The Invariant Subspace Problem: A Concrete Operator Theory Approach

C.I.R.M.

Luminy, June 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Invariant Subspace Problem: A Concrete Operator Theory Approach

C.I.R.M.

Luminy, June 2017

Joint work with Carl C. Cowen (Purdue University-Indiana University)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Invariant Subspace Problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Invariant Subspace Problem

 $\left. \begin{array}{l} \mathcal{T}:\mathcal{H}\to\mathcal{H}, \text{linear and bounded} \\ \\ \mathcal{T}(\mathcal{M})\subset(\mathcal{M}), \text{closed subspace} \end{array} \right\}$

• Invariant Subspace Problem

 $\left.\begin{array}{l} \mathcal{T}:\mathcal{H}\to\mathcal{H}, \text{linear and bounded}\\ \\ \mathcal{T}(M)\subset(M), \text{closed subspace}\end{array}\right\} \implies M=\{0\} \text{ or } M=\mathcal{H}?$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite dimensional complex Hilbert spaces.

• Invariant Subspace Problem

$$\left.\begin{array}{l} \mathcal{T}:\mathcal{H}\to\mathcal{H}, \text{linear and bounded}\\ \\ \mathcal{T}(M)\subset(M), \text{closed subspace}\end{array}\right\} \implies M=\{0\} \text{ or } M=\mathcal{H}?$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remarks

1 Finite dimensional complex Hilbert spaces.

• Invariant Subspace Problem

$$T: \mathcal{H} \to \mathcal{H}, \text{linear and bounded} \\ T(M) \subset (M), \text{closed subspace} \end{cases} \implies M = \{0\} \text{ or } M = \mathcal{H}?$$

・ロト・日本・モト・モート ヨー うへで

Remarks

1 Finite dimensional complex Hilbert spaces.

Example: \mathbb{R}^2

$$T = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix},$$

respect to the canonical bases $\{e_1, e_2\}$.

Example: \mathbb{R}^2

$${\mathcal T} = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix},$$

respect to the canonical bases $\{e_1, e_2\}$.

${\mathcal T}$ has no non-trivial invariant subspaces in ${\mathbb R}^2$

• Invariant Subspace Problem

$$\left.\begin{array}{l} T:\mathcal{H}\to\mathcal{H}, \text{linear and bounded}\\ \\ T(M)\subset(M), \text{closed subspace}\end{array}\right\} \implies M=\{0\} \text{ or } M=\mathcal{H}?$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Remarks

Finite dimensional complex Hilbert spaces.
Non-separable Hilbert spaces.

• Invariant Subspace Problem

$$\left.\begin{array}{l} T:\mathcal{H}\to\mathcal{H}, \text{linear and bounded}\\ \\ T(M)\subset(M), \text{closed subspace}\end{array}\right\} \implies M=\{0\} \text{ or } M=\mathcal{H}?$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Remarks

- 1 Finite dimensional complex Hilbert spaces.
- 2 Non-separable Hilbert spaces.

•
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

 $\{e_n\}_{n\geq 1}$ canonical bases in ℓ^2

•
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

 $\{e_n\}_{n\geq 1}$ canonical bases in ℓ^2

$$Se_n = e_{n+1} \qquad n \ge 1$$

•
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

 $\{e_n\}_{n\geq 1}$ canonical bases in ℓ^2

$$Se_n = e_{n+1}$$
 $n \ge 1$

Characterization of the invariant subspaces of S?

•
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

 $\{e_n\}_{n\geq 1}$ canonical bases in ℓ^2

$$Se_n = e_{n+1}$$
 $n \ge 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Characterization of the invariant subspaces of S?

 $\ker(S - \lambda I) = \{0\}$ for any $\lambda \in \mathbb{C}$.

•
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

 $\{e_n\}_{n\geq 1}$ canonical bases in ℓ^2

$$Se_n = e_{n+1} \qquad n \ge 1$$

Characterization of the invariant subspaces of S?

$$\ker(S - \lambda I) = \{0\}$$
 for any $\lambda \in \mathbb{C}$. That is, $\sigma_p(S) = \emptyset$.

•
$$\ell^2 = \{\{a_n\}_{n \ge 1} \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n|^2 < \infty\}$$

 $\{e_n\}_{n\geq 1}$ canonical bases in ℓ^2

$$Se_n = e_{n+1}$$
 $n \ge 1$

Characterization of the invariant subspaces of S?

Classical Beurling Theory: Inner-Outer Factorization of the functions in the Hardy space.

• Classes of operators with known invariant subspaces:

・ロト・日本・モト・モート ヨー うへで

• Classes of operators with known invariant subspaces:

* Normal operators (Spectral Theorem)

・ロト・日本・モト・モート ヨー うへで

• Classes of operators with known invariant subspaces:

* Normal operators (Spectral Theorem)

***** Compact Operators

• Classes of operators with known invariant subspaces:

* Normal operators (Spectral Theorem)

***** Compact Operators

 $\sigma(T) = \{\lambda_j\}_{j\geq 1} \cup \{0\}$

• Classes of operators with known invariant subspaces:

* Normal operators (Spectral Theorem)

 \star Compact Operators

$$\sigma(T) = \{\lambda_j\}_{j\geq 1} \cup \{0\}$$

* 1951, J. von Newman, (Hilbert space case)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classes of operators with known invariant subspaces:

* Normal operators (Spectral Theorem)

 \star Compact Operators

$$\sigma(T) = \{\lambda_j\}_{j\geq 1} \cup \{0\}$$

- * 1951, J. von Newman, (Hilbert space case)
- * 1954, Aronszajn and Smith (general case)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Classes of operators with known invariant subspaces:

* Normal operators (Spectral Theorem)

