# Inverse problems for boundary triples with applications 

Malcolm Brown

Cardiff University

June 2017
joint work with
M. Marletta (Cardiff), S. Naboko (St. Petersburg) and Ian Wood (Kent)

## Motivation

## Motivation:

- Titchmarsh-Weyl m-function for Sturm-Liouville problems


## Motivation

## Motivation:

- Titchmarsh-Weyl m-function for Sturm-Liouville problems
- Dirichlet-to-Neumann map


## Motivation

Motivation:

- Titchmarsh-Weyl m-function for Sturm-Liouville problems
- Dirichlet-to-Neumann map

Aims:

- look at how this notions can be discussed for more general operators
- what can be said about the operator from boundary date
- extend results to non-selfadjoint operators as far as possible


## Motivation

Motivation:

- Titchmarsh-Weyl m-function for Sturm-Liouville problems
- Dirichlet-to-Neumann map

Aims:

- look at how this notions can be discussed for more general operators
- what can be said about the operator from boundary date
- extend results to non-selfadjoint operators as far as possible Method: make use of abstract theory of boundary triples to
- introduce $M$-function,
- relate resolvent to operators on the boundary,


## Boundary triples for adjoint pairs

- $A$ and $\widetilde{A}$ closed, densely defined operators on Hilbert space $H$
- $A \subseteq(\widetilde{A})^{*}=: A_{\max }$ and $\widetilde{A} \subseteq A^{*}=: \widetilde{A}_{\max }$


## Boundary triples for adjoint pairs

- $A$ and $\widetilde{A}$ closed, densely defined operators on Hilbert space $H$
- $A \subseteq(\widetilde{A})^{*}=: A_{\max }$ and $\widetilde{A} \subseteq A^{*}=: \widetilde{A}_{\text {max }}$
- there exist "boundary spaces" $\mathcal{H}, \mathcal{K}$ and "boundary operators",
- $\Gamma_{1}: D\left(A_{\max }\right) \rightarrow \mathcal{H}$ and $\Gamma_{0}: D\left(A_{\max }\right) \rightarrow \mathcal{K}$,
- $\widetilde{\Gamma}_{1}: D\left(\widetilde{A}_{\max }\right) \rightarrow \mathcal{K}$ and $\widetilde{\Gamma}_{0}: D\left(\widetilde{A}_{\max }\right) \rightarrow \mathcal{H}$,
which are bounded in graph norm, $\left(\Gamma_{1}, \Gamma_{0}\right),\left(\widetilde{\Gamma}_{1}, \widetilde{\Gamma}_{0}\right)$ are surjective,


## Boundary triples for adjoint pairs

- $A$ and $\widetilde{A}$ closed, densely defined operators on Hilbert space $H$
- $A \subseteq(\widetilde{A})^{*}=: A_{\max }$ and $\widetilde{A} \subseteq A^{*}=: \widetilde{A}_{\max }$
- there exist "boundary spaces" $\mathcal{H}, \mathcal{K}$ and "boundary operators",
- $\Gamma_{1}: D\left(A_{\max }\right) \rightarrow \mathcal{H}$ and $\Gamma_{0}: D\left(A_{\max }\right) \rightarrow \mathcal{K}$,
- $\widetilde{\Gamma}_{1}: D\left(\widetilde{A}_{\max }\right) \rightarrow \mathcal{K}$ and $\widetilde{\Gamma}_{0}: D\left(\widetilde{A}_{\max }\right) \rightarrow \mathcal{H}$,
which are bounded in graph norm, $\left(\Gamma_{1}, \Gamma_{0}\right),\left(\widetilde{\Gamma}_{1}, \widetilde{\Gamma}_{0}\right)$ are surjective, and such that for $u \in D\left(A_{\max }\right)$ and $v \in D\left(\widetilde{A}_{\max }\right)$ we have

$$
\left(A_{\max } u, v\right)_{H}-\left(u, \widetilde{A}_{\max } v\right)_{H}=\left(\Gamma_{1} u, \widetilde{\Gamma}_{0} v\right)_{\mathcal{H}}-\left(\Gamma_{0} u, \widetilde{\Gamma}_{1} v\right)_{\mathcal{K}}
$$

