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Outline

@ The Drude-Lorentz model
© Operator functions whose values are a Maxwell operator

© Enclosures for the spectrum and the numerical range

@ Properties of the first and second order formulations of the Maxwell
operator function
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Dielectric and metallic materials characterized by €

Dielectric materials: Ree > 1
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Metallic materials: Re € < 0
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@ w = 2mv/s, v- speed of light, s - wavelength [nm], w frequency
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Metal-dielectric structures

Define for x € Q := Q; U 2 the Drude-Lorentz model
e(x,w) = xq,(X) + e2(w)xq,(x), e(w) =1+

. 2
weD:i={weC:w#—id2+0},0=4/c—%

Surface plasmons are waves that travel along a metal-dielectric interface

e Metall: ¢ =0 (c < d?/4)

o Dielectric materials: ¢ > d?/4 (Air (vacuum): e = 1)
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Metal-dielectric structures

Define for x € Q := Q; U 2 the Drude-Lorentz model
b
e(x,w) = xq,(x) + e2(w)xq,(x), ew)=14+ ————
weD:={weC:w#—id2+60}, 0 =/c—%

7

Surface plasmons are waves that travel along a metal-dielectric interface

e Metall: ¢ =0 (c < d?/4)
o Dielectric materials: ¢ > d?/4 (Air (vacuum): e = 1)
Related works:
@ ¢ = —1, A.-S Bonnet-Ben Dhia/L. Chesnel/P. Ciarlet, Jr. ...
e d =0, E./H. Langer/C. Tretter, M. Cassier, C. Hazard, P. Joly ...
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Operator functions whose values are a Maxwell operator

Define for w € D the Maxwell operator A(w) : L?()® — L2(Q)S,
A() = M= F( %),
(0 —icurl _ (welx,w) 0
M= (icurl 0 >’ Flwx) = ( 0 w>'

The domain of A(-) is chosen such that M is self-adjoint.

@ Can we use a linearization to determine an enclosure of
o(A) ={weD :0ec(Aw))}?

@ Can we derive an enclosure of the numerical range of A?
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Metal-air structures

b
—w? — idw’

Let H := ran xq,, where xq, : L?(Q)3 — [2(Q)3 and define

e(x,w) 1= xq,(x) + e2(w)xq,(x), e(w):=1+

V* : [2(Q)® > # such that W* = xq,, V*V = Ig.

Then
—we(x,w) = Alw) — BD"Hw)B* =: R

where
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Equivalence and linearization

The following (well known) equivalence for R = A — BD71C is called an
equivalence after D(w)-extension:

5 ol=lo 7 1[E B[ 1]

Let

icurl —w

This operator is after D(-)-extension equivalent to

A B X —w B —icurl
Tw):=|B* D 0|=]| B* D(w) 0
Y 0 Z icurl 0 —w

See Theorem 3.4 in E./Torshage (2016), arXiv:1612.01373
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Perturbations of self-adjoint operators

0 B —icurl
Tw)y=| B* 0 0 —id—w=To+iTp—w
icurl 0 0

where 7Ty is self-adjoint and 7, is bounded.

Theorem (Kato 1980, Cuenin & Tretter 2016)
Q@ o(To+iTp)c{zeC: —d <Imz <0}

@ Assume

o(To) " (O,w1) =&, 2d <uw;

o(To+iTp) n{zeC:d<Rez<w —d} =
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Example: Perturbations of self-adjoint operators

Im w
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@ Enclosures under the condition o(7o) N (0,w1) = &, 2d <wi
@ Can we improve these enclosures for our special structure?
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The numerical range W

The non-self-adjoint operator:
@ The numerical range
W(To+ iTp) = {((To + iTp)u,u) : uedomTp,|u| =1}
e o(To+ iTp) < W(To + iTp) - convex and very large for our case

Non-self-adjoint operator functions:

