A Riemann-Hilbert approach to black hole solutions

Gabriel Lopes Cardoso

CIRM 2017

with Cristina Câmara, Thomas Mohaupt and Suresh Nampuri arXiv:1703.10366

©i

Introduction

In this talk we will study
gravity in terms of Riemann-Hilbert (RH) problem.
In gravity:

- spacetime is Lorentzian (pseudo-Riemannian) manifold (M, g)
- metric g : solution to Einstein's field equations \quad Ric $=T$ non-linear second-order PDE's for g, sourced by matter T
- Here: $T=0$, vacuum solutions of Einstein's field equations
- Examples of exact solutions: Schwarzschild solution (outside region of a neutral static black hole) In general, finding exact solutions: hard.
- Different approach to constructing exact solutions: Riemann-Hilbert (RH) problem.

Introduction

Ingredients:

- Einstein's field equations in vacuum, in dimensions $D=4,5$
- Restrict to subspace of solutions with $D-2$ commuting isometries; in adapted coordinates, g only depends on two coordinates (v, ρ)
\Rightarrow non-linear PDE's in two space-like dimensions
- Metric g : symmetric 2-tensor in D dimensions.

Assemble into matrix $M(v, \rho)$:
values in non-compact Riemannian symmetric space G / H
(G non-compact Lie group)

- $D=5: \quad G / H=S L(3, \mathbb{R}) / S O(2,1)$

Introduction

- Matrix one-form $\quad A=M^{-1} d M$
- Reduced field equations: $\quad d(\rho \star A)=0$

Hodge dual $\star, \quad(\star)^{2}=-\mathrm{id}$

This sector of gravity is integrable: Lax pair, called
Breitenlohner-Maison linear system
Annales de IHP, 1987
Study by means of Riemann-Hilbert factorization problem.

Integrability: the linear system

Reformulate $\quad d(\rho \star A)=0$ in terms of an auxiliary linear system:

$$
\tau(d+A) X=\star d X, \quad A=M^{-1} d M
$$

- τ spectral parameter, $\quad \tau \in \mathbb{C}$
- G-valued matrix $X(\tau ; v, \rho)$. Demand:
- X and X^{-1} to be analytic in interior of unit disc in plane τ, slightly beyond
- $X(\tau=0 ; v, \rho)=\mathbb{I}$
- $d\left(d X X^{-1}\right)=\left(d X X^{-1}\right) \wedge\left(d X X^{-1}\right)$
- Demanding $\quad d(\rho \star A)=0: \quad \tau=\tau(w, v, \rho), w \in \mathbb{C}$

Algebraic curve: $\quad(w, \tau) \in \mathbb{C}^{2}$

$$
w=v+\frac{\rho}{2 \tau}\left(1-\tau^{2}\right)
$$

Monodromy matrix

But: since Lax pair has $A=M^{-1} d M$ as input, seem to have a fish-bites-each-tail problem ...

Not quite, as follows:

- $M \in G / H: \quad M=V^{\natural} V=M^{\natural}$, binvolutive anti-homomorphism
- $d(\rho \star A)=0$, and $X, \Rightarrow \mathcal{M}(w)=\mathcal{M}^{\natural}(w)$, monodromy matrix
- Conversely, pick $\mathcal{M}(w)=\mathcal{M}^{\natural}(w)$
- Recall $w=v+\frac{\rho}{2 \tau}\left(1-\tau^{2}\right)$; hence $\mathcal{M}(w(\tau ; v, \rho))$

Riemann-Hilbert factorization problem

Perform canonical factorization in τ-plane (assuming its existence):

$$
\mathcal{M}(w(\tau ; v, \rho))=M_{-}(\tau ; v, \rho) M_{+}(\tau ; v, \rho) \quad, \quad|\tau|=1
$$

- M_{-}, M_{-}^{-1} analytic and bounded in $D_{-} \quad(|\tau|>1)$
- M_{+}, M_{+}^{-1} analytic and bounded in $D_{+} \quad(|\tau|<1)$
- $M_{+}(\tau=0 ; v, \rho)=\mathbb{I}$. Unique.

Can show: arXiv:1703.10366

- $M_{-}(\tau=\infty ; v, \rho)=M(v, \rho)$
$A=M^{-1} d M, \quad d(\rho \star A)=0$
- $M_{+}(\tau ; v, \rho)=X(\tau ; v, \rho)$
solves Lax pair $\quad \tau(d+A) X=\star d X$

Riemann-Hilbert factorization problem

Questions:

(1) When does $\mathcal{M}(w)$ have a canonical factorization?
(2) How to pick $\mathcal{M}(w)$?
(3) How to obtain explicit factorizations?

Question 1:

- $\mathcal{M}(w(\tau ; v, \rho)$ invertible matrix function, Hölder continuous on unit circle $|\tau|=1$
- Necessary and sufficient conditions for canonical RH factorization (Theorem (Cristina Câmara))

Question 3:

- Solve a vectorial factorization problem

$$
\mathcal{M} M_{+}^{-1}=M_{-} \quad, \quad \mathcal{M} \phi_{+}=\phi_{-} \quad, \quad \text { Liouville's theorem }
$$

Riemann-Hilbert approach to rotating black holes

Question 2: Strategy:

- Pick known spacetime solution $M_{\text {seed }}(v, \rho)$.

Candidate $\mathcal{M}_{\text {seed }}(w): \quad M_{\text {seed }}(v=w, \rho=0)=\mathcal{M}_{\text {sed }}(w)$.
Delicate, but can be motivated. Works in all known cases.

- Deform $\mathcal{M}_{\text {seed }}(w): \mathcal{M}(w)=g^{\natural}(w) \mathcal{M}_{\text {seed }}(w) g(w) \Rightarrow M_{\text {new }}(v, \rho)$.
- Ex:

$$
\mathcal{M}(w)=\frac{1}{w^{2}}\left(\begin{array}{ccc}
A & B w+\alpha & C w^{2} \\
-B w-\alpha & D w^{2} & 0 \\
C w^{2} & 0 & 0
\end{array}\right)
$$

$\alpha=0$: Seed describes near-horizon region of extremal rotating black hole solution in $D=4$
$\alpha \neq 0: \quad M_{\text {new }}(v, \rho)$, difficult from field equations.
Outlook: $\mathcal{M}(w) \leftrightarrow T_{\mathcal{M}(w)}^{-1} . \quad$ Study $d(\rho \star A)=0 \leftrightarrow T_{\mathcal{M}(w)} f=g$.
Thanks!

