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« Invariant Subspace Problem

T : H — H,linear and bounded
T(M) C (M), closed subspace

+« Remarks

@ Finite dimensional complex Hilbert spaces.

® Non-separable Hilbert spaces.
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n=1

{en}n>1 canonical bases in 02

Sen = eny1 n>1

Characterization of the invariant subspaces of 57

ker(S — Al) = {0} for any A € C. That is, 0,(S) = 0.
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e 2 ={{an}n>1 CC: Y |anf* < o0}

n=1

{en}n>1 canonical bases in 02

Sen = eny1 n>1
Characterization of the invariant subspaces of 57

Classical Beurling Theory:
Inner-Outer Factorization of the functions in the Hardy space.
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o Classes of operators with known invariant subspaces:

* Normal operators (Spectral Theorem)

* Compact Operators

* Polynomially Compact Operators
* 1966, Bernstein and Robinson, (Hilbert space case)
* 1967, Halmos
x 1960's, Gillespie, Hsu, Kitano...
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In 1975, P. Enflo showed in the Seminaire Maurey-Schwartz at the
Ecole Polytechnique in Paris:

There exists a separable Banach space B and a linear, bounded
operator T acting on B, inyective and with dense range,
without no non-trivial closed invariant subspaces.

1987, P. Enflo “On the invariant subspace problem for Banach
spaces’, Acta Math. 158 (1987), no. 3-4, 213-313.

« 1985, C. Read, Construction of a linear bounded operator on ¢}
without non-trivial closed invariant subspaces.
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The big open question

Does every linear bounded operator T acting on a separable,
reflexive complex Banach space B (or a Hilbert space H) have a
non-trivial closed invariant subspace?
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Classes of operators with known invariant subspaces

« 1973, Lomonosov

Theorem (Lomonosov) Let T be a linear bounded operator on
H, T #Cld. If T commutes with a non-null compact operator,
then T has a non-trivial closed invariant subspace. Moreover, T
has a non-trivial closed hyperinvariant subspace.

Theorem (Lomonosov) Any linear bounded operator T, not a
multiple of the identity, has a nontrivial invariant closed subspace if
it commutes with a non-scalar operator that commutes with a
nonzero compact operator.
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» Does every operator satisfy “Lomonosov Hypotheses”?

« 1980, Hadwin; Nordgren; Radjavi y Rosenthal

Construction of a "quasi-analytic” shift S on a weighted ¢ space
which has the following property: if K is a compact operator which
commutes with a nonzero, non scalar operator in the commutant
of S, then K = 0.
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« Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space H is universal if
for any linear bounded operator T in H, there exists A € C and
M € Lat(U) such that AT is similar to U |, i. e, AT = J71UJ
where J : H — M is a linear isomorphism.

« Example. Adjoint of a unilateral shift of infinite multiplicity. It
may be regarded as S* in (¢?(#)) defined by

S*((ho, h1, ha,---)) = (hy,hg,---)

for (h(),hl7 hg, cee ) c 62(7'[)



A “Concrete Operator Theory” approach

« Universal Operators (in the sense of G. C. Rota)

« Example. Let a > 0 and T, : L2(0,00) — L?(0, 00) defined by
Taf(t) = f(t + a), for t > 0.

T, is universal.
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A “Concrete Operator Theory” approach: universal operators

« Proposition. Let H be a Hilbert space and U a linear bounded
operator. Suppose that U is a universal operator. The following
conditions are equivalent:

1. Every linear bounded operator T on H has a non-trivial closed
invariant subspace.

2. Every closed invariant subspace M of U of dimension greater
than 1 contains a proper closed and invariant subspace (i.e. the
minimal non-trivial closed and invariant subspaces for U are
one-dimensional).
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« Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space H is universal if
for any linear bounded operator T in H, there exists A € C and
M € Lat(U) such that AT is similar to U |, i. e, AT = J71UJ
where J : H — M is a linear isomorphism.

e 1969, Caradus

Let U be a linear bounded operator on a Hilbert space. Assume
that

® Ker(U) is infinite dimensional,
® U is surjective.

Then U is universal.
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Idea of the Proof
Write IC =Ker U
Step 1: Construct V, W € L(#) such that
o UV =1d,
® UW =0,
© kerW = {0},
® ImW = K and ImV = K+

Step 2: Prove that U is universal.
Let T be a linear bounded operator on H.
Let X\ # 0 such that |A| | T|| [[U|| < 1 and define

o
J=) AVEWTE,
k=0
J satisfies J = W 4+ AVJT and therefore, UJ = AJT. In addition,
e M =Im J is a closed subspace of U.
e J is an isomorphism onto M.
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« Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let ¢ be a hyperbolic automorphism of D. For every X in the
interior of the spectrum of C,, C,, — Al is universal in H2.

« Disc automorphisms
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SO(Z) e 1—pz (Z )
wherepe D and — 7 <0 <.

* Parabolic. ¢ has just one fixed point a € 9D (< |p| = cos(6/2))

* Hyperbolic. ¢ has two fixed points a and S, such that
a, € 0D (< |p| > cos(6/2))

* Elliptic. ¢ has two fixed points o and 3, with o € D
(¢ Ip| < cos(6/2))
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o Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let ¢ be a hyperbolic automorphism of . For every A in the
interior of the spectrum of C,, C, — Al is universal in H2.

Let ¢ be a hyperbolic automorphism of D.

We may assume that ¢ fixes 1 and —1.
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o Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let ¢ be a hyperbolic automorphism of . For every A in the
interior of the spectrum of C,, C, — Al is universal in H2.

Let ¢ be a hyperbolic automorphism of D.

