The Solvability of Differential Equations

Nils Dencker

Lund University

June 9, 2017

1 Introduction

- Definitions
- Estimates

2 History

- Principal type
- Lewy's counterexample
- The bracket condition

3 NT conjecture

- Conjecture
- Resolution
- 4 Non-principal type operators
 - Limit characteristics
 - Subprincipal type

Preliminaries

Consider $x \in \mathbf{R}^n$, the results are local and generalize to manifolds. Take the complex derivative $D = \frac{1}{i}\partial$ then

$$P(x,D)u(x) = (2\pi)^{-n} \int e^{ix \cdot \xi} P(x,\xi)\hat{u}(\xi) d\xi \qquad u \in C_0^{\infty}(\mathbf{R}^n)$$

where $P(x,\xi)$ is called the symbol of the operator.

This is a PDO if $\xi \mapsto P(x,\xi)$ is polynomial, and a classical Ψ DO if $P(x,\xi)$ is a sum of terms

$$p_m(x,\xi)+p_{m-1}(x,\xi)+\ldots$$

homogeneous of degree m, m-1, ... in ξ . Here m is the order, $p_m = p$ is the principal symbol and $p_{m-1} = p_s$ the subprincipal symbol of P.

By using more general symbols P one can localize in phase space $(x,\xi) \in T^* \mathbf{R}^n$, so called microlocal analysis.

Local solvability

Definition

P is locally solvable near x_0 if

$$Pu = f$$

has a local weak (distribution) solution u near x_0 for all $f \in C^{\infty}$ in a set of finite codimension.

A weak solution u to the equation satisfies

$$\int f(x)\overline{\varphi(x)}\,dx = \int u(x)\overline{P^*\varphi(x)}\,dx \qquad \forall\,\varphi\in C_0^\infty$$

near x_0 , where P^* is the *adjoint*. When P is not locally solvable the range has infinite codimension.

Observe that in the analytic category all non-degenerate PDO's are locally solvable by the Cauchy-Kovalevsky theorem

Estimates

Local solvability is equivalent to a priori estimates for the adjoint P^* :

$$\|u\|_{(0)} \leq C(\|P^*u\|_{(N)} + \|u\|_{(-n)} + \|Au\|_{(0)}) \qquad \forall \, u \in C_0^{\infty}(\mathbf{R}^n)$$

where x_0 is **not** in the support of the function A and

$$\|u\|_{(k)}^{2} = \int_{\mathbf{R}^{n}} (1+|\xi|^{2})^{k} |\hat{u}(\xi)|^{2} d\xi$$

is the square of the usual L^2 Sobolev norm.

To prove local non-solvability one constructs local approximate solutions to $P^*u = 0$, which are called *pseudomodes*.

History

Constant coefficients PDO are locally solvable. (Ehrenpreis and Malgrange 1955)

Variable coefficients: Principal symbol $p(x,\xi)$ is invariant as a function of $(x,\xi) \in T^* \mathbb{R}^n$.

Elliptic case: $p(x,\xi) \neq 0$ for $\xi \neq 0$ are solvable. (Lax-Milgram 1954)

The Hamilton field of p is $H_p = \sum_j \partial_{\xi_j} p \partial_{x_j} - \partial_{x_j} p \partial_{\xi_j}$.

Definition

The operator *P* is of **principal type** if H_p does not have the radial direction $\langle \xi, \partial_{\xi} \rangle$ when p = 0, thus $dp \neq 0$ when p = 0.

Then P has simple characteristics, which is a generic condition for non-elliptic operators.

◆□ → ◆□ → ◆豆 → ◆豆 → □ □ □

The Lewy counterexample

Example The Cauchy-Riemann operator $P(D) = D_{x_1} + iD_{x_2}$ is locally solvable.

Hans Lewy's counterexample (1957) The operator

 $P = D_{x_1} + iD_{x_2} + i(x_1 + ix_2)D_{x_3} = D_{x_1} - x_2D_{x_3} + i(D_{x_2} + x_1D_{x_3})$

is **not** locally solvable anywhere in \mathbf{R}^3 .

In suitable coordinates this is the tangential Cauchy-Riemann operator on the boundary of the strictly pseudoconvex set

$$\{(z_1, z_2): |z_1|^2 + 2 \operatorname{Im} z_2 < 0\} \subset \mathbf{C}^2$$

By the Cauchy-Kovalevsky theorem P is solvable in the analytic category, so the equation is solvable up to an arbitrarily small error near any given point.

