Complex Complexiton solutions for the KdV equation

Mathematical aspects of the physics with non-self-adjoint operators.

CIRM, Marseille 8th June 2017

Francesco Ferrulli

Joint work with A.Laptev and M.Levitin

Imperial College London
Centre for Doctoral Training Mathematics of Planet Earth

Historical origin of solitary waves

1834 Scott Russel's first observation of a Translation Wave along the Union Canal - Gyle.

1895 Korteg and de Vries proposed the equation and explicit solutions.

1960 Gardner Integrability

$$
D_{t}+F_{x}=0
$$

1968 The Lax formalism

Let's define two linear problems: $\left\{\begin{array}{l}L \phi=\lambda(t) \phi \\ A \phi=\phi_{t}\end{array}\right.$
where: $L \phi=-\phi_{x x}-u(x, t) \phi, \quad A \phi=\phi u_{x}+4(\lambda(t)-2 u(x, t)) \phi$.

$$
u(x, t) \text { solves KdV eq. } \quad \Longleftrightarrow \quad L_{t}+[L, A]=0, \quad \lambda_{t}=0
$$

1968 The Lax formalism

Let's define two linear problems: $\left\{\begin{array}{l}L \phi=\lambda(t) \phi \\ A \phi=\phi_{t}\end{array}\right.$
where: $L \phi=-\phi_{x x}-u(x, t) \phi, \quad A \phi=\phi u_{x}+4(\lambda(t)-2 u(x, t)) \phi$.

$$
u(x, t) \text { solves KdV eq. } \quad \Longleftrightarrow \quad L_{t}+[L, A]=0, \quad \lambda_{t}=0
$$

Classification for the solution:

- $\lambda>0$ Positon
- $\lambda=0$ Rational
- $\lambda<0$ Negatons (solitons)

1968 The Lax formalism

Let's define two linear problems: $\left\{\begin{array}{l}L \phi=\lambda(t) \phi \\ A \phi=\phi_{t}\end{array}\right.$
where: $L \phi=-\phi_{x x}-u(x, t) \phi, \quad A \phi=\phi u_{x}+4(\lambda(t)-2 u(x, t)) \phi$.

$$
u(x, t) \text { solves KdV eq. } \quad \Longleftrightarrow \quad L_{t}+[L, A]=0, \quad \lambda_{t}=0
$$

Classification for the solution:

- $\lambda>0$ Positon
- $\lambda=0$ Rational
- $\lambda<0$ Negatons (solitons)
- $\lambda \in \mathbb{C}$ Complexitons (real or complex)

Darboux-Crum method

Fix $\lambda_{1} \neq \lambda_{2}$ and consider the functions ϕ_{1}, ϕ_{2} and $\phi_{2}[1]$ such that:

$$
-\phi_{i}^{\prime \prime}+V(x) \phi=\lambda_{i} \phi_{i}, \quad \phi_{2}[1]=\frac{W\left(\phi_{1}, \phi_{2}\right)}{\phi_{1}}
$$

Darboux-Crum method

Fix $\lambda_{1} \neq \lambda_{2}$ and consider the functions ϕ_{1}, ϕ_{2} and $\phi_{2}[1]$ such that:

$$
-\phi_{i}^{\prime \prime}+V(x) \phi=\lambda_{i} \phi_{i}, \quad \phi_{2}[1]=\frac{W\left(\phi_{1}, \phi_{2}\right)}{\phi_{1}}
$$

Then $\phi_{2}[1]$ is solution of the new problem:

$$
-\phi_{2}[1]^{\prime \prime}+V_{\text {new }} \phi=\lambda_{2} \phi_{2}[1],
$$

where:

$$
V_{\text {new }}=V-2 \frac{d^{2}}{d x^{2}}\left(\ln \left(\phi_{1}\right)\right)
$$

Darboux-Crum method

Fix $\lambda_{1} \neq \lambda_{2}$ and consider the functions ϕ_{1}, ϕ_{2} and $\phi_{2}[1]$ such that:

$$
-\phi_{i}^{\prime \prime}+V(x) \phi=\lambda_{i} \phi_{i}, \quad \phi_{2}[1]=\frac{W\left(\phi_{1}, \phi_{2}\right)}{\phi_{1}}
$$

