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r `2 = {{an}n≥1 ⊂ C :
∞∑
n=1

|an|2 <∞}

{en}n≥1 canonical bases in `2

Sen = en+1 n ≥ 1

Characterization of the invariant subspaces of S?

Classical Beurling Theory:
Inner-Outer Factorization of the functions in the Hardy space.
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? Normal operators (Spectral Theorem)

? Compact Operators

σ(T ) = {λj}j≥1 ∪ {0}

∗ 1951, J. von Newman, (Hilbert space case)

∗ 1954, Aronszajn and Smith (general case)
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r Classes of operators with known invariant subspaces:

? Normal operators (Spectral Theorem)

? Compact Operators

? Polynomially Compact Operators

∗ 1966, Bernstein and Robinson, (Hilbert space case)

∗ 1967, Halmos

∗ 1960’s, Gillespie, Hsu, Kitano...
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École Polytechnique in Paŕıs:

There exists a separable Banach space B and a linear, bounded
operator T acting on B, inyective and with dense range,

without no non-trivial closed invariant subspaces.

1987, P. Enflo “On the invariant subspace problem for Banach
spaces”, Acta Math. 158 (1987), no. 3-4, 213-313.

r 1985, C. Read, Construction of a linear bounded operator on `1

without non-trivial closed invariant subspaces.
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The big open question

Does every linear bounded operator T acting on a separable,
reflexive complex Banach space B (or a Hilbert space H) have a

non-trivial closed invariant subspace?
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r 1973, Lomonosov

Theorem (Lomonosov) Let T be a linear bounded operator on
H, T 6= CId . If T commutes with a non-null compact operator,
then T has a non-trivial closed invariant subspace. Moreover, T
has a non-trivial closed hyperinvariant subspace.

Theorem (Lomonosov) Any linear bounded operator T , not a
multiple of the identity, has a nontrivial invariant closed subspace if
it commutes with a non-scalar operator that commutes with a
nonzero compact operator.
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Classes of operators with known invariant subspaces

r Does every operator satisfy “Lomonosov Hypotheses”?

r 1980, Hadwin; Nordgren; Radjavi y Rosenthal

Construction of a ”quasi-analytic” shift S on a weighted `2 space
which has the following property: if K is a compact operator which
commutes with a nonzero, non scalar operator in the commutant
of S , then K = 0.
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r Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space H is universal if
for any linear bounded operator T in H, there exists λ ∈ C and
M∈ Lat(U) such that λT is similar to U |M , i. e., λT = J−1UJ
where J : H →M is a linear isomorphism.

r Example. Adjoint of a unilateral shift of infinite multiplicity. It
may be regarded as S∗ in (`2(H)) defined by

S∗((h0,h1, h2, · · · )) = (h1,h2, · · · )

for (h0, h1,h2, · · · ) ∈ `2(H).
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r Example. Let a > 0 and Ta : L2(0,∞)→ L2(0,∞) defined by

Taf(t) = f(t + a), for t > 0.

Ta is universal.
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A “Concrete Operator Theory” approach: universal operators

r Proposition. Let H be a Hilbert space and U a linear bounded
operator. Suppose that U is a universal operator. The following
conditions are equivalent:

1. Every linear bounded operator T on H has a non-trivial closed
invariant subspace.

2. Every closed invariant subspace M of U of dimension greater
than 1 contains a proper closed and invariant subspace (i.e. the
minimal non-trivial closed and invariant subspaces for U are
one-dimensional).
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r Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space H is universal if
for any linear bounded operator T in H, there exists λ ∈ C and
M∈ Lat(U) such that λT is similar to U |M , i. e., λT = J−1UJ
where J : H →M is a linear isomorphism.

r 1969, Caradus

Let U be a linear bounded operator on a Hilbert space. Assume
that

1 Ker(U) is infinite dimensional,

2 U is surjective.

Then U is universal.



Idea of the Proof

Write K =Ker U

1 UV = Id,

2 UW = 0,

3 kerW = {0},
4 ImW = K and ImV = K⊥.

• M =Im J is a closed subspace of U.

• J is an isomorphism onto M.



Idea of the Proof

Write K =Ker U

Step 1: Construct V,W ∈ L(H) such that

1 UV = Id,

2 UW = 0,

3 kerW = {0},
4 ImW = K and ImV = K⊥.

• M =Im J is a closed subspace of U.

• J is an isomorphism onto M.



Idea of the Proof

Write K =Ker U

Step 1: Construct V,W ∈ L(H) such that

1 UV = Id,

2 UW = 0,

3 kerW = {0},
4 ImW = K and ImV = K⊥.

• M =Im J is a closed subspace of U.

• J is an isomorphism onto M.



Idea of the Proof

Write K =Ker U

Step 1: Construct V,W ∈ L(H) such that

1 UV = Id,

2 UW = 0,

3 kerW = {0},
4 ImW = K and ImV = K⊥.

Step 2: Prove that U is universal.

• M =Im J is a closed subspace of U.

• J is an isomorphism onto M.



