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Motivation

Motivation:

Titchmarsh-Weyl m-function for Sturm-Liouville problems

Dirichlet-to-Neumann map

Aims:

look at how this notions can be discussed for more general operators

what can be said about the operator from boundary date

extend results to non-selfadjoint operators as far as possible

Method: make use of abstract theory of boundary triples to

introduce M-function,

relate resolvent to operators on the boundary,
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Boundary triples for adjoint pairs

A and Ã closed, densely defined operators on Hilbert space H

A ⊆ (Ã)∗ =: Amax and Ã ⊆ A∗ =: Ãmax

there exist “boundary spaces” H, K and “boundary operators”,

Γ1 : D(Amax)→ H and Γ0 : D(Amax)→ K,

Γ̃1 : D(Ãmax)→ K and Γ̃0 : D(Ãmax)→ H,

which are bounded in graph norm, (Γ1, Γ0), (Γ̃1, Γ̃0) are surjective,

and such that for u ∈ D(Amax) and v ∈ D(Ãmax) we have

(Amaxu, v)H − (u, Ãmaxv)H = (Γ1u, Γ̃0v)H − (Γ0u, Γ̃1v)K.

{H ⊕K, (Γ1, Γ0), (Γ̃1, Γ̃0)} is a boundary triple for the adjoint pair A, Ã.
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Malcolm Brown (Cardiff) Inverse problems June 2017 3 / 13



Boundary triples for adjoint pairs

A and Ã closed, densely defined operators on Hilbert space H
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ODE Example

For p ∈ C 1(0, 1), p > 0, q ∈ L∞(0, 1), consider

Lu =

(
− d

dx
p

d

dx
+ q

)
u and L̃u =

(
− d

dx
p

d

dx
+ q

)
u on (0, 1).

Let Au = Lu and Ãu = L̃u with D(A) = D(Ã) = H2
0 (0, 1).

Then

Amaxu = Lu, Ãmaxu = L̃u with D(Amax) = D(Ãmax) = H2(0, 1).

For u, v ∈ H2(0, 1)〈
Amaxu, v

〉
L2
−
〈

u, Ãmaxv
〉
L2

=
〈

Γ1u, Γ̃0v
〉
C2
−
〈

Γ0u, Γ̃1v
〉
C2
,

where

Γ1u = Γ̃1u =

(
−p(1)u′(1)
p(0)u′(0)

)
, Γ0u = Γ̃0u =

(
u(1)
u(0)

)
and H = K = C2.
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Abstract M-functions

B ∈ L(K,H) and AB := Amax|ker(Γ1−BΓ0),

for λ ∈ ρ(AB) define the solution operator as a mapping

Sλ,B : H → ker(Amax − λ)

where u = Sλ,B f solves

(Amax − λ)u = 0, (Γ1 − BΓ0)u = f ,

for λ ∈ ρ(AB) define the M-function via

MB(λ) : H → K, MB(λ)f = Γ0Sλ,B f .

S̃λ,B and M̃B(λ) defined analogously.
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Relation to resolvent

To be able to study spectral properties of the operator via the M-function,
we need to relate the M-function to the resolvent.

Lemma

λ, λ0 ∈ ρ(AB), then

MB(λ) = Γ0(AB − λ0)(AB − λ)−1Sλ0,B .

Theorem (Krĕın-type formula)

C ∈ L(K,H), λ ∈ ρ(AB) ∩ ρ(AC ). Then

(AB −λ)−1 = (AC −λ)−1−Sλ,C (I + (B −C )MB(λ))(C −B)Γ0(AC −λ)−1

B = 0, λ ∈ ρ(A0) ∩ ρ(AC ), then

(A0 − λ)−1 = (AC − λ)−1 − Sλ,C (I − CM0(λ))Γ1(AC − λ)−1.
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Results for poles

Theorem

Let µ ∈ C be an isolated eigenvalue of finite algebraic multiplicity of the
operator AB . Assume unique continuation holds, i.e.

ker(Amax−µ)∩ker(Γ1)∩ker(Γ0) = ker(Ãmax−µ̄)∩ker(Γ̃1)∩ker(Γ̃0) = {0}.

Then µ is a pole of finite multiplicity of MB(·) and the order of the pole of
R(·,AB) at µ is the same as the order of the pole of MB(·) at µ.

Theorem

Let B ∈ L(K,H), µ ∈ C.

Assume there exists C ∈ L(K,H) such that µ ∈ ρ(AC ).

