One-dimensional degenerate elliptic operators on L_p -spaces with complex coefficients

Tom ter Elst

University of Auckland

Joint work with Tan Do

7-6-2017

Outline

1 Introduction

2 Setting

3 Background

4 Set-up in one dimension

5 Results

6 Examples

Aim

Consider a divergence-form sectorial operator

$$A = -\sum_{k,l=1}^{d} \partial_k c_{kl} \partial_l$$

in $L_2(\mathbb{R}^d)$ with $c_{kl} \in W^{1,\infty}(\mathbb{R}^d)$ complex valued. Let S be the semigroup generated by A on $L_2(\mathbb{R}^d)$.

Problem. Does S extend consistently to a contraction C_0 -semigroup on $L_p(\mathbb{R}^d)$?

Let $-A_p$ be the generator in $L_p(\mathbb{R}^d)$. Clearly $C_c^{\infty}(\mathbb{R}^d) \subset D(A_p)$.

Problem. Is $C_c^{\infty}(\mathbb{R}^d)$ a core for A_p ?

Setting

For all $\theta \in [0, \frac{\pi}{2})$ define

$$\Sigma_{\theta} = \{ r \, e^{i\varphi} : r \in [0,\infty) \text{ and } \varphi \in [-\theta,\theta] \}.$$

For all $k, l \in \{1, \ldots, d\}$ let $c_{kl} \in W^{1,\infty}(\mathbb{R}^d)$. Suppose that there exists a $\theta \in [0, \frac{\pi}{2})$ such that

$$\sum_{k,l=1}^{d} c_{kl}(x) \, \xi_k \, \overline{\xi_l} \in \Sigma_{\theta}$$

for all $x \in \mathbb{R}^d$ and $\xi \in \mathbb{C}^d$.

Setting

Operator

Define the form $\mathfrak{a}_0 \colon W^{1,2}(\mathbb{R}^d) \times W^{1,2}(\mathbb{R}^d) \to \mathbb{C}$ by

$$\mathfrak{a}_{0}(u,v) = \sum_{k,l=1}^{d} \int_{\mathbb{R}^{d}} c_{kl} \left(\partial_{l} u\right) \overline{\partial_{k} v}.$$

Then \mathfrak{a}_0 is sectorial and closable. Let $\mathfrak{a} = \overline{\mathfrak{a}_0}$ be the closure of \mathfrak{a}_0 .

Let A be the operator associated with a. Then A is m-sectorial. Hence -A is the generator of a holomorphic semigroup S on $L_2(\mathbb{R}^d)$ which is contractive on the sector $\Sigma_{\frac{\pi}{2}-\theta}$. Obviously $C_c^{\infty}(\mathbb{R}^d) \subset D(A)$ and

$$Au = -\sum_{k,l=1}^{d} \partial_k c_{kl} \partial_l u$$

for all $u \in C_c^{\infty}(\mathbb{R}^d)$.

Tom ter Elst (University of Auckland)

Extension to L_p , strongly elliptic case

If A is strongly elliptic, that is, there exists a $\mu>0$ such that

$$\operatorname{Re}\sum_{k,l=1}^{d} c_{kl}(x) \,\xi_k \,\overline{\xi_l} \ge \mu \,|\xi|^2$$

for all $x \in \mathbb{R}^d$ and $\xi \in \mathbb{C}^d$, then the semigroup S on $L_2(\mathbb{R}^d)$ extends consistently to a C_0 -semigroup $S^{(p)}$ on $L_p(\mathbb{R}^d)$ for all $p \in [1, \infty)$. In general $S^{(p)}$ is not a contraction semigroup. Let $-A_p$ be the generator of $S^{(p)}$. Obviously $C_c^{\infty}(\mathbb{R}^d) \subset D(A_p)$ and

$$A_p u = -\sum_{k,l=1}^d \partial_k c_{kl} \partial_l u$$

for all $u \in C_c^{\infty}(\mathbb{R}^d)$.