Idea of the Proof

Write K =Ker U

Step 1: Construct V,W ∈ L(H) such that

1 UV = Id,

2 UW = 0,

3 kerW = {0},
4 ImW = K and ImV = K⊥.

Step 2: Prove that U is universal.
Let T be a linear bounded operator on H.

• M =Im J is a closed subspace of U.

• J is an isomorphism onto M.



Idea of the Proof

Write K =Ker U

Step 1: Construct V,W ∈ L(H) such that

1 UV = Id,

2 UW = 0,

3 kerW = {0},
4 ImW = K and ImV = K⊥.

Step 2: Prove that U is universal.
Let T be a linear bounded operator on H.
Let λ 6= 0 such that |λ| ‖T‖ ‖U‖ < 1 and define

J =
∞∑
k=0

λkVkWTk.

• M =Im J is a closed subspace of U.

• J is an isomorphism onto M.



Idea of the Proof

Write K =Ker U

Step 1: Construct V,W ∈ L(H) such that

1 UV = Id,

2 UW = 0,

3 kerW = {0},
4 ImW = K and ImV = K⊥.

Step 2: Prove that U is universal.
Let T be a linear bounded operator on H.
Let λ 6= 0 such that |λ| ‖T‖ ‖U‖ < 1 and define

J =
∞∑
k=0

λkVkWTk.

J satisfies J = W + λVJT and therefore, UJ = λJT.

• M =Im J is a closed subspace of U.

• J is an isomorphism onto M.



Idea of the Proof

Write K =Ker U

Step 1: Construct V,W ∈ L(H) such that

1 UV = Id,

2 UW = 0,

3 kerW = {0},
4 ImW = K and ImV = K⊥.

Step 2: Prove that U is universal.
Let T be a linear bounded operator on H.
Let λ 6= 0 such that |λ| ‖T‖ ‖U‖ < 1 and define

J =
∞∑
k=0

λkVkWTk.

J satisfies J = W + λVJT and therefore, UJ = λJT. In addition,

• M =Im J is a closed subspace of U.

• J is an isomorphism onto M.
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Let ϕ be a hyperbolic automorphism of D. For every λ in the
interior of the spectrum of Cϕ, Cϕ − λI is universal in H2.

r Disc automorphisms

ϕ(z) = eiθ
p− z

1− pz
(z ∈ D).

where p ∈ D and −π < θ ≤ π.

? Parabolic. ϕ has just one fixed point α ∈ ∂D (⇔ |p| = cos(θ/2))

? Hyperbolic. ϕ has two fixed points α and β, such that
α, β ∈ ∂D (⇔ |p| > cos(θ/2))

? Elliptic. ϕ has two fixed points α and β, with α ∈ D
(⇔ |p| < cos(θ/2))
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r Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let ϕ be a hyperbolic automorphism of D. For every λ in the
interior of the spectrum of Cϕ, Cϕ − λI is universal in H2.

Let ϕ be a hyperbolic automorphism of D.

We may assume that ϕ fixes 1 and −1. Then,

ϕ(z) =
z + r

1 + rz
, 0 < r < 1.
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Every linear bounded operator T has a closed
non-trivial invariant subspace

m

for any f ∈ H2, not an eigenfunction of Cϕ, there exists
g ∈ span{Cn

ϕf : n ≥ 0} such that g 6= 0 and

span{Cn
ϕg : n ≥ 0} 6= span{Cn

ϕf : n ≥ 0}.

m

the minimal non-trivial closed invariant

subspaces for Cϕ are one-dimensional
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Question

Which conditions on f ensure that Kf := span{Cn
ϕf : n ≥ 0} is (or

not) minimal?

Mortini (1995), Matache (1998), Chkliar (1997), Shapiro (2011),
GG-Gorkin (2011), Mortini (2013)...
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Question

Eigenfuntions of Cϕ?

r 2012, GG, Gorkin and Suárez, Constructive characterization of
eigenfunctions of Cϕ in the Hardy spaces Hp
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Universal operators vs. Lomonosov Theorem

r Naive Question: Does there exist a universal operator which
conmutes with a non-null compact operator in a non-trivial way?
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An easy computation shows that every operator that commutes
with S∗ has the form

A ∼


A0 A−1 A−2 A−3 · · ·
0 A0 A−1 A−2 · · ·
0 0 A0 A−1 · · ·

. . .


an upper triangular block Toeplitz matrix.

Observe that:

• This is an upper triangular block matrix whose entries on each
diagonal are the same operator on the infinite dimensional
Hilbert space W.

• Every block in such a matrix occurs infinitely often.

• So, the only compact operator that commutes with the
universal operator S∗ is 0, not an interesting compact
operator!
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Let ϕ be a hyperbolic automorphism of D. Then C∗ϕ is similar to
the Toeplitz operator Tψ, where ψ is the covering map of the unit
disc onto the interior of the spectrum σ(Cϕ).

r Theorem (1980, Cowen)

A Toeplitz operator Tψ in H2, where ψ ∈ H∞ is an inner function
or a covering map conmutes with a compact operator K if and
only if K = 0.r Straightforward consequence

Known universal operators are not commuting with non-null
compact operators.
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Universal operators

r Theorem [2014, Cowen-GG] There exists a universal operator
which commutes with an injective, dense range compact operator.