***** Compact Operators

* Polynomially Compact Operators

• Classes of operators with known invariant subspaces:

* Normal operators (Spectral Theorem)

 \star Compact Operators

- * Polynomially Compact Operators
 - * 1966, Bernstein and Robinson, (Hilbert space case)

• Classes of operators with known invariant subspaces:

- * Normal operators (Spectral Theorem)
- ***** Compact Operators
- * Polynomially Compact Operators
 - * 1966, Bernstein and Robinson, (Hilbert space case)

・ロト・日本・モート モー うへぐ

* 1967, Halmos

• Classes of operators with known invariant subspaces:

- * Normal operators (Spectral Theorem)
- ***** Compact Operators
- * Polynomially Compact Operators
 - * 1966, Bernstein and Robinson, (Hilbert space case)

- * 1967, Halmos
- * 1960's, Gillespie, Hsu, Kitano...

In 1975, P. Enflo showed in the *Seminaire Maurey-Schwartz* at the *École Polytechnique in París*:

・ロト・日本・モト・モート ヨー うへで

In 1975, P. Enflo showed in the *Seminaire Maurey-Schwartz* at the *École Polytechnique in París*:

There exists a separable Banach space \mathcal{B} and a linear, bounded operator T acting on \mathcal{B} , **inyective and with dense range**, without no non-trivial closed invariant subspaces.

In 1975, P. Enflo showed in the *Seminaire Maurey-Schwartz* at the *École Polytechnique in Paris*:

There exists a separable Banach space \mathcal{B} and a linear, bounded operator T acting on \mathcal{B} , **inyective and with dense range**, without no non-trivial closed invariant subspaces.

1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. **158** (1987), no. 3-4, 213-313.

In 1975, P. Enflo showed in the *Seminaire Maurey-Schwartz* at the *École Polytechnique in París*:

There exists a separable Banach space \mathcal{B} and a linear, bounded operator T acting on \mathcal{B} , **inyective and with dense range**, without no non-trivial closed invariant subspaces.

1987, P. Enflo "On the invariant subspace problem for Banach spaces", Acta Math. **158** (1987), no. 3-4, 213-313.

• 1985, C. Read, Construction of a linear bounded operator on ℓ^1 without non-trivial closed invariant subspaces.

The big open question

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The big open question

Does every linear bounded operator T acting on a separable, reflexive complex Banach space B (or a Hilbert space H) have a non-trivial closed invariant subspace?

Classes of operators with known invariant subspaces

• 1973, Lomonosov

Classes of operators with known invariant subspaces

• 1973, Lomonosov

Theorem (Lomonosov) Let T be a linear bounded operator on \mathcal{H} , $T \neq \mathbb{C}Id$. If T commutes with a non-null compact operator, then T has a non-trivial closed invariant subspace.
• 1973, Lomonosov

Theorem (Lomonosov) Let T be a linear bounded operator on \mathcal{H} , $T \neq \mathbb{C}Id$. If T commutes with a non-null compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

• 1973, Lomonosov

Theorem (Lomonosov) Let T be a linear bounded operator on \mathcal{H} , $T \neq \mathbb{C}Id$. If T commutes with a non-null compact operator, then T has a non-trivial closed invariant subspace. Moreover, T has a non-trivial closed hyperinvariant subspace.

Theorem (Lomonosov) Any linear bounded operator T, not a multiple of the identity, has a nontrivial invariant closed subspace if it commutes with a non-scalar operator that commutes with a nonzero compact operator.

・ロト・日本・モト・モート ヨー うへで

• Does every operator satisfy "Lomonosov Hypotheses"?

• Does every operator satisfy "Lomonosov Hypotheses"?

• 1980, Hadwin; Nordgren; Radjavi y Rosenthal

• Does every operator satisfy "Lomonosov Hypotheses"?

• 1980, Hadwin; Nordgren; Radjavi y Rosenthal

Construction of a "quasi-analytic" shift S on a weighted ℓ^2 space which has the following property: if K is a compact operator which commutes with a nonzero, non scalar operator in the commutant of S, then K = 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Universal Operators (in the sense of G. C. Rota)

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in \text{Lat}(U)$ such that λT is similar to $U|_{\mathcal{M}}$,

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in Lat(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i. e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in Lat(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i. e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

• Example. Adjoint of a unilateral shift of infinite multiplicity.

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in Lat(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i. e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

• Example. Adjoint of a unilateral shift of infinite multiplicity. It may be regarded as S^* in $(\ell^2(\mathcal{H}))$ defined by

 $\mathrm{S}^*((\mathrm{h}_0,\mathrm{h}_1,\mathrm{h}_2,\cdots))=(\mathrm{h}_1,\mathrm{h}_2,\cdots)$

for $(h_0, h_1, h_2, \cdots) \in \ell^2(\mathcal{H}).$

• Universal Operators (in the sense of G. C. Rota)

- Example. Let a>0 and $T_a:L^2(0,\infty)\to L^2(0,\infty)$ defined by

 $T_af(t)=f(t+a),\qquad \text{for }t>0.$

 $T_{\rm a}$ is universal.