We may assume that ¢ fixes 1 and —1. Then,

Z+r
- 0 1.
wlz) =11, <r<
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Examples of universal operators

Every linear bounded operator T has a closed
non-trivial invariant subspace

)

for any f € H?, not an eigenfunction of C,, there exists
g € span{Cyf : n > 0} such that g # 0 and

span{Cgg: n > 0} # span{C_f : n > 0}.

)

the minimal non-trivial closed invariant

subspaces for C,, are one-dimensional
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Question

Which conditions on f ensure that Ky :=span{C{f : n > 0} is (or
not) minimal?

Mortini (1995), Matache (1998), Chkliar (1997), Shapiro (2011),
GG-Gorkin (2011), Mortini (2013)...
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Question

Eigenfuntions of C,?

« 2012, GG, Gorkin and Sudrez, Constructive characterization of
eigenfunctions of C,, in the Hardy spaces HP
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Universal operators vs. Lomonosov Theorem

« Naive Question: Does there exist a universal operator which
conmutes with a non-null compact operator in a non-trivial way?
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Universal operators
An easy computation shows that every operator that commutes
with S* has the form

Ao Aq A, A s
0 A A A,
A~1 0 0 Ay A,

an upper triangular block Toeplitz matrix.

Observe that:

e This is an upper triangular block matrix whose entries on each
diagonal are the same operator on the infinite dimensional
Hilbert space W.

e Every block in such a matrix occurs infinitely often.

e So, the only compact operator that commutes with the
universal operator S* is 0, not an interesting compact
operator!
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Universal operators
« Theorem (2011, Cowen-GG)

Let ¢ be a hyperbolic automorphism of . Then C7, is similar to
the Toeplitz operator Ty, where 1 is the covering map of the unit
disc onto the interior of the spectrum o(C,,).

« Theorem (1980, Cowen)

A Toeplitz operator Ty, in H?, where ¢ € H*® is an inner function
or a covering map conmutes with a compact operator K if and
only if K=0.

« Straightforward consequence

Known universal operators are not commuting with non-null
compact operators.
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o Theorem [2014, Cowen-GG] There exists a universal operator
which commutes with an injective, dense range compact operator.
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We have seen that some universal operators commute with a
compact operator and others do not.

Observation: There are many more compact operators than just
one commuting with the universal operator Tf;.

Definition. Let U, be the set of compact operators that commute
with T, that is,

K, = {G € B(H?) : G is compact, and T:’;G = GTZ';}

Remark. K, # (0).
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Compact operators commuting with universal operators

If F is a bounded operator on H?, we will write {F}’ for the
commutant of F, the set of operators that commute with F, that

| {FY = {G € B(H?) : GF = FG}.

For any operator F, the commutant {F}’ is a norm-closed
subalgebra of B(H?).



Compact operators commuting with universal operators

Theorem [2015, Cowen, GG] The set Ky, is a closed subalgebra
of {T}}' that is a two-sided ideal in {T7}". In particular, if G is a
compact operator in K, and g and h are bounded analytic
functions on the disk, then T;‘G, GT}, and TgGT;‘; are all in IC,.
Moreover, every operator in Ky, is quasi-nilpotent.
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More universal operators |l

o Theorem [2017, Cowen-GG] There exists a universal operator
U which commutes with an injective, dense range compact
operator. Moreover, U = T;@ acting on the Bergman space A?,
where ¢ € H*™.

o Corollary. If f € H*, { # cte, and T} conmutes with a non-zero
compact operator, then there exists a bacwardshift invariant
subspace L such that L is invariant for any operator in the
conmutant of Tf, that is, {T}}'.

o Question. Characterization of the bacwardshift invariant
subspaces in the Bergman spaces A2? Well-Known: Structure is
extremely complicated (Borichev, Hedenmalm, Shimorim,
Aleman-Richter-Sundberg...)
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Let A be a linear bounded operator on a Hilbert space and T a
universal operator which commutes with a compact operator W.

e WLOG A IS the restriction of T to M.

e WLOG M # H because if so, Lomonosov gives hyperinvariant
subspace

e WLOG T and A are invertible: replace T by T + (1+ |T||)I
e 7 =M@ Mt and with respect to this decomposition

A B P Q
TN(OC) and W~<RS>

where A, C are invertible and P, Q, R, S are compact.
e NOT P =0 and R = 0 because kernel(W) = (0).
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Consequences and Further Observations

e From the relation, TW = WT, it follows that

AP+BR=PA and CR=RA

Observation: Since A is the operator of primary interest, Equation
AP +BR =PA

is not so interesting if P = 0.



Consequences, Further Observations, and a Question

o Lemma. If the universal operator T = T;‘: and the compact
operator W = W:Z ; have the representations

A B P Q
TN(OC) and WN<RS>
respect H = M @ M™, then there are a universal operator T and
an injective compact operator W with dense range that commute

for which P in a replacement of P is not zero, that is, without loss
of generality, we may assume P # 0.
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« Theorem [Cowen, GG] Let the universal operator T and the
commuting injective compact operator W with dense range having
the representations with P # 0. Then the following are true:

e Either R # 0 or A has a nontrivial hyperinvariant subspace.
e Either ker(R) = (0) or A has a nontrivial invariant subspace.

e Either B £ 0 or A has a nontrivial hyperinvariant subspace.
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Consequences, Further Observations, and a Question

Theorem [Cowen, GG] Suppose L is an invariant subspace for
the universal operator Tf; and the block matrix

A B
0 C
represents T based on the splitting H? = M & M~ Then, the

projection of L' onto M is an invariant linear manifold for A*, the
adjoint of the restriction of T} to M.

Remark. Any of the linear manifolds provided by this Theorem are
proper and invariant but, in principle, they are not necessarily
non-dense.



Consequences, Further Observations, and a Question

Question: Is any of those proper A*-invariant linear manifolds
non-dense?
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