A universal operator which commutes with a compact operator



Compact operators commuting with universal operators

We have seen that some universal operators commute with a
compact operator and others do not.



Compact operators commuting with universal operators

We have seen that some universal operators commute with a
compact operator and others do not.

Observation: There are many more compact operators than just
one commuting with the universal operator T∗ϕ.



Compact operators commuting with universal operators

We have seen that some universal operators commute with a
compact operator and others do not.

Observation: There are many more compact operators than just
one commuting with the universal operator T∗ϕ.

Definition. Let Kϕ be the set of compact operators that commute
with T∗ϕ, that is,

Kϕ = {G ∈ B(H2) : G is compact, and T∗ϕG = GT∗ϕ}



Compact operators commuting with universal operators

We have seen that some universal operators commute with a
compact operator and others do not.

Observation: There are many more compact operators than just
one commuting with the universal operator T∗ϕ.

Definition. Let Kϕ be the set of compact operators that commute
with T∗ϕ, that is,

Kϕ = {G ∈ B(H2) : G is compact, and T∗ϕG = GT∗ϕ}

Remark. Kϕ 6= (0).
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Compact operators commuting with universal operators

If F is a bounded operator on H2, we will write {F}′ for the
commutant of F, the set of operators that commute with F, that
is,

{F}′ = {G ∈ B(H2) : GF = FG}.

For any operator F, the commutant {F}′ is a norm-closed
subalgebra of B(H2).



Compact operators commuting with universal operators

Theorem [2015, Cowen, GG] The set Kϕ is a closed subalgebra
of {T∗ϕ}′ that is a two-sided ideal in {T∗ϕ}′. In particular, if G is a
compact operator in Kϕ and g and h are bounded analytic
functions on the disk, then T∗gG, GT∗h , and T∗gGT∗h are all in Kϕ.
Moreover, every operator in Kϕ is quasi-nilpotent.
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More universal operators II

r Theorem [2017, Cowen-GG] There exists a universal operator
U which commutes with an injective, dense range compact
operator. Moreover, U = T∗φ acting on the Bergman space A2,
where φ ∈ H∞.

r Corollary. If f ∈ H∞, f 6= cte, and T∗f conmutes with a non-zero
compact operator, then there exists a bacwardshift invariant
subspace L such that L is invariant for any operator in the
conmutant of T∗f , that is, {T∗f }′.

r Question. Characterization of the bacwardshift invariant
subspaces in the Bergman spaces A2? Well-Known: Structure is
extremely complicated (Borichev, Hedenmalm, Shimorim,
Aleman-Richter-Sundberg...)
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Let A be a linear bounded operator on a Hilbert space and T a
universal operator which commutes with a compact operator W.

• WLOG A IS the restriction of T to M.

• WLOG M 6= H because if so, Lomonosov gives hyperinvariant
subspace

• WLOG T and A are invertible: replace T by T + (1 + ‖T‖)I

• H = M⊕M⊥ and with respect to this decomposition

T ∼
(

A B
0 C

)
and W ∼

(
P Q
R S

)
where A, C are invertible and P, Q, R, S are compact.

• NOT P = 0 and R = 0 because kernel(W) = (0).
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Consequences and Further Observations

• From the relation, TW = WT, it follows that

AP + BR = PA and CR = RA

Observation: Since A is the operator of primary interest, Equation

AP + BR = PA

is not so interesting if P = 0.



Consequences, Further Observations, and a Question

r Lemma. If the universal operator T = T∗ϕ and the compact
operator W = W∗ψ,J have the representations

T ∼
(

A B
0 C

)
and W ∼

(
P Q
R S

)
respect H = M⊕M⊥, then there are a universal operator T̃ and
an injective compact operator W̃ with dense range that commute
for which P̃ in a replacement of P is not zero, that is, without loss
of generality, we may assume P 6= 0.
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r Theorem [Cowen, GG] Let the universal operator T and the
commuting injective compact operator W with dense range having
the representations with P 6= 0. Then the following are true:

• Either R 6= 0 or A has a nontrivial hyperinvariant subspace.

• Either ker(R) = (0) or A has a nontrivial invariant subspace.

• Either B 6= 0 or A has a nontrivial hyperinvariant subspace.
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• Either R 6= 0 or A has a nontrivial hyperinvariant subspace.
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• Either B 6= 0 or A has a nontrivial hyperinvariant subspace.
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Consequences, Further Observations, and a Question

Theorem [Cowen, GG] Suppose L is an invariant subspace for
the universal operator T∗ϕ and the block matrix(

A B
0 C

)
represents T∗ϕ based on the splitting H2 = M⊕M⊥. Then, the

projection of L⊥ onto M is an invariant linear manifold for A∗, the
adjoint of the restriction of T∗ϕ to M.

Remark. Any of the linear manifolds provided by this Theorem are
proper and invariant but, in principle, they are not necessarily
non-dense.



Consequences, Further Observations, and a Question

Question: Is any of those proper A∗-invariant linear manifolds
non-dense?
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