The bracket condition

Theorem

Local solvability implies that { $\operatorname{Re} p$, $\operatorname{Im} p$ } = $H_{\operatorname{Re} p}$ Im p = 0 on $p^{-1}(0)$, where p is the principal symbol of P. (Hörmander 1960)

Thus almost all non-elliptic PDO are not locally solvable!

Note that $[P, P^*] \sim \frac{1}{i} \{p, \overline{p}\} + \dots$ and for the Lewy counterexample:

 $\{\operatorname{\mathsf{Re}} p, \operatorname{\mathsf{Im}} p\} = 2\xi_3 \not\equiv 0.$

where $p(x, \xi) = \xi_1 - x_2\xi_3 + i(\xi_2 + x_1\xi_3)$ could vanish when $\xi_3 \neq 0$.

For Ψ DO we get { Re p, Im p } ≤ 0 on $p^{-1}(0)$, but for PDO's the bracket is *odd* in ξ so it has to vanish on $p^{-1}(0)$ (switch $\xi \leftrightarrow -\xi$).

Non-zero bracket means that the principal symbol satisfies a topological winding number condition, for example $\tau \pm it$.

Pseudospectrum

Let

$$P(h) = -h^2 \Delta + V = p(x, hD)(x)$$

be the Schrödinger operator with potential $V \in \mathcal{C}^{\infty}(\mathbf{R}^n)$. For

$$z \in \{|\xi|^2 + V(x): \{\operatorname{\mathsf{Re}} p, \operatorname{\mathsf{Im}} p\} = 2\langle \xi,
abla \operatorname{\mathsf{Im}} V(x)
angle
eq 0\}$$

we have

$$\|(P(h)-z)^{-1}\| \ge C_N h^{-N} \qquad \forall N$$

By Sard's theorem, this holds for almost all values when Im $V \neq 0$. (D., Sjöstrand and Zworski 2004). This has been generalized to systems (D. 2008).

The "almost eigenvalues" are called *pseudospectrum* and the "almost eigenfunctions" are called *pseudomodes*.

Non-linear equations

The bracket condition also gives instability for the C^{∞} Cauchy problem for **quasilinear analytic vector fields**.

The Cauchy-Kovalevsky theorem gives local solvability for any analytic data on a non-characteristic analytic initial surface.

But for **almost all** analytic data there exists smooth data with the same Taylor expansion at a given point for which the Cauchy problem has **no** C^2 solution. (Lerner, Morimoto and Xu 2010)

For example, the non-homogeneous Burger's equation

$$\partial_t u + u \partial_{x_1} u = f(t, x, u) \qquad (t, x) \in \mathbf{R} \times \mathbf{R}^n$$

with analytic f has **no** C^2 solution for **almost all** non-analytic Cauchy data u(0, x). For example: when the bracket of the linearization $[\partial_t + \operatorname{Re} u \partial_x, \operatorname{Im} u \partial_x] = (\operatorname{Im} \partial_t u + \operatorname{Re} u \partial_x \operatorname{Im} u - \operatorname{Im} u \partial_x \operatorname{Re} u) \partial_x \neq 0$, thus $\operatorname{Im} f(t, x, u) - 2 \operatorname{Im} u \partial_{x_1} \operatorname{Re} u \neq 0$.

The Nirenberg-Treves conjecture

Nirenberg and Treves replaced conditions on the bracket with conditions on the sign changes of the symbol.

Condition (Ψ): Im *p* does not change sign from – to + along the oriented bicharacteristics of Re *p* (the positive flow-out of $H_{\text{Re }p}$).

This condition is *invariant* and implies that $H_{\text{Re}\,p} \,\text{Im}\,p \leq 0$ at $p^{-1}(0)$.

Example For $D_t + if(t, x, D_x)$ with f real and first order, $H_{\text{Re}\,p} \text{Im}\,p = \partial_t f(t, x, \xi)$ and condition (Ψ) means that $t \mapsto f(t, x, \xi)$ cannot change sign from - to + for increasing t and fixed (x, ξ) .

The NT conjecture (1969)

A principal type Ψ DO is locally solvable if and only if the principal symbol satisfies condition (Ψ).

Resolution of the Nirenberg-Treves conjecture

Condition (Ψ) is **necessary** for local solvability for Ψ DO. (Hörmander 1980)

Condition (Ψ) is **sufficient** for local solvability for Ψ DO in two variables. (Lerner 1988)

Theorem

If P is a principal type ΨDO with principal symbol satisfying condition (Ψ) then P is locally solvable. (D. 2006)

Thus condition (Ψ) is **equivalent** to local solvability for Ψ DO of principal type.

This has been generalized to systems with constant characteristics, but little is known in general for operators that are *not* of principal type.