• **Proposition.** Let \mathcal{H} be a Hilbert space and U a linear bounded operator. Suppose that U is a universal operator. The following conditions are equivalent:

• **Proposition.** Let \mathcal{H} be a Hilbert space and U a linear bounded operator. Suppose that U is a universal operator. The following conditions are equivalent:

1. Every linear bounded operator T on ${\cal H}$ has a non-trivial closed invariant subspace.

• **Proposition.** Let \mathcal{H} be a Hilbert space and U a linear bounded operator. Suppose that U is a universal operator. The following conditions are equivalent:

1. Every linear bounded operator T on ${\cal H}$ has a non-trivial closed invariant subspace.

2. Every closed invariant subspace \mathcal{M} of U of dimension greater than 1 contains a **proper** closed and invariant subspace

• **Proposition.** Let \mathcal{H} be a Hilbert space and U a linear bounded operator. Suppose that U is a universal operator. The following conditions are equivalent:

1. Every linear bounded operator T on ${\cal H}$ has a non-trivial closed invariant subspace.

2. Every closed invariant subspace \mathcal{M} of U of dimension greater than 1 contains a **proper** closed and invariant subspace (i.e. the **minimal** non-trivial closed and invariant subspaces for U are one-dimensional).

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in Lat(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i. e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ker(U) is infinite dimensional,

2 U is surjective.

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in Lat(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i. e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

• 1969, Caradus

- Ker(U) is infinite dimensional,
- U is surjective.

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in Lat(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i. e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

• 1969, Caradus

Let \boldsymbol{U} be a linear bounded operator on a Hilbert space. Assume that

- Ker(U) is infinite dimensional,
- 2 U is surjective.

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in Lat(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i. e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

• 1969, Caradus

Let \boldsymbol{U} be a linear bounded operator on a Hilbert space. Assume that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 Ker(U) is infinite dimensional,

2 U is surjective.

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in Lat(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i. e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

• 1969, Caradus

Let \boldsymbol{U} be a linear bounded operator on a Hilbert space. Assume that

- **1** Ker(U) is infinite dimensional,
- **2** U is surjective.

• Universal Operators (in the sense of G. C. Rota)

A linear bounded operator U in a Hilbert space \mathcal{H} is **universal** if for any linear bounded operator T in \mathcal{H} , there exists $\lambda \in \mathbb{C}$ and $\mathcal{M} \in Lat(U)$ such that λT is similar to $U|_{\mathcal{M}}$, i. e., $\lambda T = J^{-1}UJ$ where $J : \mathcal{H} \to \mathcal{M}$ is a linear isomorphism.

• 1969, Caradus

Let \boldsymbol{U} be a linear bounded operator on a Hilbert space. Assume that

- **1** Ker(U) is infinite dimensional,
- **2** U is surjective.

Then U is universal.

Write $\mathcal{K} = \mathsf{Ker} \ \mathrm{U}$

- $\bigcirc UV = Id,$
- **2** UW = 0,
- **3** ker $W = \{0\},\$
- $ImW = \mathcal{K} and ImV = \mathcal{K}^{\perp}.$
- $\mathcal{M} = \mathsf{Im} \ J$ is a closed subspace of U.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Write $\mathcal{K} = \mathsf{Ker} \ \mathrm{U}$

Step 1: Construct $\mathrm{V},\mathrm{W}\in\mathcal{L}(\mathcal{H})$ such that

- $\bigcirc UV = Id,$
- **2** UW = 0,
- **3** ker $W = \{0\},\$
- 4 ImW = \mathcal{K} and ImV = \mathcal{K}^{\perp} .
- $\mathcal{M} = \mathsf{Im} \ J$ is a closed subspace of U.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Write $\mathcal{K} = \mathsf{Ker} \ \mathrm{U}$

Step 1: Construct $\mathrm{V},\mathrm{W}\in\mathcal{L}(\mathcal{H})$ such that

- 1 UV = Id,
- **2** UW = 0,
- **3** ker $W = \{0\}$,
- **4** $ImW = \mathcal{K} and ImV = \mathcal{K}^{\perp}.$
 - $\mathcal{M} = \mathsf{Im } J$ is a closed subspace of U.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Write $\mathcal{K} = \mathsf{Ker} \ \mathrm{U}$

Step 1: Construct $\mathrm{V},\mathrm{W}\in\mathcal{L}(\mathcal{H})$ such that

- 1 UV = Id,
- **2** UW = 0,
- **3** ker $W = \{0\}$,
- 4 ImW = \mathcal{K} and ImV = \mathcal{K}^{\perp} .

Step 2: Prove that ${\rm U}$ is universal.

• $\mathcal{M} = \mathsf{Im } J$ is a closed subspace of U.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Write $\mathcal{K} = \mathsf{Ker} \ \mathrm{U}$

Step 1: Construct $\mathrm{V},\mathrm{W}\in\mathcal{L}(\mathcal{H})$ such that

- 1 UV = Id,
- **2** UW = 0,
- **3** ker $W = \{0\}$,
- 4 ImW = \mathcal{K} and ImV = \mathcal{K}^{\perp} .

Step 2: Prove that U is universal. Let T be a linear bounded operator on \mathcal{H} .

• $\mathcal{M} = \mathsf{Im} \ J$ is a closed subspace of U.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\bullet~J$ is an isomorphism onto $\mathcal{M}.$

Write $\mathcal{K} = \mathsf{Ker} \ \mathrm{U}$

Step 1: Construct $\mathrm{V},\mathrm{W}\in\mathcal{L}(\mathcal{H})$ such that

- 1 UV = Id,
- **2** UW = 0,
- **3** ker $W = \{0\}$,
- 4 ImW = \mathcal{K} and ImV = \mathcal{K}^{\perp} .

Step 2: Prove that U is universal. Let T be a linear bounded operator on \mathcal{H} . Let $\lambda \neq 0$ such that $|\lambda| ||T|| ||U|| < 1$ and define

$$\mathbf{J} = \sum_{\mathbf{k}=\mathbf{0}}^{\infty} \lambda^{\mathbf{k}} \mathbf{V}^{\mathbf{k}} \mathbf{W} \mathbf{T}^{\mathbf{k}}.$$

- $\mathcal{M} = \mathsf{Im} \ J$ is a closed subspace of U.
- J is an isomorphism onto \mathcal{M} .

