Photonic band control in a quantum metamaterial

D. Felbacq

University of Montpellier, France <u>Didier.Felbacq@umontpellier.fr</u>

Laboratory Charles Coulomb

Introducing quantum dots in a photonic structure

PROBE

Laboratory Charles Coulomb

Scattering by one scatterer: resonances

$$U(r,\theta) e^{-i\omega t}$$

$$\Delta U + k_0^2 \varepsilon U = 0$$

$$U^s = U - U^i$$

$$R_0 = (-\Delta - k_0^2)^{-1}$$

$$R_{\varepsilon}(k_0) = R_0(k_0) \left(I_d - (\varepsilon - 1)k_0^2 \circ R_0(k_0) \right)^{-1}$$

$$\Delta U^s + k_0^2 \varepsilon U^s = (1 - \varepsilon)k_0^2 U^i$$

$$U^s = R_{\varepsilon}(k_0)(1 - \varepsilon)k_0^2 U^i$$

Laboratory Charles Coulomb

Scattering amplitude

Usual approach:

$$U = e^{i\mathbf{k}\cdot\mathbf{r}} + \frac{e^{ik_0r}}{\sqrt{k_0r}}\Phi_{\varepsilon}(k_0,\mathbf{r})$$

Awkward to use plane wave for a circular scatterer

 $U_n^i(r,\theta) = J_n(k_0r) e^{in\theta}$ $e^{ir\sin\theta} = \sum_p J_p(r)e^{ip\theta}$ Field "at infinity" $U_n^s \sim \frac{e^{ik_0r}}{\sqrt{k_0r}} s_n e^{in\theta}$

Laboratory Charles Coulomb

Scattering amplitude

$$U^{i}(r,\theta) = \sum_{n} i_{n} J_{n}(k_{0}r) e^{in\theta} \qquad \qquad U^{s}(r,\theta) \sim \frac{e^{ik_{0}r}}{\sqrt{k_{0}r}} \sum_{n} s_{n} e^{in\theta}$$

Compactification: field given as a function on the sphere "at infinity"

Laboratory Charles Coulomb

Low frequency

$$U^{i}(r,\theta) = \sum_{n} i_{n} J_{n}(k_{0}r) e^{in\theta}$$
$$U^{s}(r,\theta) = \sum_{n} s_{n} H_{n}^{(1)}(k_{0}r) e^{in\theta}$$

Low frequency ($\lambda >>a$): obstacle equivalent to two dipoles:

$$\mathbf{P} = \frac{4\varepsilon_0}{ik_0^2} \, s_0 \, \mathbf{e}_z \quad \mathbf{M} = \frac{4}{ik_0^2 Z_0} \left(\begin{array}{c} s_1 + s_{-1} \\ s_1 - s_{-1} \end{array} \right)$$

Laboratory Charles Coulomb

Scattering by one scatterer: resonances

$$U^{s}(r,\theta) = \sum_{n} s_{n} H_{n}^{(1)}(k_{0}r) e^{in\theta}$$
$$s_{n} = \frac{-1}{1+iR_{n}}$$
$$R_{n} = \left(\frac{Y_{n}(ka)}{J_{n}(ka)}\right) \frac{F(k\sqrt{\varepsilon}a) - \frac{Y'(ka)}{kaY(ka)}}{F(k\sqrt{\varepsilon}a) - \frac{J'(ka)}{kaJ(ka)}}$$
$$F(ka\sqrt{\varepsilon}) = \frac{J_{n}'(ka\sqrt{\varepsilon})}{ka\sqrt{\varepsilon}J_{n}(ka\sqrt{\varepsilon})}$$

Laboratory Charles Coulomb

Origin of the poles of one scatterer

Solve a cavity spectral problem

$$\Delta U + k_0^2 \varepsilon U = 0$$
$$U = 0 \text{ on } \partial \Omega$$

self-adjoint in $L^2(\Omega)$ with compact resolvent Real discrete spectrum

Relax the Dirichlet condition to radiating conditions

Complex poles of the scattering amplitude=Finite life-time of inner modes due to leakage

Laboratory Charles Coulomb

Do not forget (special) relativity:

$$e^{i(k_rr - \omega_r t)} = e^{i\frac{\omega}{c}(r - ct)} e^{\frac{\Gamma}{c}(r - ct)}$$

Exponentially decreasing in the light cone (r-ct) < 0

Laboratory Charles Coulomb

Modulus of the determinant of the scattering amplitude

Poles of the scattering amplitude

Finite life-time of inner modes due to leakage

 $e^{ik_0\sqrt{\varepsilon}r}$

Poles of the scattering amplitude

Adding gain through the permittivity

$$\varepsilon = \varepsilon' - i\varepsilon''$$

make poles shift towards the upper half of the complex plane (perturbation theory)

Instability when crossing the real line: infinite life-time=Embedded eigenvalue

Laboratory Charles Coulomb

Laboratory Charles Coulomb

Poles of the scattering matrix

Adding gain make poles shift towards the upper half of the complex plane

Light Amplification in the upper sheet

Rods behave as (open) electromagnetic cavities

For a closed cavity filled with a dielectric:

if the radius is divided by η and the index is multiplied by $\eta,$ the cavity is unchanged

The open cavity behave in the same way if the permittivity is high enough

In other words: the resonances are (asymptotically) invariant under the transformation:

$$\begin{array}{c} a \to \eta a \\ \varepsilon \to \frac{\varepsilon}{\eta^2} \end{array}$$