## Boundary triples for adjoint pairs

- $A$ and $\widetilde{A}$ closed, densely defined operators on Hilbert space $H$
- $A \subseteq(\widetilde{A})^{*}=: A_{\text {max }}$ and $\widetilde{A} \subseteq A^{*}=: \widetilde{A}_{\text {max }}$
- there exist "boundary spaces" $\mathcal{H}, \mathcal{K}$ and "boundary operators",
- $\Gamma_{1}: D\left(A_{\max }\right) \rightarrow \mathcal{H}$ and $\Gamma_{0}: D\left(A_{\max }\right) \rightarrow \mathcal{K}$,
- $\widetilde{\Gamma}_{1}: D\left(\widetilde{A}_{\max }\right) \rightarrow \mathcal{K}$ and $\widetilde{\Gamma}_{0}: D\left(\widetilde{A}_{\max }\right) \rightarrow \mathcal{H}$,
which are bounded in graph norm, $\left(\Gamma_{1}, \Gamma_{0}\right),\left(\widetilde{\Gamma}_{1}, \widetilde{\Gamma}_{0}\right)$ are surjective, and such that for $u \in D\left(A_{\max }\right)$ and $v \in D\left(\widetilde{A}_{\max }\right)$ we have

$$
\left(A_{\max } u, v\right)_{H}-\left(u, \widetilde{A}_{\max } v\right)_{H}=\left(\Gamma_{1} u, \widetilde{\Gamma}_{0} v\right)_{\mathcal{H}}-\left(\Gamma_{0} u, \widetilde{\Gamma}_{1} v\right)_{\mathcal{K}}
$$

$\left\{\mathcal{H} \oplus \mathcal{K},\left(\Gamma_{1}, \Gamma_{0}\right),\left(\widetilde{\Gamma}_{1}, \widetilde{\Gamma}_{0}\right)\right\}$ is a boundary triple for the adjoint pair $A, \widetilde{A}$.

## ODE Example

For $p \in C^{1}(0,1), p>0, q \in L^{\infty}(0,1)$, consider

$$
L u=\left(-\frac{d}{d x} p \frac{d}{d x}+q\right) u \quad \text { and } \quad \tilde{L} u=\left(-\frac{d}{d x} p \frac{d}{d x}+\bar{q}\right) u \quad \text { on }(0,1) .
$$

Let $A u=L u$ and $\widetilde{A} u=\widetilde{L} u$ with $D(A)=D(\widetilde{A})=H_{0}^{2}(0,1)$.

## ODE Example

For $p \in C^{1}(0,1), p>0, q \in L^{\infty}(0,1)$, consider

$$
L u=\left(-\frac{d}{d x} p \frac{d}{d x}+q\right) u \quad \text { and } \quad \tilde{L} u=\left(-\frac{d}{d x} p \frac{d}{d x}+\bar{q}\right) u \quad \text { on }(0,1) .
$$

Let $A u=L u$ and $\widetilde{A} u=\widetilde{L} u$ with $D(A)=D(\widetilde{A})=H_{0}^{2}(0,1)$.
Then
$A_{\max } u=L u, \quad \widetilde{A}_{\max } u=\tilde{L} u \quad$ with $\quad D\left(A_{\max }\right)=D\left(\widetilde{A}_{\max }\right)=H^{2}(0,1)$.

## ODE Example

For $p \in C^{1}(0,1), p>0, q \in L^{\infty}(0,1)$, consider

$$
L u=\left(-\frac{d}{d x} p \frac{d}{d x}+q\right) u \quad \text { and } \quad \tilde{L} u=\left(-\frac{d}{d x} p \frac{d}{d x}+\bar{q}\right) u \quad \text { on }(0,1) .
$$

Let $A u=L u$ and $\widetilde{A} u=\widetilde{L} u$ with $D(A)=D(\widetilde{A})=H_{0}^{2}(0,1)$.
Then

$$
A_{\max } u=L u, \quad \widetilde{A}_{\max } u=\widetilde{L} u \quad \text { with } \quad D\left(A_{\max }\right)=D\left(\widetilde{A}_{\max }\right)=H^{2}(0,1)
$$

For $u, v \in H^{2}(0,1)$

$$
\left\langle A_{\max } u, v\right\rangle_{L^{2}}-\left\langle u, \widetilde{A}_{\max } v\right\rangle_{L^{2}}=\left\langle\Gamma_{1} u, \widetilde{\Gamma}_{0} v\right\rangle_{\mathbb{C}^{2}}-\left\langle\Gamma_{0} u, \widetilde{\Gamma}_{1} v\right\rangle_{\mathbb{C}^{2}},
$$

where

$$
\Gamma_{1} u=\widetilde{\Gamma}_{1} u=\binom{-p(1) u^{\prime}(1)}{p(0) u^{\prime}(0)}, \quad \Gamma_{0} u=\widetilde{\Gamma}_{0} u=\binom{u(1)}{u(0)}
$$

and $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$.

