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Historical origin of solitary waves

1834 Scott Russel ’s first observation of a Translation Wave along
the Union Canal - Gyle.

1895 Korteg and de Vries proposed the equation and explicit
solutions.

ut + 6 uxu + uxxx = 0
↗ ↖

Singularity formation ⇐⇒ Dispersive effect

1960 Gardner Integrability

Dt + Fx = 0



1968 The Lax formalism

Let’s define two linear problems:

Lφ = λ(t)φ

Aφ = φt

where: Lφ = −φxx −u(x , t)φ, Aφ = φux +4
(
λ(t)−2u(x , t)

)
φ.

u(x , t) solves KdV eq. ⇐⇒ Lt + [L,A] = 0, λt = 0

Classification for the solution:
I λ > 0 Positon
I λ = 0 Rational
I λ < 0 Negatons (solitons)

I λ ∈ C Complexitons (real
or complex)
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Darboux-Crum method
Fix λ1 6= λ2 and consider the functions φ1, φ2 and φ2[1] such that:

−φ′′i + V (x)φ = λiφi , φ2[1] =
W (φ1, φ2)

φ1
.

Then φ2[1] is solution of the new problem:

−φ2[1]′′ + Vnew φ = λ2 φ2[1],

where: Vnew = V − 2 d2

dx2

(
ln(φ1)

)

Crum theorem: Consider φ1, . . . , φN , φ, then:

Vnew = V − 2 d2

dx2

(
ln(W (φ1, . . . , φN))

)
φ[N] =

W (φ1, . . . , φN , φ)

W (φ1, . . . , φN)
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Construction of (complex) complexiton solution.
Seed solution for KdV: u(x , t) ≡ 0.

The equation for A suggests for k ∈ C:

λ = −k2

4 ,

so that φi =

cosh
(

ki
2 (x − k2

i t)
)

if i odd,
sinh

(
ki
2 (x − k2

i t)
)

if i even,
solves −φxx = λφ.

Therefore solutions of the KdV are:

Si (x , t) = − d2

dx2

(
ln(W (φ1, . . . , φi ))

)
(

= Fi
[
cosh(·), sinh(·), cos(·), sin(·)

]
(x , t)

)



Dynamics for Si (x , t):direction and velocity.

Since the wave numbers ki ∈ C⇒ non travelling solution.

In fact, it is readily seen from the dispersion relation coming from
the equation for operator A that the velocity of the wave generated
by ki is

c(ki ) = Re(ki)
2−3 Im(ki)

2

Therefore, for the values

Re(ki)

Im(ki)
=
√
3

the solution Si (x , t) is standing (oscillating) wave.



Examples of dynamics for S1(x , t): blow-up

Plot: real part of the wave generated by single k =
√
3 + i/2.



Examples of dynamics for S2(x , t): boundedness and localisation

Plot: Real part of the wave generated by (α + iβ, 2 + i).



Interaction of two localised complexitons

Plot: Wave generated by (
√
3 + i ,

√
3− i ,

√
3 + i3/2,

√
3− i3/2)



Differences with the real solutions:

The solutions presented share with the real solutions some feature:
I Localization property for certain values of wavenumbers;
I Linear interaction up to a phase shift;
I Can catch the exotic "breathers solutions".

There are nonetheless differences:
I Real solitons travel only leftwards;
I No blow-up for real solution.



Potential at time t = 0

The Darboux method provides a precise description of the
spectrum and eigenfunctions. Set H = − d2

dx2 − Si (x , 0), then

−
k2

j
4 ∈ σd (H), ekj [i ] associated eigenfunction

For example, for the case i = 2 (k ∈ C):

W (φ1, . . . , φi , ekx ) =(k − k1)(k − k2)(k2 − k1)e(k1+k2)x+kx

+ (k + k1)(k + k2)(k2 − k1)e−(k1+k2)x+kx

+ (k − k1)(k + k2)(k2 + k1)e(k1−k2)x+kx

+ (k + k1)(k − k2)(k2 + k1)e−(k1−k2)x+kx

W (φ1, φ2) =(k2 − k1)(e(k1+k2)x + e−(k1+k2)x )

+ (k2 + k1)(e(k1−k2)x + e−(k1−k2)x )
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The scattering problem at time t = 0

− d2

dx2 g − V (x)g = λg

Consider now k ∈ R:

ψ(x , k) ≈ eikx , ψ̃(x , k) ≈ e−ikx as x → +∞;

χ(x , k) = a(k)ψ̃(x , k) + b(k)ψ(x , k) ≈ eikx as x → −∞.

The natural candidates for the functions above are of course:

Ψ+(x , k) =
W(φ1, φ2, eikt)

W(φ1, φ2)

Ψ−(x , k) =
W(φ1, φ2, e−ikt)

W(φ1, φ2)
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The scattering problem at time t = 0

It turns out that:

a(k) =
∏2

j=1
(−ik−kj )
(−ik+kj )

,

b(k) = 0.

I Reflectionless potential
I In general |a(k)|−1 6= 1

unless k̄2j = k2j−1
I For high frequencies
|a(k)| → 1 as |k| → ∞.

I a(−k) = a(k)−1



Question and open problem

There are many open questions regarding complex solutions of the
KdV equation:

I Physical meaning of a complex wavenumber.
I Integrability and conserved quantities.
I Dynamics and interaction.
I Stability and asymptotic stability for these solutions, studied

for real solution by several authors (Martel, Merle, Vega,
Munoz, Alejo...). Very recently breathers stability have been
proved.

I Possibility to extend a soliton’s trace formula approach when
the potentials are complex.

Thanks for you kind patience and attention :D
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