Write $\mathcal{K} = \mathsf{Ker} \ \mathrm{U}$

Step 1: Construct $\mathrm{V},\mathrm{W}\in\mathcal{L}(\mathcal{H})$ such that

- 1 UV = Id,
- **2** UW = 0,
- **3** ker $W = \{0\}$,
- **4** ImW = \mathcal{K} and ImV = \mathcal{K}^{\perp} .

 $\begin{array}{l} \textbf{Step 2: Prove that } U \text{ is universal.} \\ \text{Let } T \text{ be a linear bounded operator on } \mathcal{H}. \\ \text{Let } \lambda \neq 0 \text{ such that } |\lambda| \, \|T\| \, \|U\| < 1 \text{ and define} \end{array}$

$$\mathbf{J} = \sum_{\mathbf{k}=\mathbf{0}}^{\infty} \lambda^{\mathbf{k}} \mathbf{V}^{\mathbf{k}} \mathbf{W} \mathbf{T}^{\mathbf{k}}.$$

J satisfies $J = W + \lambda VJT$ and therefore, $UJ = \lambda JT$.

- $\mathcal{M} = \mathsf{Im} J$ is a closed subspace of U.
- J is an isomorphism onto \mathcal{M} .

Write $\mathcal{K} = \mathsf{Ker} \ \mathrm{U}$

Step 1: Construct $\mathrm{V},\mathrm{W}\in\mathcal{L}(\mathcal{H})$ such that

- 1 UV = Id,
- **2** UW = 0,
- **3** ker $W = \{0\}$,
- **4** ImW = \mathcal{K} and ImV = \mathcal{K}^{\perp} .

 $\begin{array}{l} \textbf{Step 2: Prove that } U \text{ is universal.} \\ \text{Let } T \text{ be a linear bounded operator on } \mathcal{H}. \\ \text{Let } \lambda \neq 0 \text{ such that } |\lambda| \, \|T\| \, \|U\| < 1 \text{ and define} \end{array}$

$$\mathbf{J} = \sum_{\mathbf{k}=\mathbf{0}}^{\infty} \lambda^{\mathbf{k}} \mathbf{V}^{\mathbf{k}} \mathbf{W} \mathbf{T}^{\mathbf{k}}.$$

J satisfies $J = W + \lambda VJT$ and therefore, $UJ = \lambda JT$. In addition,

- $\mathcal{M} = \mathsf{Im} \ J$ is a closed subspace of U.
- J is an isomorphism onto \mathcal{M} .

• Theorem (1987, Nordgren, Rosenthal y Wintrobe)

• Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D} . For every λ in the interior of the spectrum of C_{φ} , $C_{\varphi} - \lambda I$ is universal in \mathcal{H}^2 .

• Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D} . For every λ in the interior of the spectrum of C_{φ} , $C_{\varphi} - \lambda I$ is universal in \mathcal{H}^2 .

• Disc automorphisms

$$arphi(\mathrm{z}) = \mathrm{e}^{\mathrm{i} heta}\,rac{\mathrm{p}-\mathrm{z}}{1-\overline{\mathrm{p}}\mathrm{z}}\qquad(\mathrm{z}\in\mathbb{D}).$$

where $p \in \mathbb{D}$ and $-\pi < \theta \leq \pi$.

• Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D} . For every λ in the interior of the spectrum of C_{φ} , $C_{\varphi} - \lambda I$ is universal in \mathcal{H}^2 .

• Disc automorphisms

$$arphi(\mathrm{z}) = \mathrm{e}^{\mathrm{i} heta} \, rac{\mathrm{p}-\mathrm{z}}{1-\overline{\mathrm{p}}\mathrm{z}} \qquad (\mathrm{z}\in\mathbb{D}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $p \in \mathbb{D}$ and $-\pi < \theta \leq \pi$.

- * Parabolic.
- * Hyperbolic.
- * Elliptic.

• **Theorem** (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D} . For every λ in the interior of the spectrum of C_{φ} , $C_{\varphi} - \lambda I$ is universal in \mathcal{H}^2 .

• Disc automorphisms

$$arphi(\mathrm{z}) = \mathrm{e}^{\mathrm{i} heta}\,rac{\mathrm{p}-\mathrm{z}}{1-\overline{\mathrm{p}}\mathrm{z}}\qquad(\mathrm{z}\in\mathbb{D}).$$

where $p \in \mathbb{D}$ and $-\pi < \theta \leq \pi$.

* Parabolic. φ has just one fixed point $\alpha \in \partial \mathbb{D} \ (\Leftrightarrow |\mathbf{p}| = \cos(\theta/2))$

- * Hyperbolic.
- \star Elliptic.

• Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D} . For every λ in the interior of the spectrum of C_{φ} , $C_{\varphi} - \lambda I$ is universal in \mathcal{H}^2 .

• Disc automorphisms

$$arphi(\mathrm{z}) = \mathrm{e}^{\mathrm{i} heta}\,rac{\mathrm{p}-\mathrm{z}}{1-\overline{\mathrm{p}}\mathrm{z}}\qquad(\mathrm{z}\in\mathbb{D}).$$

where $p \in \mathbb{D}$ and $-\pi < \theta \leq \pi$.

* Parabolic. φ has just one fixed point $\alpha \in \partial \mathbb{D} \ (\Leftrightarrow |\mathbf{p}| = \cos(\theta/2))$

- * Hyperbolic. φ has two fixed points α and β , such that $\alpha, \beta \in \partial \mathbb{D} \iff |\mathbf{p}| > \cos(\theta/2)$
- * Elliptic.
• Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D} . For every λ in the interior of the spectrum of C_{φ} , $C_{\varphi} - \lambda I$ is universal in \mathcal{H}^2 .