Then µ is isolated eigenvalue of finite algebraic multiplicity of AB iff µ is
pole of finite multiplicity of MB(·).
In this case, order of the pole of R(·,AB) at µ is same as order of the pole
of MB(·) at µ.
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A matrix differential operator, (Hain-Lüst operator)

Amax =

(
− d2

dx2 + q(x) w̃(x)

w(x) u(x)

)
, Ãmax =

(
− d2

dx2 + q(x) w(x)

w̃(x) u(x)

)
,

where q, u, w and w̃ are L∞-functions,

and

D(Amax) = D(Ãmax) = H2(0, 1)× L2(0, 1),

Γ1

(
y
z

)
=

(
−y ′(1)
y ′(0)

)
, Γ0

(
y
z

)
=

(
y(1)
y(0)

)
,

AB := Amax|ker(Γ1−BΓ0) ,

σess(AB) = essran(u) for any B ∈ R2×2.
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A matrix differential operator II

Amax =

(
− d2

dx2 + q(x) w̃(x)

w(x) u(x)

)

Let

(
y
z

)
∈ ker(Amax − λ). Then

−y ′′ + (q − λ)y + w̃z = 0 and wy + (u − λ)z = 0,

so

z =
wy

λ− u
and − y ′′ + (q − λ)y +

ww̃y

λ− u
= 0.

If w(I ) = 0, then u(I ) can be changed without affecting y or the
M-function.
We can not expect the uniqueness of the Borg result to hold in a general
setting
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The general setting

What can be shown in the general setting ?

We first introduce the concepts of detectable subspace and of bordered
resolvent.
For µ0 6∈ σ(AB), define the space (the bordered resolvent)

S = Spanδ 6∈σ(AB)(AB − δI )−1Ran(Sµ0,B),

Our aim is to study the relation between MB(λ) and the bordered
resolvent P

S̃
(AB − λ)−1|S where for any subspace M, PM denotes the

orthogonal projection onto M.

Our results are of two types, concerning uniqueness and reconstruction.
(e.g Borg Levinson compared with Gel’fand-Levitan type results)
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Reconstruction from a single boundary-condition operator

We first look at gaining information on the M-function from knowledge of
the resolvent for a single boundary-condition operator B.

Our first theorem concerns uniqueness only.

Theorem

Let λ ∈ ρ(AB). Then P
S̃

(AB − λ)−1|S uniquely determines MB(λ). In

particular, if also λ ∈ ρ(AC ), then P
S̃

(AB − λ)−1|S = P
S̃

(AC − λ)−1|S
implies that MB(λ) = MC (λ), and, if additionally λ ∈ ρ(A∞), then
B = C . Here, A∞ = Ã∗|ker Γ0 .

In the completely abstract case we need further information to recover MB .
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particular, if also λ ∈ ρ(AC ), then P
S̃

(AB − λ)−1|S = P
S̃

(AC − λ)−1|S
implies that MB(λ) = MC (λ), and, if additionally λ ∈ ρ(A∞), then
B = C . Here, A∞ = Ã∗|ker Γ0 .
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Reconstruction from a single boundary-condition operators

Theorem

Assume we know S, P
S̃

(AB − λ)−1|S and the two sets Ran (Sµ,B),

Ran (S̃µ̃,B∗) for some (µ, µ̃) with µ, µ̃ ∈ ρ(AB). Then we can reconstruct
MB(λ) uniquely if B is known.

A key hypothesis is the assumption that we know the closed ranges of the
solution operators.

Theorem

Assume we know RanSλ,B and Ran S̃µ,B∗ for some λ, µ for the Hain-Lüst
operator. Then the operator is not uniquely determined.

However in the case of the Friedrichs model (a first order integrable
operator) where the closed range of the solution operator is known, it is
determined.
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Reconstruction from two bordered resolvents

By allowing ourselves information from two bordered resolvents belonging
to different boundary conditions, we obtain reconstruction procedures for
the M-function.

Theorem

Assume PS̃(AB − λ)−1|S and PS̃(AC − λ)−1|S are known. In addition,
assume that
(i) Γ0(AC − λ)−1S and Γ̃0(AC − λ)−∗S̃ are known,

(ii) Γ0(AC − λ)−1S is dense in H and Γ̃0(AC − λ)−∗S̃ is dense in K,
(iii) Ran (B − C ) is dense in H and ker(B − C ) = {0}.
Then MB(λ) can be recovered.
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