Then $\phi_{2}[1]$ is solution of the new problem:

$$
-\phi_{2}[1]^{\prime \prime}+V_{\text {new }} \phi=\lambda_{2} \phi_{2}[1]
$$

where:

$$
V_{\text {new }}=V-2 \frac{d^{2}}{d x^{2}}\left(\ln \left(\phi_{1}\right)\right)
$$

Crum theorem: Consider $\phi_{1}, \ldots, \phi_{N}, \phi$, then:

$$
\begin{aligned}
& V_{\text {new }}=V-2 \frac{d^{2}}{d x^{2}}\left(\ln \left(W\left(\phi_{1}, \ldots, \phi_{N}\right)\right)\right) \\
& \phi[N]=\frac{W\left(\phi_{1}, \ldots, \phi_{N}, \phi\right)}{W\left(\phi_{1}, \ldots, \phi_{N}\right)}
\end{aligned}
$$

Construction of (complex) complexiton solution.

Seed solution for $\mathrm{KdV}: u(x, t) \equiv 0$.

The equation for A suggests for $k \in \mathbb{C}$:

$$
\lambda=-\frac{k^{2}}{4},
$$

so that $\phi_{i}=\left\{\begin{array}{lc}\cosh \left(\frac{k_{i}}{2}\left(x-k_{i}^{2} t\right)\right) & \text { if } i \text { odd, } \\ \sinh \left(\frac{k_{i}}{2}\left(x-k_{i}^{2} t\right)\right) & \text { if } i \text { even, }\end{array} \quad\right.$ solves $-\phi_{x x}=\lambda \phi$.

Therefore solutions of the KdV are:

$$
\begin{aligned}
S_{i}(x, t) & =-\frac{d^{2}}{d x^{2}}\left(\ln \left(W\left(\phi_{1}, \ldots, \phi_{i}\right)\right)\right) \\
(& \left.=F_{i}[\cosh (\cdot), \sinh (\cdot), \cos (\cdot), \sin (\cdot)](x, t)\right)
\end{aligned}
$$

Dynamics for $S_{i}(x, t)$:direction and velocity.

Since the wave numbers $k_{i} \in \mathbb{C} \Rightarrow$ non travelling solution.
In fact, it is readily seen from the dispersion relation coming from the equation for operator A that the velocity of the wave generated by k_{i} is

$$
c\left(k_{i}\right)=\operatorname{Re}\left(k_{i}\right)^{2}-3 \operatorname{Im}\left(k_{i}\right)^{2}
$$

Therefore, for the values

$$
\frac{\operatorname{Re}\left(k_{i}\right)}{\operatorname{Im}\left(k_{i}\right)}=\sqrt{3}
$$

the solution $S_{i}(x, t)$ is standing (oscillating) wave.

Examples of dynamics for $S_{1}(x, t)$: blow-up

Plot: real part of the wave generated by single $k=\sqrt{3}+i / 2$.

Examples of dynamics for $S_{2}(x, t)$: boundedness and localisation

Plot: Real part of the wave generated by $(\alpha+i \beta, 2+i)$.

Interaction of two localised complexitons

Plot: Wave generated by $(\sqrt{3}+i, \sqrt{3}-i, \sqrt{3}+i 3 / 2, \sqrt{3}-i 3 / 2)$

The solutions presented share with the real solutions some feature:

- Localization property for certain values of wavenumbers;
- Linear interaction up to a phase shift;
- Can catch the exotic "breathers solutions".

There are nonetheless differences:

- Real solitons travel only leftwards;
- No blow-up for real solution.

The Darboux method provides a precise description of the spectrum and eigenfunctions. Set $H=-\frac{d^{2}}{d x^{2}}-S_{i}(x, 0)$, then

$$
-\frac{k_{j}^{2}}{4} \in \sigma_{d}(H), \quad e^{k_{j}}[i] \text { associated eigenfunction }
$$

Potential at time $t=0$

The Darboux method provides a precise description of the spectrum and eigenfunctions. Set $H=-\frac{d^{2}}{d x^{2}}-S_{i}(x, 0)$, then

$$
-\frac{k_{j}^{2}}{4} \in \sigma_{d}(H), \quad e^{k_{j}}[i] \text { associated eigenfunction }
$$