@ The numerical range:
W(T) ={weD: Juedom T\{0}, |u|| = 1,s0 that (T (w)u, u) = 0}

@ o(T)c W(T) (under some conditions)
e W(T) - not convex, not connected

Consider operator functions in the form
T(w) = fh(w) + Ah(w) + Ash(w), weD

where f; are given complex functions and Ay, £ = 1,2 are self-adjoint

Engstrom (christian.engstrom@math.umu.se) Non-selfadjoint operator functions June 5, 2017 10 / 20



Definition of the enclosure (E./Torshage (2017))

Consider the solutions of f(w) := fy(w) + a1f(w) + azh(w) = 0:
@ Numerical range W(T): Take

ay = (Agu,u)  foru e dom T\{0}, ||u| = 1.

Then f(w) = (T (w)u, u).
@ Enclosure for W(T): Take any

(a1,a2) €T := W(A1) x W(Ay).

Define the enclosure for W(T) as

Wr(T) :={weD : fh(w) + arfi(w) + azfr(w) = 0for some (a1, ) € '}
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The enclosure Wi(A)

A(w)=/\/l—w—2u}7bg

—w?* — idw
_( 0 —icurl _(xa, O
M_(icurl 0 )’ g_(O 0
Take

o [ = W(M) x W(G)
e W(M) = (—oo,m), W(G) =[0,1]

@ The enclosure is minimal given only W(M), W(G)
@ See E./Torshage (2017)
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Linearization vs the enclosure W (A)
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@ Can we improve these enclosures using a different formulation?
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Second order formulation

The operator function A(:) is applied to (E, H)t € dom M < L?(Q)®,
where

@ E is the electric field

@ H is the magnetic field

The spectral problem can also be written in terms of the electric field. Let
A(w) 1 L2(Q)3 — L2(Q)3,

Aw) := M — w?e(x,w), M :=curlcurl

e Assume M self-adjoint and M >
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Self-adjointness and spectral gaps

e(x,w) = xa,(x) + e(W)xa,(x), efw):=1+

Case c = 0:
\/M>oz>0:>0(76)m(0,au)=@
Case ¢ = 0:

e Linearization of A gives an operator that is a bounded perturbation of
an operator that is self-adjoint in a Krein space

@ We will under some conditions have o(7y) N (wo,w1) = &
(Adamjan/Langer/Mennicken/Saurer (1996))

@ See E./Langer/Tretter (2017) for more on spectral gaps for the case
d=0
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First order A(-) vs second order .A(-) formulation

Define for

e(x,w) == xq,(x) + 2(w)xe,(x), e(w) =1+
the operator functions

2
Aw) = M—w——L G Ay = M—w? - — 2P g

c—w?—idw”’ c—w? —idw

where W(M) = (=0, ), W(M) = [0,0) and W(G) = W(G) = [0,1].

Define the sets '] = W(M) x W(G) and T, = W(M) x W(G) then

Wr,(A) > Wr,(A).

Proof: Based on conditions for w € Wr,(A) in E./Torshage (2017)
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Linearization vs first order vs second order formulation
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Examples for dielectric materials: ¢ > d?/4

@ | will approximate the spectrum of Ty with FEM for the TM case:
(E,H) = (0,0, E3, H1, H2, 0)

= (7o) N (wo,w1) = & (finite dimensional case)

@ We can then use the bounds on 7g + i7, from Cuenin & Tretter
(2016) for the TM case

o | will show the exact enclosures Wt (A) and W, (A)

@ | will approximate the spectrum of 7o +i7, with FEM for the TM case
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Enclosures for the case b = 50, ¢ = 10, d = 0.006

@ FEM eigenvalues for a photonic crystal application
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Accumulation of eigenvalues to the poles?

Re w

@ Linearization: /7, is not a relatively compact perturbation of 7

@ Approach based on theory for bounded operator polynomials gives
interesting results!

Talk on accumulation: Thursday at 09:45 by Axel Torshage
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