strategy of the proof:

(1) " $\Longleftarrow ": T-\lambda$ be Fredholm, $T^{\prime}(\lambda)$ be the generalized inverse of $T-\lambda$.

Strategy of the proof:

(1) " ": $T-\lambda$ be Fredholm, $T^{\prime}(\lambda)$ be the generalized inverse of $T-\lambda$. Show that the following operator is a left approximate inverse of $S(\lambda)$:

$$
S_{\ell}(\lambda):=P_{1} T^{\prime}(\lambda) P_{1}^{*}, \quad \operatorname{Dom}\left(S_{\ell}(\lambda)\right):=L^{2}\left(\mathbb{R}^{N}\right)
$$

where $P_{1}: L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is the projection onto the first component.

Strategy of the proof:

(1) " ": $T-\lambda$ be Fredholm, $T^{\prime}(\lambda)$ be the generalized inverse of $T-\lambda$. Show that the following operator is a left approximate inverse of $S(\lambda)$:

$$
S_{\ell}(\lambda):=P_{1} T^{\prime}(\lambda) P_{1}^{*}, \quad \operatorname{Dom}\left(S_{\ell}(\lambda)\right):=L^{2}\left(\mathbb{R}^{N}\right)
$$

where $P_{1}: L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is the projection onto the first component.
(2) " \Longrightarrow ": $S(\lambda)$ be Fredholm, $S^{\prime}(\lambda)$ be the generalized inverse of $S(\lambda)$.

Strategy of the proof:

(0) " $\Longleftarrow ": T-\lambda$ be Fredholm, $T^{\prime}(\lambda)$ be the generalized inverse of $T-\lambda$. Show that the following operator is a left approximate inverse of $S(\lambda)$:

$$
S_{\ell}(\lambda):=P_{1} T^{\prime}(\lambda) P_{1}^{*}, \quad \operatorname{Dom}\left(S_{\ell}(\lambda)\right):=L^{2}\left(\mathbb{R}^{N}\right),
$$

where $P_{1}: L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is the projection onto the first component.
(2) " \Longrightarrow ": $S(\lambda)$ be Fredholm, $S^{\prime}(\lambda)$ be the generalized inverse of $S(\lambda)$. Show that the bounded extension in $L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right)$ of

$$
\begin{aligned}
& T^{\#}(\lambda):=\left(\begin{array}{cc}
S^{\prime}(\lambda) & -S^{\prime}(\lambda) F_{2}(\lambda) \\
-F_{1}(\lambda) S^{\prime}(\lambda) & \left(T_{d}-\lambda\right)^{-1}+F_{1}(\lambda) S^{\prime}(\lambda) F_{2}(\lambda)
\end{array}\right), \\
& \operatorname{Dom}\left(T^{\#}(\lambda)\right):=L^{2}\left(\mathbb{R}^{N}\right) \oplus \operatorname{Dom}\left(F_{2}(\lambda)\right),
\end{aligned}
$$

is a left approximate inverse of $T-\lambda$, where

Strategy of the proof:

(1) " \Longleftarrow ": $T-\lambda$ be Fredholm, $T^{\prime}(\lambda)$ be the generalized inverse of $T-\lambda$. Show that the following operator is a left approximate inverse of $S(\lambda)$:

$$
S_{\ell}(\lambda):=P_{1} T^{\prime}(\lambda) P_{1}^{*}, \quad \operatorname{Dom}\left(S_{\ell}(\lambda)\right):=L^{2}\left(\mathbb{R}^{N}\right),
$$

where $P_{1}: L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is the projection onto the first component.
(2) " \Longrightarrow ": $S(\lambda)$ be Fredholm, $S^{\prime}(\lambda)$ be the generalized inverse of $S(\lambda)$. Show that the bounded extension in $L^{2}\left(\mathbb{R}^{N}\right) \oplus L^{2}\left(\mathbb{R}^{N}\right)$ of

$$
\begin{aligned}
& T^{\#}(\lambda):=\left(\begin{array}{cc}
S^{\prime}(\lambda) & -S^{\prime}(\lambda) F_{2}(\lambda) \\
-F_{1}(\lambda) S^{\prime}(\lambda) & \left(T_{d}-\lambda\right)^{-1}+F_{1}(\lambda) S^{\prime}(\lambda) F_{2}(\lambda)
\end{array}\right), \\
& \operatorname{Dom}\left(T^{\#}(\lambda)\right):=L^{2}\left(\mathbb{R}^{N}\right) \oplus \operatorname{Dom}\left(F_{2}(\lambda)\right),
\end{aligned}
$$