Why condition (Ψ) ?

P is solvable \Leftrightarrow *P*^{*} has a finite-dimensional kernel **Example** Let $(t, x) \in \mathbf{R} \times \mathbf{R}^n$, $|D_x| = \Delta_x^{1/2} \ge 0$ and

 $P = D_t + it|D_x|$ with $\sigma(P) = \tau + it|\xi|$

Thus, $\sigma(P)$ does **not** satisfy (Ψ) and

$$P^* = D_t - it|D_x| = \frac{1}{i}(\partial_t + t|D_x|)$$

We have that $P^*u = 0$ if

$$u(t,x) = \int e^{i\langle x,\xi\rangle - t^2|\xi|/2} \phi(\xi) \, d\xi \qquad \forall \ \phi \in C_0^\infty$$

so P^* has an infinite-dimensional kernel and P is **not** solvable.

Non-principal type operators

Where the principal symbol p_m vanishes of at least second order, the subprincipal symbol $p_s = p_{m-1}$ becomes an important invariant.

Example Let

$$P=D_1D_2+B(x,D)$$

where *B* has order one. The principal symbol $\xi_1\xi_2$ is real and vanishes of second order at the double characteristics $\Sigma_2 = \{ \xi_1 = \xi_2 = 0 \}$ and the subprincipal symbol is equal to the principal symbol *b* of *B*.

If $x_j \mapsto \text{Im } b$ changes sign then P is not solvable and if $\pm \text{Im } b > 0$ then P is solvable (Mendoza–Uhlmann 1983-84).

Corresponds to condition (Ψ) on subprincipal symbol — get both directions for second order principal symbol.

Conjecture: Is *P* solvable if Im *b* does not change sign in (x_1, x_2) ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Limit characteristics

Let P be second order operator with principal symbol

$$\tau^2 - t^2 |\xi|^2 - |\eta|^2$$

P is effectively hyperbolic when $\xi \neq 0$ and then locally solvable for any lower order terms. Thus condition (Ψ) cannot be necessary in general.

Observe that when $\xi \neq 0$ we find that $\Sigma_2 = \{ \tau = t = |\eta| = 0 \}$ is non-involutive since $\{ \tau, t \} = 1$.

Definition

We say that Γ is a *limit bicharacteristic* (possibly a point) if there exist bicharacteristics Γ_j that converge to it as smooth curves.

Then the normalized Hamilton fields $|\nabla p|^{-1}H_p \in C^{\infty}$ uniformly on Γ_j .

Examples

Let $p = \prod_j p_j$ with real p_j of principal type, $p_j = 0$ on Σ_2 and $p_j \neq p_k$ on $p^{-1}(0) \setminus \Sigma_2$. Then limit bicharacteristics of p are the bicharacteristics of p_j on Σ_2 for any j.

Let $p(x,\xi)$ be real and vanish of order $k \ge 2$ at $\Sigma_2 = \{\xi' = 0\}$. If the localization at Σ_2

$$\eta \mapsto \sum_{|\alpha|=k} \partial_{\xi'}^{\alpha} p(x, 0, \xi'') \eta^{\alpha} / \alpha!$$

is of principal type when $\eta \neq 0$ (thus simple zeroes) then the limit bicharacteristics are the bicharacteristics of the localization at Σ_2 .

Assume the bicharacteristic $\Gamma \in C^{\infty}$ uniformly, thus the normalization $H_{\widetilde{p}} = |\nabla p|^{-1}H_p \in C^{\infty}$ on Γ .

A Lagrangean space *L* is grazing to Γ if $L \subset Tp^{-1}(0)$ and the linearization of $H_{\tilde{p}}$ is tangent to *L*, thus $T\Gamma \subseteq L$.

Curvature condition there exist grazing Lagrangean spaces *L* such that

$$\left| dH_{\widetilde{\rho}}(w) \right|_{L(w)} \leq C \qquad w \in \Gamma$$

This gives uniform bounds on the curvature of $p^{-1}(0)$ and on the evolution of L at Γ .

The curvature condition is satisfied by the earlier examples, but not by effectively hyperbolic operators.

Bicharacteristics satisfying these conditions are called *uniform* and then limit bicharacteristics exist.

