One-dimensional degenerate elliptic operators on L_{p}-spaces with complex coefficients

Tom ter Elst

University of Auckland

Joint work with Tan Do

7-6-2017

Outline

1 Introduction

2 Setting

3 Background

4 Set-up in one dimension

5 Results

6 Examples

Aim

Consider a divergence-form sectorial operator

$$
A=-\sum_{k, l=1}^{d} \partial_{k} c_{k l} \partial_{l}
$$

in $L_{2}\left(\mathbb{R}^{d}\right)$ with $c_{k l} \in W^{1, \infty}\left(\mathbb{R}^{d}\right)$ complex valued.
Let S be the semigroup generated by A on $L_{2}\left(\mathbb{R}^{d}\right)$.
Problem. Does S extend consistently to a contraction C_{0}-semigroup on $L_{p}\left(\mathbb{R}^{d}\right)$?

Let $-A_{p}$ be the generator in $L_{p}\left(\mathbb{R}^{d}\right)$.
Clearly $C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset D\left(A_{p}\right)$.
Problem. Is $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ a core for A_{p} ?

Setting

For all $\theta \in\left[0, \frac{\pi}{2}\right)$ define

$$
\Sigma_{\theta}=\left\{r e^{i \varphi}: r \in[0, \infty) \text { and } \varphi \in[-\theta, \theta]\right\}
$$

For all $k, l \in\{1, \ldots, d\}$ let $c_{k l} \in W^{1, \infty}\left(\mathbb{R}^{d}\right)$. Suppose that there exists a $\theta \in\left[0, \frac{\pi}{2}\right)$ such that

$$
\sum_{k, l=1}^{d} c_{k l}(x) \xi_{k} \overline{\xi_{l}} \in \Sigma_{\theta}
$$

for all $x \in \mathbb{R}^{d}$ and $\xi \in \mathbb{C}^{d}$.

Operator

Define the form $\mathfrak{a}_{0}: W^{1,2}\left(\mathbb{R}^{d}\right) \times W^{1,2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ by

$$
\mathfrak{a}_{0}(u, v)=\sum_{k, l=1}^{d} \int_{\mathbb{R}^{d}} c_{k l}\left(\partial_{l} u\right) \overline{\partial_{k} v}
$$

Then \mathfrak{a}_{0} is sectorial and closable. Let $\mathfrak{a}=\overline{\mathfrak{a}_{0}}$ be the closure of \mathfrak{a}_{0}.
Let A be the operator associated with \mathfrak{a}.
Then A is m -sectorial. Hence $-A$ is the generator of a holomorphic semigroup S on $L_{2}\left(\mathbb{R}^{d}\right)$ which is contractive on the sector $\Sigma_{\frac{\pi}{2}-\theta}$. Obviously $C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset D(A)$ and

$$
A u=-\sum_{k, l=1}^{d} \partial_{k} c_{k l} \partial_{l} u
$$

for all $u \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.

Extension to L_{p}, strongly elliptic case

If A is strongly elliptic, that is, there exists a $\mu>0$ such that

$$
\operatorname{Re} \sum_{k, l=1}^{d} c_{k l}(x) \xi_{k} \overline{\xi_{l}} \geq \mu|\xi|^{2}
$$

for all $x \in \mathbb{R}^{d}$ and $\xi \in \mathbb{C}^{d}$, then the semigroup S on $L_{2}\left(\mathbb{R}^{d}\right)$ extends consistently to a C_{0}-semigroup $S^{(p)}$ on $L_{p}\left(\mathbb{R}^{d}\right)$ for all $p \in[1, \infty)$. In general $S^{(p)}$ is not a contraction semigroup.
Let $-A_{p}$ be the generator of $S^{(p)}$.
Obviously $C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset D\left(A_{p}\right)$ and

$$
A_{p} u=-\sum_{k, l=1}^{d} \partial_{k} c_{k l} \partial_{l} u
$$

for all $u \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
Theorem. The space $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is a core for A_{p}.