• Disc automorphisms

$$arphi(\mathrm{z}) = \mathrm{e}^{\mathrm{i} heta}\,rac{\mathrm{p}-\mathrm{z}}{1-\overline{\mathrm{p}}\mathrm{z}}\qquad(\mathrm{z}\in\mathbb{D}).$$

where $p \in \mathbb{D}$ and $-\pi < \theta \leq \pi$.

* Parabolic. φ has just one fixed point $\alpha \in \partial \mathbb{D} \ (\Leftrightarrow |\mathbf{p}| = \cos(\theta/2))$

* Hyperbolic. φ has two fixed points α and β , such that $\alpha, \beta \in \partial \mathbb{D} \iff |\mathbf{p}| > \cos(\theta/2)$

* Elliptic. φ has two fixed points α and β , with $\alpha \in \mathbb{D}$ ($\Leftrightarrow |\mathbf{p}| < \cos(\theta/2)$)

• Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D} . For every λ in the interior of the spectrum of C_{φ} , $C_{\varphi} - \lambda I$ is universal in \mathcal{H}^2 .

Let φ be a hyperbolic automorphism of \mathbb{D} .

• Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D} . For every λ in the interior of the spectrum of C_{φ} , $C_{\varphi} - \lambda I$ is universal in \mathcal{H}^2 .

Let φ be a hyperbolic automorphism of \mathbb{D} .

We may assume that φ fixes 1 and -1.

• Theorem (1987, Nordgren, Rosenthal y Wintrobe)

Let φ be a hyperbolic automorphism of \mathbb{D} . For every λ in the interior of the spectrum of C_{φ} , $C_{\varphi} - \lambda I$ is universal in \mathcal{H}^2 .

Let φ be a hyperbolic automorphism of \mathbb{D} .

We may assume that φ fixes 1 and -1. Then,

$$arphi(\mathrm{z}) = rac{\mathrm{z} + \mathrm{r}}{1 + \mathrm{rz}}, \qquad 0 < \mathrm{r} < 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Every linear bounded operator ${\rm T}$ has a closed non-trivial invariant subspace

⚠

for any $f\in \mathcal{H}^2$, not an eigenfunction of C_{φ} , there exists $g\in\overline{\operatorname{span}}\{C_{\varphi}^nf:\ n\geq 0\} \text{ such that }g\neq 0 \text{ and}$ $\overline{\operatorname{span}}\{C_{\varphi}^ng:\ n\geq 0\}\neq\overline{\operatorname{span}}\{C_{\varphi}^nf:\ n\geq 0\}.$

Every linear bounded operator ${\rm T}$ has a closed non-trivial invariant subspace

⚠

for any $f\in \mathcal{H}^2$, not an eigenfunction of C_φ , there exists $g\in \overline{\operatorname{span}}\{C_\varphi^nf:\ n\geq 0\} \text{ such that }g\neq 0 \text{ and}$ $\overline{\operatorname{span}}\{C_\varphi^ng:\ n\geq 0\}\neq \overline{\operatorname{span}}\{C_\varphi^nf:\ n\geq 0\}.$

\uparrow

the **minimal** non-trivial closed invariant subspaces for C_{φ} are one-dimensional

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Which conditions on f ensure that $K_f:=\overline{\rm span}\{C_{\varphi}^nf:\ n\geq 0\}$ is (or not) minimal?

Which conditions on f ensure that $K_f:=\overline{\rm span}\{C_{\varphi}^nf:\ n\geq 0\}$ is (or not) minimal?

Mortini (1995), Matache (1998), Chkliar (1997), Shapiro (2011), GG-Gorkin (2011), Mortini (2013)...

(日) (日) (日) (日) (日) (日) (日) (日)

Eigenfuntions of C_{φ} ?

Eigenfuntions of C_{φ} ?

• 2012, GG, Gorkin and Suárez, Constructive characterization of eigenfunctions of C_{φ} in the Hardy spaces \mathcal{H}^p

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Universal operators vs. Lomonosov Theorem

<□▶ < @▶ < @▶ < @▶ < @▶ < @ > @ < の < @</p>

Universal operators vs. Lomonosov Theorem

• Naive Question: Does there exist a universal operator which conmutes with a non-null compact operator *in a non-trivial way*?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose ${\rm S}$ is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

① S is an isometric operator.

2 S^* has infinite dimensional kernel and maps \mathcal{H}^2 onto \mathcal{H}^2 .

Suppose ${\rm S}$ is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

Remarks

① S is an isometric operator.

② S^* has infinite dimensional kernel and maps \mathcal{H}^2 onto $\mathcal{H}^2.$

Suppose ${\rm S}$ is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

- Remarks
 - 1 S is an isometric operator.
 - 2 S^* has infinite dimensional kernel and maps \mathcal{H}^2 onto \mathcal{H}^2 .

Suppose ${\rm S}$ is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

- Remarks
 - **1** S is an isometric operator.
 - **2** S* has infinite dimensional kernel and maps \mathcal{H}^2 onto \mathcal{H}^2 .

Suppose S is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

Remarks

• S* is universal.

• Using the Wold Decomposition Theorem, such an operator can be represented as a block matrix on $\mathcal{H}=\oplus_{k=1}^\infty S^k W$, where $W=H^2\ominus SH^2$. Such a matrix is an upper triangular and has the identity on the super-diagonal:

Suppose S is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

Remarks

- S* is universal.
- Using the Wold Decomposition Theorem, such an operator can be represented as a block matrix on $\mathcal{H}=\oplus_{k=1}^\infty \mathrm{S}^k W$, where $W=H^2\ominus \mathrm{S}H^2$. Such a matrix is an upper triangular and has the identity on the super-diagonal:

Suppose ${\rm S}$ is a multiplication operator on the Hardy space \mathcal{H}^2 whose symbol is a singular inner function or infinite Blaschke product.