Laboratory Charles Coulomb

The infinite structure

Bloch wave analysis

$$U(\mathbf{x}; \mathbf{k}) = e^{i\mathbf{k}\cdot\mathbf{x}}V_{\mathbf{k}}(\mathbf{x})$$
$$\mathbf{k} \in (\mathbb{R}/2\pi\mathbb{Z})^2$$

Laboratory Charles Coulomb

Bands induced by Mie resonances

Laboratory Charles Coulomb

Rescaling $\eta = 1/10$ (a η , ϵ/η^2)

Laboratory Charles Coulomb

Bands induced by Mie resonances: homogenization

Band structure can be described using homogenized parameters (ϵ , μ)

D. Felbacq, G. Bouchitté, Phys. Rev. Lett. 94, 183902 (2005) and C. R. Acad. Sci. Paris, Ser. I 339, 377-382 (2004)

G. Bouchitté, C. Bourel, D. Felbacq, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 571-576

G. Bouchitté, C. Bourel, D. Felbacq, *Homogenization of the 3D Maxwell system near resonances and artificial magnetism*, C. R. Acad. Sci. Paris, Ser. I **347** (2009) 571–576

K.Vynck, D. Felbacq, Phys. Rev. Lett. 102, 133901 (2009)

G. Bouchitté, C. Bourel, D. Felbacq, *Homogenization near resonances and artificial magnetism in 3D dielectric metamaterials,* Arch. Rat. Mech. Anal. 2017

Laboratory Charles Coulomb

Bands induced by Mie resonances: finite structure

Laboratory Charles Coulomb

Introducing quantum dots in the photonic structure

Laboratory Charles Coulomb

One scatterer with a QD: poles of the scattering amplitude

Laboratory Charles Coulomb

2 scatterers with a QD: poles of the scattering amplitude

Laboratory Charles Coulomb

2 scatterers with a QD: poles of the scattering amplitude

Laboratory Charles Coulomb

3x3 scatterers with a QD: poles of the scattering matrix

Laboratory Charles Coulomb

Transmission through the structure

Laboratory Charles Coulomb

Validity of the model

Consider the temporal behavior of the field:

$$U(x,t) = \int \frac{r(x,\omega)}{\omega - \omega_0 + i\Gamma} e^{-i\omega t} d\omega$$

Laboratory Charles Coulomb

Validity of the model

When the pole is in the lower sheet ($\Gamma > 0$), this corresponds to an exponentially decreasing field in time.

$$\int \frac{e^{-i\omega t}}{\omega - \omega_0 + i\Gamma} d\omega = \theta(x) e^{-i\omega_0 t} e^{-\Gamma t}$$

When the pole is in the upper sheet ($\Gamma < 0$), this corresponds to a non-causal field

$$\int \frac{e^{-i\omega t}}{\omega - \omega_0 + i\Gamma} d\omega = \theta(-x)e^{-i\omega_0 t}e^{-\Gamma t}$$

The true behavior should be obtained by means of analytical continuation

Laboratory Charles Coulomb

Validity of the model

$$\mathcal{U}_{(x,t)}(z) = \int_{\mathbb{R}^+} \frac{r(x,\omega)}{\omega-z} e^{-i\omega t} d\omega, \Im z < 0$$

This expression also makes sense for Im(z) > 0.

Denote $\widetilde{\mathcal{U}}$ the corresponding function.

There is a cut line on \mathbb{R}^+ , from Plemelj- Sokhotski theorem, we get:

$$\mathcal{U}(\omega_0 - i0) = \int_{\mathbb{R}^+} \frac{r(x,\omega)}{\omega - \omega_0} e^{-i\omega t} d\omega - i\pi r(x,\omega_0) e^{-i\omega_0 t}$$

Implying:

$$\mathcal{U}(\omega_0 - i0) = \widetilde{\mathcal{U}}(\omega_0 + i0) - 2i\pi r(x, \omega_0)e^{-i\omega_0 t}$$

Laboratory Charles Coulomb

Validity of the model

The jump is an entire function of ω_0 , showing that the field can be analytically continued by posing:

For
$$z \in \mathbb{C}^+, \mathcal{U}(z) = \widetilde{\mathcal{U}}(z) - 2i\pi r(x, z)e^{-izt}$$

Therefore the field is exponentially growing when the pole enters the upper sheet.

Physically, this means that this approach can only account for the early times, afterwards, saturation and nonlinearity cannot be neglected.

Laboratory Charles Coulomb

Towards quantum metamaterials

A quantum formalism :

- Set of two-level systems $H_{QD} = \sum \frac{\hbar \omega_0}{2} \sigma_z \otimes \delta(r r_n)$ Dipole coupling
- Dipole coupling
- Not necessarily RWA

$$P = d \sum_{n} (\sigma^{+} + \sigma^{-}) \otimes \delta(r - r_{n})$$

n

Similar to the Dicke model for super-radiance Except for the spatial variation of the field

Polaritons are expected to exist as collective modes of QDs mediated by Bloch waves, inducing non-local effects (k is a good quantum number here!)

Laboratory Charles Coulomb

AL JOP Commer Physics A Morgan & Campool Fabrication

Advanced Numerical and Theoretical Methods for Photonic Crystals and Metamaterials

Didier Felbacq