Theorem. The space $C_c^{\infty}(\mathbb{R}^d)$ is a core for A_p .

Extension to L_p , real valued coefficients

(Without strong ellipticity.) Suppose the coefficients are real valued. Then the Beurling–Deny theorem implies that S is sub-Markovian.

With duality S extends consistently to a contraction C_0 -semigroup $S^{(p)}$ on $L_p(\mathbb{R}^d)$ for all $p \in [1, \infty)$. Let $-A_p$ be the generator of $S^{(p)}$.

Problem. Is $C_c^{\infty}(\mathbb{R}^d)$ a core for A_p ?

Smooth real valued coefficients

Theorem (Wong-Dzung). Suppose the $c_{kl} \in C^2(\mathbb{R}^d)$ are real valued and the matrix (c_{kl}) is symmetric. Then $C_c^{\infty}(\mathbb{R}^d)$ is a core for A_p for all $p \in [1, \infty)$.

Theorem (Ouhabaz). The same is valid on L_2 if the $c_{kl} \in W^{2,\infty}(\mathbb{R}^d)$ are real valued and the matrix (c_{kl}) is symmetric.

Real coefficient on [0,1]

Theorem (Campiti-Metafune-Pallara).

Let $c: [0,1] \to [0,\infty)$ be a real valued Lipschitz continuous function with c(0) = c(1) = 0 and c(x) > 0 for all $x \in (0,1)$. Consider divergence form operator $A_p = -\frac{d}{dx} c \frac{d}{dx}$ on $L_p(0,1)$, where $p \in [1,\infty)$.

They presented a characterisation when $C_c^{\infty}(0,1)$ is a core for A_p .

Specific aim

- What happens on the full real line \mathbb{R} , so dimension one?
- The coefficient is complex valued with values in a sector Σ_{θ} .

Specific aim

- What happens on the full real line \mathbb{R} , so dimension one?
- The coefficient is complex valued with values in a sector Σ_{θ} .

Remark. A $W^{1,\infty}(\mathbb{R})$ -function with values in a sector can have many zeros, even without being zero on any nontrivial interval. An example is $x \mapsto d(x, K) \wedge 1$, where K is the Cantor set.

Set-up

Let $c \in W^{1,\infty}(\mathbb{R})$, $\theta \in [0, \frac{\pi}{2})$ and suppose that $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$. Define the sectorial form $\mathfrak{a}_0 \colon W^{1,2}(\mathbb{R}) \times W^{1,2}(\mathbb{R}) \to \mathbb{C}$ by

$$\mathfrak{a}_0(u,v) = \int_{\mathbb{R}} c \, u' \, \overline{v'}.$$

Then \mathfrak{a}_0 closable. Let $\mathfrak{a} = \overline{\mathfrak{a}_0}$ be the closure.

Let A be the operator associated with a on $L_2(\mathbb{R})$. So if $u, f \in L_2(\mathbb{R})$, then

$$\left(u \in D(A) \text{ and } Au = f\right) \Leftrightarrow \left(u \in D(\mathfrak{a}) \text{ and } \forall_{v \in D(\mathfrak{a})}[\mathfrak{a}(u,v) = (f,v)_{L_2(\mathbb{R})}]\right).$$

Let S be the semigroup on $L_2(\mathbb{R})$ generated by -A.

Extension to L_p

Recall $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$ and $\mathfrak{a}_0(u, v) = \int_{\mathbb{R}} c \, u' \, \overline{v'}$.

Proposition (Do-tE). Let $p \in [1, \infty)$ and suppose that $\left|1 - \frac{2}{p}\right| \leq \cos \theta$. Then S extends consistently to a contraction C_0 -semigroup on $L_p(\mathbb{R})$.

Extension to L_p

Recall $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$ and $\mathfrak{a}_0(u, v) = \int_{\mathbb{R}} c \, u' \, \overline{v'}$.