Remarks

- S* is universal.
- Using the Wold Decomposition Theorem, such an operator can be represented as a block matrix on $\mathcal{H}=\oplus_{k=1}^\infty \mathrm{S}^k W$, where $W=H^2\ominus \mathrm{S}H^2$. Such a matrix is an upper triangular and has the identity on the super-diagonal:

$$\mathbf{S}^{*} \sim \left(\begin{array}{cccccc} 0 & \mathbf{I} & 0 & 0 & \cdots \\ 0 & 0 & \mathbf{I} & 0 & \cdots \\ 0 & 0 & 0 & \mathbf{I} & \cdots \\ & & & \ddots & \end{array} \right)$$

An easy computation shows that every operator that commutes with S^\ast has the form

• This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S^{\ast} is 0,

An easy computation shows that every operator that commutes with S^{\ast} has the form

$$\mathbf{A} \sim \left(\begin{array}{ccccc} \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \mathbf{A}_{-3} & \cdots \\ \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \cdots \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \cdots \\ & & \ddots & \end{array} \right)$$

an upper triangular block Toeplitz matrix.

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S^{*} is 0,

An easy computation shows that every operator that commutes with S^\ast has the form

$$\mathbf{A} \sim \left(\begin{array}{ccccc} \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \mathbf{A}_{-3} & \cdots \\ \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \cdots \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \cdots \\ & & \ddots & \end{array} \right)$$

an upper triangular block Toeplitz matrix.

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S* is 0,

An easy computation shows that every operator that commutes with S^\ast has the form

$$\mathbf{A} \sim \left(\begin{array}{ccccc} \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \mathbf{A}_{-3} & \cdots \\ \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \cdots \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \cdots \\ & & \ddots & \end{array} \right)$$

an upper triangular block Toeplitz matrix.

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S* is 0,

An easy computation shows that every operator that commutes with S^{\ast} has the form

$$\mathbf{A} \sim \left(\begin{array}{ccccc} \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \mathbf{A}_{-3} & \cdots \\ \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \cdots \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \cdots \\ & & \ddots & \end{array} \right)$$

an upper triangular block Toeplitz matrix.

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S* is 0,

An easy computation shows that every operator that commutes with S^\ast has the form

$$\mathbf{A} \sim \left(\begin{array}{ccccc} \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \mathbf{A}_{-3} & \cdots \\ \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \mathbf{A}_{-2} & \cdots \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_0 & \mathbf{A}_{-1} & \cdots \\ & & \ddots & \end{array} \right)$$

an upper triangular block Toeplitz matrix.

- This is an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space W.
- Every block in such a matrix occurs infinitely often.
- So, the only compact operator that commutes with the universal operator S* is 0, not an interesting compact operator!

• Theorem (2011, Cowen-GG)

Let φ be a hyperbolic automorphism of \mathbb{D} . Then C_{φ}^* is similar to the Toeplitz operator T_{ψ} , where ψ is the covering map of the unit disc onto the interior of the spectrum $\sigma(C_{\varphi})$.

• Theorem (2011, Cowen-GG)

Let φ be a hyperbolic automorphism of \mathbb{D} . Then C_{φ}^* is similar to the Toeplitz operator T_{ψ} , where ψ is the covering map of the unit disc onto the interior of the spectrum $\sigma(C_{\varphi})$.

• Theorem (1980, Cowen)

A Toeplitz operator T_ψ in H^2 , where $\psi\in H^\infty$ is an inner function or a covering map commutes with a compact operator K if and only if K=0.

• Theorem (2011, Cowen-GG)

Let φ be a hyperbolic automorphism of \mathbb{D} . Then C_{φ}^* is similar to the Toeplitz operator T_{ψ} , where ψ is the covering map of the unit disc onto the interior of the spectrum $\sigma(C_{\varphi})$.

• Theorem (1980, Cowen)

A Toeplitz operator T_ψ in H^2 , where $\psi\in H^\infty$ is an inner function or a covering map commutes with a compact operator K if and only if K=0.

• Straightforward consequence

Known universal operators are not commuting with non-null compact operators.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• **Theorem [2014, Cowen-GG]** There exists a universal operator which commutes with an injective, dense range compact operator.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A universal operator which commutes with a compact operator

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We have seen that some universal operators commute with a compact operator and others do not.

We have seen that some universal operators commute with a compact operator and others do not.

Observation: There are many more compact operators than just one commuting with the universal operator T^*_{φ} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We have seen that some universal operators commute with a compact operator and others do not.

Observation: There are many more compact operators than just one commuting with the universal operator T^*_{φ} .

Definition. Let \mathcal{K}_{φ} be the set of compact operators that commute with $T_{\varphi}^{*},$ that is,

 $\mathcal{K}_{\varphi} = \{ G \in \mathcal{B}(H^2) : G \text{ is compact, and } T^*_{\varphi}G = GT^*_{\varphi} \}$

We have seen that some universal operators commute with a compact operator and others do not.

Observation: There are many more compact operators than just one commuting with the universal operator T^*_{φ} .