Example Let

$$p = \tau - \left(\langle A(t)x, x \rangle + 2 \langle B(t)x, \xi \rangle + \langle C(t)\xi, \xi \rangle \right) / 2$$

where A(t), B(t) and $C(t) \in C^{\infty}$ are real $n \times n$, A(t) and C(t) are symmetric. Then

$$p^{-1}(0) = \{ \tau = \langle A(t)x, x \rangle/2 + \langle B(t)x, \xi \rangle + \langle C(t)\xi, \xi \rangle/2 \}$$

and the linearization of the Hamilton field H_p is

$$\partial_t + \langle A(t)y + B^*(t)\eta, \partial_\eta \rangle - \langle B(t)y + C(t)\eta, \partial_y \rangle$$

Take $L(t) = \{ (s, y, 0, E(t)y) \}$ with symmetric $E(t) \in C^{\infty}$ then L(t) is a Lagrangean space and is grazing if

$$E'(t) = A(t) + 2\operatorname{Re} B(t)E(t) + E(t)C(t)E(t)$$

which is uniformly bounded by the curvature condition.

Assume condition (Ψ) on the subprincipal symbol p_s does not hold at the limit, in the sense that:

$$\min_{\partial \Gamma_j} \int \operatorname{Im} p_s |H_p|^{-1} ds / |\log \kappa_j| \to \infty \qquad j \to \infty \qquad \operatorname{Lim}(\overline{\Psi})$$

where $\min_{\Gamma_j} |H_p| = \kappa_j \to 0$. One example is when $\operatorname{Im} p_s$ changes sign from - to + on the limits of the bicharacteristics, then the integrand is $\mathcal{O}(1/\kappa_j) \to \infty$.

Theorem

If P has real principal symbol and $\{\Gamma_j\}_{j=1}^{\infty}$ is a family of uniform bicharacteristics so that $Lim(\overline{\Psi})$ is satisfied on Γ_j , then P is not locally solvable near any of the limit bicharacteristics. (D. 2016)

This has been extended to complex principal symbols such that $H_{\tilde{p}}$ converges to a real vector field at Σ_2 . (D. 2016)

Operators of subprincipal type

Assume Σ_2 is involutive with symplectic foliation given by the Hamilton fields, it is *non-radial* if *all* its Hamilton fields are.

Example $\Sigma_2 = \{ \eta = 0 \}$ with leaves $L = \{ (x_0, y, \xi_0, 0) : y \in \mathbf{R}^k \}.$

Definition

P is of subprincipal type if $H_{p_s}|_{\Sigma_2} \subseteq T\Sigma_2$ is transversal to the leaves *L* when $p_s = 0$.

Examples $\Delta_x + D_t$ is of subprincipal type, $\Delta_x + D_x$ is not. The linearized Navier-Stokes equations are of subprincipal type.

 H_{p_s} is well defined modulo *TL*. To define condition (Ψ) we need:

$$ig| dp_s ig|_{\mathcal{T}L} ig| \leq C |p_s| \qquad$$
 for leaves L of Σ_2

Then p_s is constant on the leaves after multiplication with a factor $\neq 0$.

Definition

P satisfies condition Sub(Ψ) if p_s satisfies condition (Ψ) on $T^{\sigma}\Sigma_2 = T\Sigma_2/TL$, which is symplectic. Ex: $T^{\sigma}\Sigma_2 \cong \{(x, y_0, \xi, 0)\}.$

If $Sub(\Psi)$ does not hold with sign change of *infinite order* we assume

 $\|\operatorname{\mathsf{Hess}} p\| + |dp_s \wedge d\overline{p}_s| \leq C |p_s|^{arepsilon} \qquad arepsilon > 0$

Then the pseudomodes do not get too dispersed and stay local.

Theorem

If P has principal symbol vanishing of second order at a non-radial involutive manifold, is of subprincipal type and does not satisfy condition Sub(Ψ), then P is not locally solvable. (D. 2017)

Extended to (Ψ) on the Taylor expansion of $p + p_s$ at Σ_2 . (D. 2017)

- 4 同 ト 4 ヨ ト

Counterexample to Uhlmann's conjecture

Let

$$P = D_{x_1}D_{x_2} + D_t + if(t, x, D_x)$$

with real first order $f(t, x, \xi)$ satisfying $\partial_{x_j} f = 0$ for j = 1, 2.

Then *P* is of subprincipal type, so we obtain that *P* is not solvable if $t \mapsto f(t, x, \xi)$ changes sign of *finite order* from - to + on the double characteristics $\Sigma_2 = \{\xi_1 = \xi_2 = 0\}$.

Observe that f has constant sign on the leaves of Σ_2 and thus on the limit bicharacteristics.

Thus the solvability of P also depends on the real part of the subprincipal symbol.

Open problems

Case when limit characteristics do not converge in C^{∞} , for example some weakly hyperbolic operators.

Complex limits of the normalized Hamilton fields.

Condition (Ψ) on the *refined principal symbol* $p + p_s$ in general.

Systems of non-principal type.