Extension to L_{p}, real valued coefficients

(Without strong ellipticity.)
Suppose the coefficients are real valued.
Then the Beurling-Deny theorem implies that S is sub-Markovian.
With duality S extends consistently to a contraction C_{0}-semigroup $S^{(p)}$ on $L_{p}\left(\mathbb{R}^{d}\right)$ for all $p \in[1, \infty)$.
Let $-A_{p}$ be the generator of $S^{(p)}$.
Problem. Is $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ a core for A_{p} ?

Smooth real valued coefficients

Theorem (Wong-Dzung). Suppose the $c_{k l} \in C^{2}\left(\mathbb{R}^{d}\right)$ are real valued and the matrix $\left(c_{k l}\right)$ is symmetric.
Then $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is a core for A_{p} for all $p \in[1, \infty)$.
Theorem (Ouhabaz). The same is valid on L_{2} if the $c_{k l} \in W^{2, \infty}\left(\mathbb{R}^{d}\right)$ are real valued and the matrix $\left(c_{k l}\right)$ is symmetric.

Real coefficient on $[0,1]$

Theorem (Campiti-Metafune-Pallara).
Let $c:[0,1] \rightarrow[0, \infty)$ be a real valued Lipschitz continuous function with $c(0)=c(1)=0$ and $c(x)>0$ for all $x \in(0,1)$.
Consider divergence form operator $A_{p}=-\frac{d}{d x} c \frac{d}{d x}$ on $L_{p}(0,1)$, where $p \in[1, \infty)$.
They presented a characterisation when $C_{c}^{\infty}(0,1)$ is a core for A_{p}.

Specific aim

■ What happens on the full real line \mathbb{R}, so dimension one?

- The coefficient is complex valued with values in a sector Σ_{θ}.

Specific aim

■ What happens on the full real line \mathbb{R}, so dimension one?

- The coefficient is complex valued with values in a sector Σ_{θ}.

Remark. A $W^{1, \infty}(\mathbb{R})$-function with values in a sector can have many zeros, even without being zero on any nontrivial interval. An example is $x \mapsto d(x, K) \wedge 1$, where K is the Cantor set.

Set-up

Let $c \in W^{1, \infty}(\mathbb{R}), \theta \in\left[0, \frac{\pi}{2}\right)$ and suppose that $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$.
Define the sectorial form $\mathfrak{a}_{0}: W^{1,2}(\mathbb{R}) \times W^{1,2}(\mathbb{R}) \rightarrow \mathbb{C}$ by

$$
\mathfrak{a}_{0}(u, v)=\int_{\mathbb{R}} c u^{\prime} \overline{v^{\prime}}
$$

Then \mathfrak{a}_{0} closable. Let $\mathfrak{a}=\overline{\mathfrak{a}_{0}}$ be the closure.
Let A be the operator associated with \mathfrak{a} on $L_{2}(\mathbb{R})$. So if $u, f \in L_{2}(\mathbb{R})$, then
$(u \in D(A)$ and $A u=f) \Leftrightarrow\left(u \in D(\mathfrak{a})\right.$ and $\left.\forall_{v \in D(\mathfrak{a})}\left[\mathfrak{a}(u, v)=(f, v)_{L_{2}(\mathbb{R})}\right]\right)$.
Let S be the semigroup on $L_{2}(\mathbb{R})$ generated by $-A$.

Extension to L_{p}

Recall $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$ and $\mathfrak{a}_{0}(u, v)=\int_{\mathbb{R}} c u^{\prime} \overline{v^{\prime}}$.

Proposition (Do-tE). Let $p \in[1, \infty)$ and suppose that $\left|1-\frac{2}{p}\right| \leq \cos \theta$.
Then S extends consistently to a contraction C_{0}-semigroup on $L_{p}(\mathbb{R})$.

Extension to L_{p}

$$
\text { Recall } c(x) \in \Sigma_{\theta} \text { for all } x \in \mathbb{R} \text { and } \mathfrak{a}_{0}(u, v)=\int_{\mathbb{R}} c u^{\prime} \overline{v^{\prime}} .
$$

Proposition (Do-tE). Let $p \in[1, \infty)$ and suppose that $\left|1-\frac{2}{p}\right| \leq \cos \theta$. Then S extends consistently to a contraction C_{0}-semigroup on $L_{p}(\mathbb{R})$.