Definition. Let \mathcal{K}_{φ} be the set of compact operators that commute with $T_{\varphi}^{*},$ that is,

 $\mathcal{K}_{\varphi} = \{ G \in \mathcal{B}(H^2) : G \text{ is compact, and } T^*_{\varphi}G = GT^*_{\varphi} \}$

Remark. $\mathcal{K}_{\varphi} \neq (0)$.
Compact operators commuting with universal operators

If F is a bounded operator on $H^2,$ we will write $\{F\}'$ for the commutant of F, the set of operators that commute with F, that is,

$$\{F\}' = \{G \in \mathcal{B}(H^2) : GF = FG\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Compact operators commuting with universal operators

If F is a bounded operator on $H^2,$ we will write $\{F\}'$ for the commutant of F, the set of operators that commute with F, that is,

$$\{F\}' = \{G \in \mathcal{B}(H^2) : GF = FG\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For any operator F, the commutant $\{F\}'$ is a norm-closed subalgebra of $\mathcal{B}(\mathrm{H}^2).$

Compact operators commuting with universal operators

Theorem [2015, Cowen, GG] The set \mathcal{K}_{φ} is a closed subalgebra of $\{T_{\varphi}^*\}'$ that is a two-sided ideal in $\{T_{\varphi}^*\}'$. In particular, if G is a compact operator in \mathcal{K}_{φ} and g and h are bounded analytic functions on the disk, then T_g^*G , GT_h^* , and $T_g^*GT_h^*$ are all in \mathcal{K}_{φ} . Moreover, every operator in \mathcal{K}_{φ} is quasi-nilpotent.

• Theorem [2017, Cowen-GG] There exists a universal operator U which commutes with an injective, dense range compact operator. Moreover, $U = T_{\phi}^*$ acting on the Bergman space A^2 , where $\phi \in H^{\infty}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Theorem [2017, Cowen-GG] There exists a universal operator U which commutes with an injective, dense range compact operator. Moreover, $U = T_{\phi}^*$ acting on the Bergman space A^2 , where $\phi \in H^{\infty}$.

• Corollary. If $f\in H^\infty,\, f\neq cte,$ and T_f^* conmutes with a non-zero compact operator, then there exists a bacwardshift invariant subspace L such that L is invariant for any operator in the conmutant of T_f^* , that is, $\{T_f^*\}'.$

• Theorem [2017, Cowen-GG] There exists a universal operator U which commutes with an injective, dense range compact operator. Moreover, $U = T_{\phi}^*$ acting on the Bergman space A^2 , where $\phi \in H^{\infty}$.

• Corollary. If $f\in H^\infty$, $f\neq cte$, and T_f^* conmutes with a non-zero compact operator, then there exists a bacwardshift invariant subspace L such that L is invariant for any operator in the conmutant of T_f^* , that is, $\{T_f^*\}'$.

• Question. Characterization of the bacwardshift invariant subspaces in the Bergman spaces A^2 ?

• Theorem [2017, Cowen-GG] There exists a universal operator U which commutes with an injective, dense range compact operator. Moreover, $U = T_{\phi}^*$ acting on the Bergman space A^2 , where $\phi \in H^{\infty}$.

• Corollary. If $f\in H^\infty$, $f\neq cte$, and T_f^* conmutes with a non-zero compact operator, then there exists a bacwardshift invariant subspace L such that L is invariant for any operator in the conmutant of T_f^* , that is, $\{T_f^*\}'$.

- Question. Characterization of the bacwardshift invariant subspaces in the Bergman spaces A^2 ? Well-Known: Structure is extremely complicated (Borichev, Hedenmalm, Shimorim, Aleman-Richter-Sundberg...)

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\bullet~$ WLOG ~A IS the restriction of $\rm T$ to $\rm M.$

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

- $\bullet~$ WLOG ~A IS the restriction of $\rm T$ to $\rm M.$
- + WLOG $\ \mathrm{M} \neq \mathcal{H}$ because if so, Lomonosov gives hyperinvariant subspace

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

- $\bullet~$ WLOG ~A IS the restriction of $\rm T$ to $\rm M.$
- + WLOG $\ \mathrm{M} \neq \mathcal{H}$ because if so, Lomonosov gives hyperinvariant subspace
- WLOG $\, \mathrm{T}$ and A are invertible: replace $\, \mathrm{T} \,$ by $\, \mathrm{T} + (1 + \|\mathrm{T}\|) \mathrm{I}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

- $\bullet~$ WLOG ~A IS the restriction of $\rm T$ to $\rm M.$
- + WLOG $\ \mathrm{M} \neq \mathcal{H}$ because if so, Lomonosov gives hyperinvariant subspace
- WLOG $\, \mathrm{T}$ and A are invertible: replace $\, \mathrm{T} \,$ by $\, \mathrm{T} + (1 + \|\mathrm{T}\|)\mathrm{I}$
- + $\mathcal{H} = M \oplus M^{\perp}$ and with respect to this decomposition

$$T \sim \left(\begin{array}{cc} A & B \\ \textbf{0} & C \end{array} \right) \hspace{0.5cm} \text{and} \hspace{0.5cm} W \sim \left(\begin{array}{cc} P & Q \\ R & S \end{array} \right)$$

where A, C are invertible and P, Q, R, S are compact.

Let A be a linear bounded operator on a Hilbert space and T a universal operator which commutes with a compact operator W.

- $\bullet~$ WLOG ~A IS the restriction of $\rm T$ to $\rm M.$
- + WLOG $\ \mathrm{M} \neq \mathcal{H}$ because if so, Lomonosov gives hyperinvariant subspace
- WLOG $\, \mathrm{T}$ and A are invertible: replace $\, \mathrm{T} \,$ by $\, \mathrm{T} + (1 + \|\mathrm{T}\|) \mathrm{I}$
- + $\mathcal{H} = M \oplus M^{\perp}$ and with respect to this decomposition

$$T \sim \left(\begin{array}{cc} A & B \\ 0 & C \end{array} \right) \hspace{0.5cm} \text{and} \hspace{0.5cm} W \sim \left(\begin{array}{cc} P & Q \\ R & S \end{array} \right)$$

where $A,\,C$ are invertible and $P,\,Q,\,R,\,S$ are compact.