## Abstract $M$-functions

- $B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ and $A_{B}:=\left.A_{\max }\right|_{\operatorname{ker}\left(\Gamma_{1}-B \Gamma_{0}\right)}$,


## Abstract $M$-functions

- $B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ and $A_{B}:=\left.A_{\max }\right|_{\operatorname{ker}\left(\Gamma_{1}-B \Gamma_{0}\right)}$,
- for $\lambda \in \rho\left(A_{B}\right)$ define the solution operator as a mapping

$$
S_{\lambda, B}: \mathcal{H} \rightarrow \operatorname{ker}\left(A_{\max }-\lambda\right)
$$

where $u=S_{\lambda, B} f$ solves

$$
\left(A_{\max }-\lambda\right) u=0,\left(\Gamma_{1}-B \Gamma_{0}\right) u=f
$$

## Abstract $M$-functions

- $B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ and $A_{B}:=\left.A_{\max }\right|_{\operatorname{ker}\left(\Gamma_{1}-B \Gamma_{0}\right)}$,
- for $\lambda \in \rho\left(A_{B}\right)$ define the solution operator as a mapping

$$
S_{\lambda, B}: \mathcal{H} \rightarrow \operatorname{ker}\left(A_{\max }-\lambda\right)
$$

where $u=S_{\lambda, B} f$ solves

$$
\left(A_{\max }-\lambda\right) u=0,\left(\Gamma_{1}-B \Gamma_{0}\right) u=f
$$

- for $\lambda \in \rho\left(A_{B}\right)$ define the $M$-function via

$$
M_{B}(\lambda): \mathcal{H} \rightarrow \mathcal{K}, \quad M_{B}(\lambda) f=\Gamma_{0} S_{\lambda, B} f
$$

## Abstract M-functions

- $B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ and $A_{B}:=\left.A_{\max }\right|_{\operatorname{ker}\left(\Gamma_{1}-B \Gamma_{0}\right)}$,
- for $\lambda \in \rho\left(A_{B}\right)$ define the solution operator as a mapping

$$
S_{\lambda, B}: \mathcal{H} \rightarrow \operatorname{ker}\left(A_{\max }-\lambda\right)
$$

where $u=S_{\lambda, B} f$ solves

$$
\left(A_{\max }-\lambda\right) u=0,\left(\Gamma_{1}-B \Gamma_{0}\right) u=f
$$

- for $\lambda \in \rho\left(A_{B}\right)$ define the $M$-function via

$$
M_{B}(\lambda): \mathcal{H} \rightarrow \mathcal{K}, \quad M_{B}(\lambda) f=\Gamma_{0} S_{\lambda, B} f
$$

- $\widetilde{S}_{\lambda, B}$ and $\widetilde{M}_{B}(\lambda)$ defined analogously.


## Relation to resolvent

To be able to study spectral properties of the operator via the $M$-function, we need to relate the $M$-function to the resolvent.

## Relation to resolvent

To be able to study spectral properties of the operator via the $M$-function, we need to relate the $M$-function to the resolvent.

## Lemma

- $\lambda, \lambda_{0} \in \rho\left(A_{B}\right)$, then

$$
M_{B}(\lambda)=\Gamma_{0}\left(A_{B}-\lambda_{0}\right)\left(A_{B}-\lambda\right)^{-1} S_{\lambda_{0}, B}
$$

## Relation to resolvent

To be able to study spectral properties of the operator via the $M$-function, we need to relate the $M$-function to the resolvent.

## Lemma

- $\lambda, \lambda_{0} \in \rho\left(A_{B}\right)$, then

$$
M_{B}(\lambda)=\Gamma_{0}\left(A_{B}-\lambda_{0}\right)\left(A_{B}-\lambda\right)^{-1} S_{\lambda_{0}, B}
$$

## Theorem (Krě̆n-type formula)

- $C \in \mathcal{L}(\mathcal{K}, \mathcal{H}), \lambda \in \rho\left(A_{B}\right) \cap \rho\left(A_{C}\right)$. Then
$\left(A_{B}-\lambda\right)^{-1}=\left(A_{C}-\lambda\right)^{-1}-S_{\lambda, C}\left(I+(B-C) M_{B}(\lambda)\right)(C-B) \Gamma_{0}\left(A_{C}-\lambda\right)^{-1}$
- $B=0, \lambda \in \rho\left(A_{0}\right) \cap \rho\left(A_{C}\right)$, then

$$
\left(A_{0}-\lambda\right)^{-1}=\left(A_{C}-\lambda\right)^{-1}-S_{\lambda, C}\left(I-C M_{0}(\lambda)\right) \Gamma_{1}\left(A_{C}-\lambda\right)^{-1} .
$$