For example, for the case $i=2(k \in \mathbb{C})$:

$$
\begin{aligned}
W\left(\phi_{1}, \ldots, \phi_{i}, e^{k x}\right)= & \left(k-k_{1}\right)\left(k-k_{2}\right)\left(k_{2}-k_{1}\right) e^{\left(k_{1}+k_{2}\right) x+k x} \\
& +\left(k+k_{1}\right)\left(k+k_{2}\right)\left(k_{2}-k_{1}\right) e^{-\left(k_{1}+k_{2}\right) x+k x} \\
& +\left(k-k_{1}\right)\left(k+k_{2}\right)\left(k_{2}+k_{1}\right) e^{\left(k_{1}-k_{2}\right) x+k x} \\
& +\left(k+k_{1}\right)\left(k-k_{2}\right)\left(k_{2}+k_{1}\right) e^{-\left(k_{1}-k_{2}\right) x+k x} \\
W\left(\phi_{1}, \phi_{2}\right)= & \left(k_{2}-k_{1}\right)\left(e^{\left(k_{1}+k_{2}\right) x}+e^{-\left(k_{1}+k_{2}\right) x}\right) \\
& +\left(k_{2}+k_{1}\right)\left(e^{\left(k_{1}-k_{2}\right) x}+e^{-\left(k_{1}-k_{2}\right) x}\right)
\end{aligned}
$$

The scattering problem at time $t=0$

$$
-\frac{d^{2}}{d x^{2}} g-V(x) g=\lambda g
$$

Consider now $k \in \mathbb{R}$:

$$
\begin{array}{ll}
\psi(x, k) \approx e^{i k x}, \quad \tilde{\psi}(x, k) \approx e^{-i k x} & \text { as } x \rightarrow+\infty ; \\
\chi(x, k)=a(k) \tilde{\psi}(x, k)+b(k) \psi(x, k) \approx e^{i k x} & \text { as } x \rightarrow-\infty .
\end{array}
$$

The natural candidates for the functions above are of course:

The scattering problem at time $t=0$

$$
-\frac{d^{2}}{d x^{2}} g-V(x) g=\lambda g
$$

Consider now $k \in \mathbb{R}$:

$$
\begin{array}{ll}
\psi(x, k) \approx e^{i k x}, \quad \tilde{\psi}(x, k) \approx e^{-i k x} & \text { as } x \rightarrow+\infty ; \\
\chi(x, k)=a(k) \tilde{\psi}(x, k)+b(k) \psi(x, k) \approx e^{i k x} & \text { as } x \rightarrow-\infty .
\end{array}
$$

The natural candidates for the functions above are of course:

$$
\begin{aligned}
\Psi_{+}(x, k) & =\frac{\mathcal{W}\left(\phi_{1}, \phi_{2}, e^{i k t}\right)}{\mathcal{W}\left(\phi_{1}, \phi_{2}\right)} \\
\Psi_{-}(x, k) & =\frac{\mathcal{W}\left(\phi_{1}, \phi_{2}, e^{-i k t}\right)}{\mathcal{W}\left(\phi_{1}, \phi_{2}\right)}
\end{aligned}
$$

The scattering problem at time $t=0$
It turns out that:

$$
\left\{\begin{array}{l}
a(k)=\prod_{j=1}^{2} \frac{\left(-i k-k_{j}\right)}{\left(-i k+k_{j}\right)}, \\
b(k)=0 .
\end{array}\right.
$$

- Reflectionless potential
- In general $|a(k)|^{-1} \neq 1$ unless $\bar{k}_{2 j}=k_{2 j-1}$
- For high frequencies $|a(k)| \rightarrow 1$ as $|k| \rightarrow \infty$.
- $a(-k)=a(k)^{-1}$

There are many open questions regarding complex solutions of the KdV equation:

- Physical meaning of a complex wavenumber.
- Integrability and conserved quantities.
- Dynamics and interaction.
- Stability and asymptotic stability for these solutions, studied for real solution by several authors (Martel, Merle, Vega, Munoz, Alejo...). Very recently breathers stability have been proved.
- Possibility to extend a soliton's trace formula approach when the potentials are complex.

There are many open questions regarding complex solutions of the KdV equation:

- Physical meaning of a complex wavenumber.
- Integrability and conserved quantities.
- Dynamics and interaction.
- Stability and asymptotic stability for these solutions, studied for real solution by several authors (Martel, Merle, Vega, Munoz, Alejo...). Very recently breathers stability have been proved.
- Possibility to extend a soliton's trace formula approach when the potentials are complex.

Thanks for you kind patience and attention :D