• NOT P = 0 and R = 0 because kernel(W) = (0).

 \bullet From the relation, $\mathrm{TW}=\mathrm{WT},$ it follows that

AP + BR = PA and CR = RA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \bullet From the relation, $\mathrm{TW}=\mathrm{WT},$ it follows that

AP + BR = PA and CR = RA

Observation: Since A is the operator of primary interest, Equation

AP + BR = PA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is not so interesting if P = 0.

- Lemma. If the universal operator $T=T_{\varphi}^{*}$ and the compact operator $W=W_{\psi,J}^{*}$ have the representations

$$T \sim \left(\begin{array}{cc} A & B \\ 0 & C \end{array} \right) \quad \text{ and } \quad W \sim \left(\begin{array}{cc} P & Q \\ R & S \end{array} \right)$$

respect $\mathcal{H} = M \oplus M^{\perp}$, then there are a universal operator \widetilde{T} and an injective compact operator \widetilde{W} with dense range that commute for which \widetilde{P} in a replacement of P is not zero, that is, without loss of generality, we may assume $P \neq 0$.

• Theorem [Cowen, GG] Let the universal operator T and the commuting injective compact operator W with dense range having the representations with $P \neq 0$. Then the following are true:

• Either $R \neq 0$ or A has a nontrivial hyperinvariant subspace.

• Either ker(R) = (0) or A has a nontrivial invariant subspace.

• Either $B \neq 0$ or A has a nontrivial hyperinvariant subspace.

• Theorem [Cowen, GG] Let the universal operator $\rm T$ and the commuting injective compact operator $\rm W$ with dense range having the representations with $\rm P \neq 0.$ Then the following are true:

• Either $\mathrm{R} \neq \mathbf{0}$ or A has a nontrivial hyperinvariant subspace.

• Either ker(R) = (0) or A has a nontrivial invariant subspace.

• Either $\mathrm{B} \neq 0$ or A has a nontrivial hyperinvariant subspace.

• Theorem [Cowen, GG] Let the universal operator T and the commuting injective compact operator W with dense range having the representations with $P \neq 0$. Then the following are true:

- Either $\mathrm{R} \neq \mathbf{0}$ or A has a nontrivial hyperinvariant subspace.
- Either ker(R) = (0) or A has a nontrivial invariant subspace.

• Either $B \neq 0$ or A has a nontrivial hyperinvariant subspace.

• Theorem [Cowen, GG] Let the universal operator T and the commuting injective compact operator W with dense range having the representations with $P \neq 0$. Then the following are true:

- Either $\mathrm{R} \neq \mathbf{0}$ or A has a nontrivial hyperinvariant subspace.
- Either ker(R) = (0) or A has a nontrivial invariant subspace.
- Either $B \neq 0$ or A has a nontrivial hyperinvariant subspace.

$$\left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right)$$

represents T_{φ}^* based on the splitting $H^2=M\oplus M^{\perp}.$ Then, the projection of L^{\perp} onto M is an invariant linear manifold for A^* , the adjoint of the restriction of T_{φ}^* to M.

$$\left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right)$$

represents T_{φ}^* based on the splitting $H^2=M\oplus M^{\perp}.$ Then, the projection of L^{\perp} onto M is an invariant linear manifold for A^* , the adjoint of the restriction of T_{φ}^* to M.

$$\left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right)$$

represents T_{φ}^* based on the splitting $H^2=M\oplus M^{\perp}.$ Then, the projection of L^{\perp} onto M is an invariant linear manifold for A^* , the adjoint of the restriction of T_{φ}^* to M.

Remark.

$$\left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right)$$

represents T^*_{φ} based on the splitting $H^2=M\oplus M^{\perp}.$ Then, the projection of L^{\perp} onto M is an invariant linear manifold for A^* , the adjoint of the restriction of T^*_{φ} to M.

Remark. Any of the linear manifolds provided by this Theorem are proper and invariant but, in principle, they are not necessarily non-dense.

Question: Is any of those proper A^* -invariant linear manifolds non-dense?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bibliography (basic)

[ChP] I. Chalendar, and J. R. Partington, *Modern Approaches to the Invariant Subspace Problem*, Cambridge University Press, 2011.

[CG1] C. Cowen and E. A. Gallardo-Gutiérrez, *Unitary equivalence* of one-parameter groups of Toeplitz and composition operators, Journal of Functional Analysis, **261**, 2641–2655, (2011).

[CG2] C. Cowen and E. A. Gallardo-Gutiérrez, *Rota's universal operators and invariant subspaces in Hilbert spaces*, Journal of Functional Analysis, **271**, 1130–1149, (2016).

[CG3] C. Cowen and E. A. Gallardo-Gutiérrez, *Consequences of universality among Toeplitz operators*, Journal of Mathematical Analysis and Applications (2015).

Bibliography (basic)

[Lo] V. Lomonosov, On invariant subspaces of families of operators commuting with a completely continuous operator, Funkcional Anal. i Prilozen (1973).

[GG] E. A. Gallardo-Gutiérrez and P. Gorkin, *Minimal invariant subspaces for composition operators*, Journal de Mathématiques Pures et Appliqueés (2011).

[GGS] E. A. Gallardo-Gutiérrez, P. Gorkin and D. Suárez, *Orbits of non-elliptic disc automorphisms on* H^p, Journal of Mathematical Analysis and Applications (2012).

[NRW] E. A. Nordgren, P. Rosenthal and F. S. Wintrobe *Invertible composition operators on* H^p, J. Functional Analysis, **73** (1987), 324–344.

[Ro] G. C. Rota, *On models for linear operators*. Comm. Pure Appl. Math. 13 (1960) 469–472.

Thank you for your attention