## Results for poles

## Theorem

Let $\mu \in \mathbb{C}$ be an isolated eigenvalue of finite algebraic multiplicity of the operator $A_{B}$. Assume unique continuation holds, i.e.
$\operatorname{ker}\left(A_{\max }-\mu\right) \cap \operatorname{ker}\left(\Gamma_{1}\right) \cap \operatorname{ker}\left(\Gamma_{0}\right)=\operatorname{ker}\left(\widetilde{A}_{\max }-\bar{\mu}\right) \cap \operatorname{ker}\left(\widetilde{\Gamma}_{1}\right) \cap \operatorname{ker}\left(\widetilde{\Gamma}_{0}\right)=\{0\}$.
Then $\mu$ is a pole of finite multiplicity of $M_{B}(\cdot)$ and the order of the pole of $R\left(\cdot, A_{B}\right)$ at $\mu$ is the same as the order of the pole of $M_{B}(\cdot)$ at $\mu$.

## Results for poles

## Theorem

Let $\mu \in \mathbb{C}$ be an isolated eigenvalue of finite algebraic multiplicity of the operator $A_{B}$. Assume unique continuation holds, i.e.
$\operatorname{ker}\left(A_{\max }-\mu\right) \cap \operatorname{ker}\left(\Gamma_{1}\right) \cap \operatorname{ker}\left(\Gamma_{0}\right)=\operatorname{ker}\left(\widetilde{A}_{\max }-\bar{\mu}\right) \cap \operatorname{ker}\left(\widetilde{\Gamma}_{1}\right) \cap \operatorname{ker}\left(\widetilde{\Gamma}_{0}\right)=\{0\}$.
Then $\mu$ is a pole of finite multiplicity of $M_{B}(\cdot)$ and the order of the pole of $R\left(\cdot, A_{B}\right)$ at $\mu$ is the same as the order of the pole of $M_{B}(\cdot)$ at $\mu$.

## Theorem

- Let $B \in \mathcal{L}(\mathcal{K}, \mathcal{H}), \mu \in \mathbb{C}$.
- Assume there exists $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ such that $\mu \in \rho\left(A_{C}\right)$.

Then $\mu$ is isolated eigenvalue of finite algebraic multiplicity of $A_{B}$ iff $\mu$ is pole of finite multiplicity of $M_{B}(\cdot)$.
In this case, order of the pole of $R\left(\cdot, A_{B}\right)$ at $\mu$ is same as order of the pole of $M_{B}(\cdot)$ at $\mu$.

## A matrix differential operator, (Hain-Lüst operator)

$$
A_{\max }=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+q(x) & \tilde{w}(x) \\
w(x) & u(x)
\end{array}\right), \quad \tilde{A}_{\max }=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+\overline{q(x)} & \overline{w(x)} \\
\tilde{\tilde{w}(x)} & \overline{u(x)}
\end{array}\right),
$$

where $q, u, w$ and $\tilde{w}$ are $L^{\infty}$-functions,

## A matrix differential operator, (Hain-Lüst operator)

$A_{\text {max }}=\left(\begin{array}{cc}-\frac{d^{2}}{d x^{2}}+q(x) & \tilde{w}(x) \\ w(x) & u(x)\end{array}\right), \quad \tilde{A}_{\text {max }}=\left(\begin{array}{cc}-\frac{d^{2}}{d x^{2}}+\overline{q(x)} & \overline{w(x)} \\ \overline{\tilde{w}(x)} & \overline{u(x)}\end{array}\right)$,
where $q, u, w$ and $\tilde{w}$ are $L^{\infty}$-functions, and

$$
\begin{gathered}
D\left(A_{\max }\right)=D\left(\widetilde{A}_{\max }\right)=H^{2}(0,1) \times L^{2}(0,1), \\
\Gamma_{1}\binom{y}{z}=\binom{-y^{\prime}(1)}{y^{\prime}(0)}, \quad \Gamma_{0}\binom{y}{z}=\binom{y(1)}{y(0)},
\end{gathered}
$$