Remark. Actually $c \in W^{1, \infty}(\mathbb{R})$ is not needed in the above proposition, merely $c \in L_{\infty}(\mathbb{R})$ and then A is the operator associated with \mathfrak{a}_{0}.

Extension to L_{p}

Recall $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$ and $\mathfrak{a}_{0}(u, v)=\int_{\mathbb{R}} c u^{\prime} \overline{v^{\prime}}$.

Proposition (Do-tE). Let $p \in[1, \infty)$ and suppose that $\left|1-\frac{2}{p}\right| \leq \cos \theta$.
Then S extends consistently to a contraction C_{0}-semigroup on $L_{p}(\mathbb{R})$.
Remark. Actually $c \in W^{1, \infty}(\mathbb{R})$ is not needed in the above proposition, merely $c \in L_{\infty}(\mathbb{R})$ and then A is the operator associated with \mathfrak{a}_{0}.

Theorem. Suppose θ is minimal. Let $p \in[1, \infty)$. Then S extends consistently to a contraction C_{0}-semigroup on $L_{p}(\mathbb{R})$ if and only if $\left|1-\frac{2}{p}\right| \leq \cos \theta$.
Observation. If $-A_{p}$ is the generator of the C_{0}-semigroup on $L_{p}(\mathbb{R})$, then $C_{c}^{\infty}(\mathbb{R}) \subset D\left(A_{p}\right)$ and $A_{p} u=-\frac{d}{d x} c \frac{d}{d x} u$ for all $u \in C_{c}^{\infty}(\mathbb{R})$.

Notation

Recall $c \in W^{1, \infty}(\mathbb{R}), \theta \in\left[0, \frac{\pi}{2}\right)$ and $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$.
Define

$$
\mathcal{P}=[\operatorname{Re} c>0] \quad \text { and } \quad \mathcal{N}=[\operatorname{Re} c=0] .
$$

Let $\left\{I_{k}: k \in K\right\}$ be the set of connected components of \mathcal{P}. Write $I_{k}=\left(a_{k}, b_{k}\right)$ for all $k \in K$, with $a_{k}, b_{k} \in[-\infty, \infty]$. Let

$$
E=\left\{a_{k}, b_{k}: k \in K\right\} \cap \mathbb{R}
$$

be the set of all finite endpoints.
For all $k \in K$ define

$$
m_{k}= \begin{cases}\frac{a_{k}+b_{k}}{2} & \text { if } a_{k} \in \mathbb{R} \text { and } b_{k} \in \mathbb{R} \\ a_{k}+1 & \text { if } a_{k} \in \mathbb{R} \text { and } b_{k}=\infty \\ b_{k}-1 & \text { if } a_{k}=-\infty \text { and } b_{k} \in \mathbb{R} \\ 0 & \text { if } a_{k}=-\infty \text { and } b_{k}=\infty\end{cases}
$$

Main result

Define the function $Z: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
Z(x)= \begin{cases}\int_{x}^{m_{k}} \frac{1}{\operatorname{Re} c} & \text { if } x \in I_{k} \text { and } k \in K \\ \infty & \text { if } x \in \mathcal{N}\end{cases}
$$

Theorem. Let $p \in[1, \infty)$ and assume that $\left|1-\frac{2}{p}\right| \leq \cos \theta$.
Let $-A_{p}$ be the generator of the contraction C_{0}-semigroup on $L_{p}(\mathbb{R})$ which is consistent with S.
Then $C_{c}^{\infty}(\mathbb{R})$ is a core for A_{p} if and only if $\left.Z\right|_{(x-\delta, x+\delta)} \notin L_{q}(x-\delta, x+\delta)$ for all $x \in E$ and $\delta>0$, where q is the dual exponent of p.

Corollary. If c is real valued then $C_{c}^{\infty}(\mathbb{R})$ is a core for A_{1}.

Consequence

Corollary. Let $p \in(1, \infty) \backslash\{2\}$, let $c \in W^{2-\frac{1}{p}, \infty}(\mathbb{R})$ and suppose that $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$, where $\theta=\arccos \left|1-\frac{2}{p}\right|$.
Then $C_{c}^{\infty}(\mathbb{R})$ is a core for A_{p}.
If $p=2$, then require $\theta \in\left[0, \frac{\pi}{2}\right), c \in W^{2-\frac{1}{2}, \infty}(\mathbb{R})$ and $c(x) \in \Sigma_{\theta}$ for all $x \in \mathbb{R}$.