is a left approximate inverse of $T-\lambda$, where

$$
\begin{array}{ll}
F_{1}(\lambda):=\left(T_{d}-\lambda\right)^{-1} T_{c}, & \operatorname{Dom}\left(F_{1}(\lambda)\right):=H^{p-q}\left(\mathbb{R}^{N}\right) \cap L^{2}\left(\mathbb{R}^{N}\right), \\
F_{2}(\lambda):=T_{b}\left(T_{d}-\lambda\right)^{-1}, & \operatorname{Dom}\left(F_{2}(\lambda)\right):=H^{n-q}\left(\mathbb{R}^{N}\right) \cap L^{2}\left(\mathbb{R}^{N}\right) .
\end{array}
$$

Essential spectrum due to singularity
 [Wong, Comm. PDE, 10 (1988)]

Essential spectrum due to singularity

Grushin symbol class

A symbol $\sigma \in \mathcal{S}^{k}$ is said to be in the class \mathcal{S}_{0}^{k} if, for all $\alpha, \beta \in \mathbb{N}_{0}^{N}$, there is a positive function $x \mapsto \mathcal{C}_{\alpha, \beta}(x), x \in \mathbb{R}^{N}$, such that

$$
\left|\left(\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \sigma\right)(x, \xi)\right| \leq C_{\alpha, \beta}(x)\langle\xi\rangle^{k-|\alpha|}, \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N}
$$

and $\lim _{|x| \rightarrow \infty} C_{\alpha, \beta}(x)=0$ for $\beta \neq 0$.

Essential spectrum due to singularity

Grushin symbol class

A symbol $\sigma \in \mathcal{S}^{k}$ is said to be in the class \mathcal{S}_{0}^{k} if, for all $\alpha, \beta \in \mathbb{N}_{0}^{N}$, there is a positive function $x \mapsto \mathcal{C}_{\alpha, \beta}(x), x \in \mathbb{R}^{N}$, such that

$$
\left|\left(\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \sigma\right)(x, \xi)\right| \leq C_{\alpha, \beta}(x)\langle\xi\rangle^{k-|\alpha|}, \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N}
$$

and $\lim _{|x| \rightarrow \infty} C_{\alpha, \beta}(x)=0$ for $\beta \neq 0$.

Theorem

Let the symbol σ_{λ} of $S(\lambda)$ be in \mathcal{S}_{0}^{m+q} and assume that there is a symbol $\sigma_{\lambda, \infty} \in \mathcal{S}^{m+q}$ independent of x and such that

$$
\lim _{|x| \rightarrow \infty}\langle\xi\rangle^{-m-q}\left|\sigma_{\lambda}(x, \xi)-\sigma_{\lambda, \infty}(\xi)\right|=0, \quad \text { unif. wrt. } \quad \xi \in \mathbb{R}^{N}
$$

Essential spectrum due to singularity

Grushin symbol class

A symbol $\sigma \in \mathcal{S}^{k}$ is said to be in the class \mathcal{S}_{0}^{k} if, for all $\alpha, \beta \in \mathbb{N}_{0}^{N}$, there is a positive function $x \mapsto \mathcal{C}_{\alpha, \beta}(x), x \in \mathbb{R}^{N}$, such that

$$
\left|\left(\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \sigma\right)(x, \xi)\right| \leq C_{\alpha, \beta}(x)\langle\xi\rangle^{k-|\alpha|}, \quad(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N}
$$

and $\lim _{|x| \rightarrow \infty} C_{\alpha, \beta}(x)=0$ for $\beta \neq 0$.

Theorem

Let the symbol σ_{λ} of $S(\lambda)$ be in \mathcal{S}_{0}^{m+q} and assume that there is a symbol $\sigma_{\lambda, \infty} \in \mathcal{S}^{m+q}$ independent of x and such that

$$
\lim _{|x| \rightarrow \infty}\langle\xi\rangle^{-m-q}\left|\sigma_{\lambda}(x, \xi)-\sigma_{\lambda, \infty}(\xi)\right|=0, \quad \text { unif. wrt. } \quad \xi \in \mathbb{R}^{N}
$$

Then

$$
\lambda \in \sigma_{\text {ess }}(T) \Longleftrightarrow \sigma_{\lambda, \infty}(\xi)=0 \quad \text { for some } \quad \xi \in \mathbb{R}^{N} .
$$

