A Riemann-Hilbert approach to black hole solutions

Gabriel Lopes Cardoso

CIRM 2017

with Cristina Câmara, Thomas Mohaupt and Suresh Nampuri arXiv:1703.10366

Gabriel Lopes Cardoso (CAMGSD, IST)

Riemann-Hilbert / Gravity

CIRM, June 8, 2017 1 / 9

Introduction

In this talk we will study

gravity in terms of Riemann-Hilbert (RH) problem.

In gravity:

- spacetime is Lorentzian (pseudo-Riemannian) manifold (M, g)
- metric g: solution to Einstein's field equations Ric = Tnon-linear second-order PDE's for g, sourced by matter T
- Here: T = 0, vacuum solutions of Einstein's field equations
- Examples of exact solutions: Schwarzschild solution (outside region of a neutral static black hole)

In general, finding exact solutions: hard.

• Different approach to constructing exact solutions: Riemann-Hilbert (RH) problem.

Introduction

Ingredients:

- Einstein's field equations in vacuum, in dimensions D = 4, 5
- Restrict to subspace of solutions with *D* − 2 commuting isometries; in adapted coordinates, *g* only depends on two coordinates (*ν*, *ρ*) ⇒ non-linear PDE's in two space-like dimensions
- Metric *g*: symmetric 2-tensor in *D* dimensions.

Assemble into matrix $M(v, \rho)$:

values in non-compact Riemannian symmetric space G/H

(G non-compact Lie group)

•
$$D = 5$$
: $G/H = SL(3, \mathbb{R})/SO(2, 1)$

3

Introduction

- Matrix one-form $A = M^{-1} dM$
- Reduced field equations: $d(\rho \star A) = 0$ Hodge dual \star , $(\star)^2 = -id$

This sector of gravity is integrable: Lax pair, called

Breitenlohner-Maison linear system

Annales de IHP, 1987

Study by means of Riemann-Hilbert factorization problem.

-

Integrability: the linear system

Reformulate $d(\rho \star A) = 0$ in terms of an auxiliary linear system:

$$\tau (d + A)X = \star dX$$
, $A = M^{-1} dM$

- au spectral parameter, $au \in \mathbb{C}$
- *G*-valued matrix $X(\tau; v, \rho)$. Demand:
 - ➤ X and X⁻¹ to be analytic in interior of unit disc in plane τ, slightly beyond

$$\bullet X(\tau = \mathbf{0}; \mathbf{v}, \rho) = \mathbb{I}$$

•
$$d(dX X^{-1}) = (dX X^{-1}) \wedge (dX X^{-1})$$

• Demanding $d(\rho \star A) = 0$: $\tau = \tau(w, v, \rho)$, $w \in \mathbb{C}$ Algebraic curve: $(w, \tau) \in \mathbb{C}^2$

$$w = v + \frac{\rho}{2\tau}(1-\tau^2)$$

Gabriel Lopes Cardoso (CAMGSD, IST)

Monodromy matrix

But: since Lax pair has $A = M^{-1} dM$ as input, seem to have a fish-bites-each-tail problem . . .

Not quite, as follows:

- $M \in G/H$: $M = V^{\natural} V = M^{\natural}$, \natural involutive anti-homomorphism
- $d(\rho \star A) = 0$, and $X, \Rightarrow \mathcal{M}(w) = \mathcal{M}^{\natural}(w)$, monodromy matrix

• Conversely, pick $\mathcal{M}(w) = \mathcal{M}^{\natural}(w)$

• Recall $w = v + \frac{\rho}{2\tau}(1 - \tau^2)$; hence $\mathcal{M}(w(\tau; v, \rho))$

Riemann-Hilbert factorization problem

Perform canonical factorization in τ -plane (assuming its existence):

$$\mathcal{M}(\boldsymbol{w}(\tau; \boldsymbol{v}, \rho)) = \boldsymbol{M}_{-}(\tau; \boldsymbol{v}, \rho) \, \boldsymbol{M}_{+}(\tau; \boldsymbol{v}, \rho) \quad , \quad |\tau| = 1$$

- M_-, M_-^{-1} analytic and bounded in D_- ($|\tau| > 1$)
- M_+, M_+^{-1} analytic and bounded in D_+ ($|\tau| < 1$)
- $M_+(\tau = 0; v, \rho) = \mathbb{I}$. Unique.

Can show: arXiv:1703.10366

•
$$M_{-}(\tau = \infty; v, \rho) = M(v, \rho)$$

 $A = M^{-1} dM, \quad d(\rho \star A) = 0$

• $M_+(\tau; v, \rho) = X(\tau; v, \rho)$

solves Lax pair $\tau (d + A)X = \star dX$

Riemann-Hilbert factorization problem

Questions:

- When does $\mathcal{M}(w)$ have a canonical factorization?
- **2** How to pick $\mathcal{M}(w)$?
- How to obtain explicit factorizations?

Question 1:

- *M*(*w*(*τ*; *ν*, *ρ*) invertible matrix function, Hölder continuous on unit circle |*τ*| = 1
- Necessary and sufficient conditions for canonical RH factorization (Theorem (Cristina Câmara))

Question 3:

• Solve a vectorial factorization problem

 $\mathcal{M} \ M_+^{-1} = M_-$, $\mathcal{M} \ \phi_+ = \phi_-$, Liouville's theorem

Riemann-Hilbert approach to rotating black holes

Question 2: Strategy:

• Pick known spacetime solution $M_{\text{seed}}(v, \rho)$.

Candidate $\mathcal{M}_{seed}(w)$: $M_{seed}(v = w, \rho = 0) = \mathcal{M}_{seed}(w)$.

Delicate, but can be motivated. Works in all known cases.

• Deform $\mathcal{M}_{\text{seed}}(w)$: $\mathcal{M}(w) = g^{\natural}(w) \mathcal{M}_{\text{seed}}(w) g(w) \Rightarrow M_{new}(v, \rho)$.

• Ex:

$$\mathcal{M}(w) = \frac{1}{w^2} \begin{pmatrix} A & Bw + \alpha & Cw^2 \\ -Bw - \alpha & Dw^2 & 0 \\ Cw^2 & 0 & 0 \end{pmatrix}$$

 $\alpha = 0$: Seed describes near-horizon region of extremal rotating black hole solution in D = 4

 $\alpha \neq 0$: $M_{new}(v, \rho)$, difficult from field equations.

Outlook:
$$\mathcal{M}(w) \leftrightarrow \mathcal{T}_{\mathcal{M}(w)}^{-1}$$
. Study $d(\rho \star A) = 0 \leftrightarrow \mathcal{T}_{\mathcal{M}(w)} f = g$.
Thanks!