Some ingredients of the proof

For all $u \in L_{1, \text { loc }}(\mathbb{R})$ with $\left.u\right|_{\mathcal{P}} \in W_{\text {loc }}^{1,1}(\mathcal{P})$ define $D u: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
(D u)(x)= \begin{cases}u^{\prime}(x) & \text { if } x \in \mathcal{P} \\ 0 & \text { if } x \in \mathcal{N}\end{cases}
$$

Theorem. Let $p \in[1, \infty)$ and suppose that $\left|1-\frac{2}{p}\right| \leq \cos \theta$. Then

$$
\begin{aligned}
D\left(A_{p}\right)=\left\{u \in L_{p}(\mathbb{R}) \cap W_{\mathrm{loc}}^{1, p}(\mathcal{P}):\right. & c D u \in W_{\mathrm{loc}}^{1, p}(\mathcal{P}), D(c D u) \in L_{p}(\mathbb{R}), \\
& \lim _{x \downarrow a}(c D u)(x)=0 \text { for all } a \in E_{l} \text { and } \\
& \left.\lim _{x \uparrow b}(c D u)(x)=0 \text { for all } b \in E_{r}\right\} .
\end{aligned}
$$

If $u \in D\left(A_{p}\right)$, then $A_{p} u=-D(c D u)$.

Some ingredients of the proof (2)

Lemma. If $\left(a_{k}, b_{k}\right)=I_{k}$ and $u \in D\left(A_{p}\right)$, then $u \mathbb{1}_{\left(a_{k}, \infty\right)} \in D\left(A_{p}\right)$ and $u \mathbb{1}_{\left(-\infty, a_{k}\right)} \in D\left(A_{p}\right)$.

Lemma. If $\left(a_{k}, b_{k}\right)=I_{k}, a_{k} \in \mathbb{R}$ and $\left.Z\right|_{\left(a_{k}, m_{k}\right)} \in L_{q}\left(a_{k}, m_{k}\right)$, then $D\left(A_{p}\right) \subset C\left[a_{k}, m_{k}\right]$.

Example (1)

Let $\kappa \in(1, \infty)$.
Define $c: \mathbb{R} \rightarrow[0, \infty)$ by

$$
c(x)=(d(x, 2 \mathbb{Z}))^{\kappa}
$$

Then $c \in W^{1, \infty}(\mathbb{R})$.

Then

$$
Z(x)=(\kappa-1)^{-1}\left(x^{-(\kappa-1)}-1\right)
$$

for all $x \in(0,1)$.
Let $p \in(1, \infty)$.
It follows from the main theorem that $C_{c}^{\infty}(\mathbb{R})$ is a core for A_{p} if and only if $\kappa \geq 2-\frac{1}{p}$.

Example (2)

Fix $\lambda \in[0,1)$. Let $K \subset[0,1]$ be the generalized Cantor set with $|K|=\lambda$. So $K=\bigcap_{n=0}^{\infty} K_{n}$, with $K_{0}=[0,1]$ and for any $n \in \mathbb{N}_{0}$ construct K_{n+1} by removing the central open interval of length $(1-\lambda) 3^{-(n+1)}$ from each of the 2^{n} intervals of K_{n}.

Fix $\kappa \in(1, \infty)$ and define $c: \mathbb{R} \rightarrow[0, \infty)$ by

$$
c(x)=(d(x, K) \wedge 1)^{\kappa}
$$

Let $p \in(1, \infty)$ and let q be the dual exponent of p.
Then $C_{c}^{\infty}(\mathbb{R})$ is a core for A_{p} if and only if $\lambda>0$ or $2 \geq 3^{1-(\kappa-1) q}$.

References

T.D. Do and A.F.M. ter Elst,

One-dimensional degenerate elliptic operators on L_{p}-spaces with complex coefficients.
Semigroup Forum 92 (2016), 559-586.