Proposition (Do-tE). Let $p \in [1, \infty)$ and suppose that $\left|1 - \frac{2}{p}\right| \leq \cos \theta$. Then S extends consistently to a contraction C_0 -semigroup on $L_p(\mathbb{R})$.

Remark. Actually $c \in W^{1,\infty}(\mathbb{R})$ is not needed in the above proposition, merely $c \in L_{\infty}(\mathbb{R})$ and then A is the operator associated with \mathfrak{a}_0 .

Extension to L_p

Recall $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$ and $\mathfrak{a}_0(u, v) = \int_{\mathbb{R}} c \, u' \, \overline{v'}$.

Proposition (Do-tE). Let $p \in [1, \infty)$ and suppose that $\left|1 - \frac{2}{p}\right| \leq \cos \theta$. Then S extends consistently to a contraction C_0 -semigroup on $L_p(\mathbb{R})$.

Remark. Actually $c \in W^{1,\infty}(\mathbb{R})$ is not needed in the above proposition, merely $c \in L_{\infty}(\mathbb{R})$ and then A is the operator associated with \mathfrak{a}_0 .

Theorem. Suppose θ is minimal. Let $p \in [1, \infty)$. Then S extends consistently to a contraction C_0 -semigroup on $L_p(\mathbb{R})$ if and only if $\left|1-\frac{2}{p}\right| \leq \cos \theta$. Observation. If $-A_p$ is the generator of the C_0 -semigroup on $L_p(\mathbb{R})$, then $C_c^{\infty}(\mathbb{R}) \subset D(A_p)$ and $A_p u = -\frac{d}{dx} c \frac{d}{dx} u$ for all $u \in C_c^{\infty}(\mathbb{R})$.

Notation

Recall $c \in W^{1,\infty}(\mathbb{R})$, $\theta \in [0, \frac{\pi}{2})$ and $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$.

Define

$$\mathcal{P} = [\operatorname{Re} c > 0]$$
 and $\mathcal{N} = [\operatorname{Re} c = 0].$

Let $\{I_k : k \in K\}$ be the set of connected components of \mathcal{P} . Write $I_k = (a_k, b_k)$ for all $k \in K$, with $a_k, b_k \in [-\infty, \infty]$. Let

$$E = \{a_k, b_k : k \in K\} \cap \mathbb{R}$$

be the set of all finite endpoints. For all $k \in K$ define

$$m_k = \begin{cases} \frac{a_k + b_k}{2} & \text{if } a_k \in \mathbb{R} \text{ and } b_k \in \mathbb{R}, \\ a_k + 1 & \text{if } a_k \in \mathbb{R} \text{ and } b_k = \infty, \\ b_k - 1 & \text{if } a_k = -\infty \text{ and } b_k \in \mathbb{R}, \\ 0 & \text{if } a_k = -\infty \text{ and } b_k = \infty \end{cases}$$

Tom ter Elst (University of Auckland)

Main result

Define the function $Z \colon \mathbb{R} \to \mathbb{R}$ by

$$Z(x) = \begin{cases} \int_x^{m_k} \frac{1}{\operatorname{Re} c} & \text{if } x \in I_k \text{ and } k \in K, \\ \infty & \text{if } x \in \mathcal{N}. \end{cases}$$

Theorem. Let $p \in [1, \infty)$ and assume that $\left|1 - \frac{2}{p}\right| \leq \cos \theta$. Let $-A_p$ be the generator of the contraction C_0 -semigroup on $L_p(\mathbb{R})$ which is consistent with S.

Then $C_c^{\infty}(\mathbb{R})$ is a core for A_p if and only if $Z|_{(x-\delta,x+\delta)} \notin L_q(x-\delta,x+\delta)$ for all $x \in E$ and $\delta > 0$, where q is the dual exponent of p.

Corollary. If c is real valued then $C_c^{\infty}(\mathbb{R})$ is a core for A_1 .

Consequence

Corollary. Let $p \in (1, \infty) \setminus \{2\}$, let $c \in W^{2-\frac{1}{p}, \infty}(\mathbb{R})$ and suppose that $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$, where $\theta = \arccos \left|1 - \frac{2}{p}\right|$. Then $C_c^{\infty}(\mathbb{R})$ is a core for A_p . If p = 2, then require $\theta \in [0, \frac{\pi}{2})$, $c \in W^{2-\frac{1}{2}, \infty}(\mathbb{R})$ and $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$.

Some ingredients of the proof

For all $u \in L_{1,\text{loc}}(\mathbb{R})$ with $u|_{\mathcal{P}} \in W^{1,1}_{\text{loc}}(\mathcal{P})$ define $Du \colon \mathbb{R} \to \mathbb{C}$ by

$$(Du)(x) = \begin{cases} u'(x) & \text{if } x \in \mathcal{P}, \\ 0 & \text{if } x \in \mathcal{N}. \end{cases}$$

Theorem. Let $p \in [1,\infty)$ and suppose that $\left|1-\frac{2}{p}\right| \leq \cos \theta$. Then

$$\begin{split} D(A_p) &= \{ u \in L_p(\mathbb{R}) \cap W^{1,p}_{\mathrm{loc}}(\mathcal{P}) : c \, Du \in W^{1,p}_{\mathrm{loc}}(\mathcal{P}), \ D(c \, Du) \in L_p(\mathbb{R}), \\ & \lim_{x \downarrow a} (c \, Du)(x) = 0 \text{ for all } a \in E_l \text{ and} \\ & \lim_{x \uparrow b} (c \, Du)(x) = 0 \text{ for all } b \in E_r \}. \end{split}$$

If $u \in D(A_p)$, then $A_p u = -D(c Du)$.

Some ingredients of the proof (2)

Lemma. If $(a_k, b_k) = I_k$ and $u \in D(A_p)$, then $u \mathbb{1}_{(a_k, \infty)} \in D(A_p)$ and $u \mathbb{1}_{(-\infty, a_k)} \in D(A_p)$.

Lemma. If $(a_k, b_k) = I_k$, $a_k \in \mathbb{R}$ and $Z|_{(a_k, m_k)} \in L_q(a_k, m_k)$, then $D(A_p) \subset C[a_k, m_k]$.

Example (1)

Let $\kappa \in (1,\infty)$. Define $c \colon \mathbb{R} \to [0,\infty)$ by

$$c(x) = \left(d(x, 2\mathbb{Z})\right)^{\kappa}.$$

Then

$$Z(x) = (\kappa - 1)^{-1} \left(x^{-(\kappa - 1)} - 1 \right)$$

for all $x \in (0, 1)$. Let $p \in (1, \infty)$. It follows from the main theorem that $C_c^{\infty}(\mathbb{R})$ is a core for A_p if and only if $\kappa \geq 2 - \frac{1}{p}$.

Tom ter Elst (University of Auckland)

Example (2)

Fix $\lambda \in [0, 1)$. Let $K \subset [0, 1]$ be the generalized Cantor set with $|K| = \lambda$. So $K = \bigcap_{n=0}^{\infty} K_n$, with $K_0 = [0, 1]$ and for any $n \in \mathbb{N}_0$ construct K_{n+1} by removing the central open interval of length $(1 - \lambda) 3^{-(n+1)}$ from each of the 2^n intervals of K_n .

Fix
$$\kappa \in (1,\infty)$$
 and define $c \colon \mathbb{R} \to [0,\infty)$ by

$$c(x) = \left(d(x,K) \wedge 1\right)^{\kappa}.$$

Let $p \in (1, \infty)$ and let q be the dual exponent of p.

Then $C_c^{\infty}(\mathbb{R})$ is a core for A_p if and only if $\lambda > 0$ or $2 \ge 3^{1-(\kappa-1)q}$.

T.D. Do and A.F.M. ter Elst,

One-dimensional degenerate elliptic operators on L_p -spaces with complex coefficients.

Semigroup Forum 92 (2016), 559-586.