## A matrix differential operator, (Hain-Lüst operator)

$A_{\text {max }}=\left(\begin{array}{cc}-\frac{d^{2}}{d x^{2}}+q(x) & \tilde{w}(x) \\ w(x) & u(x)\end{array}\right), \quad \tilde{A}_{\text {max }}=\left(\begin{array}{cc}-\frac{d^{2}}{d x^{2}}+\overline{q(x)} & \overline{w(x)} \\ \overline{\tilde{w}(x)} & \overline{u(x)}\end{array}\right)$,
where $q, u, w$ and $\tilde{w}$ are $L^{\infty}$-functions, and

$$
\begin{gathered}
D\left(A_{\max }\right)=D\left(\widetilde{A}_{\max }\right)=H^{2}(0,1) \times L^{2}(0,1), \\
\Gamma_{1}\binom{y}{z}=\binom{-y^{\prime}(1)}{y^{\prime}(0)}, \quad \Gamma_{0}\binom{y}{z}=\binom{y(1)}{y(0)}, \\
A_{B}:=\left.A_{\max }\right|_{\operatorname{ker}\left(\Gamma_{1}-B \Gamma_{0}\right)}, \\
\sigma_{\text {ess }}\left(A_{B}\right)=\operatorname{essran}(u) \quad \text { for any } B \in \mathbb{R}^{2 \times 2} .
\end{gathered}
$$

## A matrix differential operator II

$$
A_{\max }=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+q(x) & \tilde{w}(x) \\
w(x) & u(x)
\end{array}\right)
$$

Let $\binom{y}{z} \in \operatorname{ker}\left(A_{\max }-\lambda\right)$. Then

$$
-y^{\prime \prime}+(q-\lambda) y+\tilde{w} z=0 \text { and } w y+(u-\lambda) z=0
$$

## A matrix differential operator II

$$
A_{\max }=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+q(x) & \tilde{w}(x) \\
w(x) & u(x)
\end{array}\right)
$$

Let $\binom{y}{z} \in \operatorname{ker}\left(A_{\max }-\lambda\right)$. Then

$$
-y^{\prime \prime}+(q-\lambda) y+\tilde{w} z=0 \text { and } w y+(u-\lambda) z=0
$$

so

$$
z=\frac{w y}{\lambda-u} \text { and }-y^{\prime \prime}+(q-\lambda) y+\frac{w \tilde{w} y}{\lambda-u}=0
$$

## A matrix differential operator II

$$
A_{\max }=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+q(x) & \tilde{w}(x) \\
w(x) & u(x)
\end{array}\right)
$$

Let $\binom{y}{z} \in \operatorname{ker}\left(A_{\max }-\lambda\right)$. Then

$$
-y^{\prime \prime}+(q-\lambda) y+\tilde{w} z=0 \text { and } w y+(u-\lambda) z=0
$$

so

$$
z=\frac{w y}{\lambda-u} \text { and }-y^{\prime \prime}+(q-\lambda) y+\frac{w \tilde{w} y}{\lambda-u}=0
$$

If $w(I)=0$, then $u(I)$ can be changed without affecting $y$ or the $M$-function.

## A matrix differential operator II

$$
A_{\max }=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+q(x) & \tilde{w}(x) \\
w(x) & u(x)
\end{array}\right)
$$

Let $\binom{y}{z} \in \operatorname{ker}\left(A_{\max }-\lambda\right)$. Then

$$
-y^{\prime \prime}+(q-\lambda) y+\tilde{w} z=0 \text { and } w y+(u-\lambda) z=0
$$

so

$$
z=\frac{w y}{\lambda-u} \text { and }-y^{\prime \prime}+(q-\lambda) y+\frac{w \tilde{w} y}{\lambda-u}=0
$$

If $w(I)=0$, then $u(I)$ can be changed without affecting $y$ or the $M$-function.
We can not expect the uniqueness of the Borg result to hold in a general setting

## The general setting

What can be shown in the general setting ?

## The general setting

What can be shown in the general setting ?
We first introduce the concepts of detectable subspace and of bordered resolvent.

## The general setting

What can be shown in the general setting ?
We first introduce the concepts of detectable subspace and of bordered resolvent.
For $\mu_{0} \notin \sigma\left(A_{B}\right)$, define the space (the bordered resolvent)

$$
\mathcal{S}=\operatorname{Span}_{\delta \notin \sigma\left(A_{B}\right)}\left(A_{B}-\delta I\right)^{-1} \operatorname{Ran}\left(S_{\mu_{0}, B}\right)
$$

## The general setting

What can be shown in the general setting ?
We first introduce the concepts of detectable subspace and of bordered resolvent.
For $\mu_{0} \notin \sigma\left(A_{B}\right)$, define the space (the bordered resolvent)

$$
\mathcal{S}=\operatorname{Span}_{\delta \notin \sigma\left(A_{B}\right)}\left(A_{B}-\delta I\right)^{-1} \operatorname{Ran}\left(S_{\mu_{0}, B}\right)
$$

Our aim is to study the relation between $M_{B}(\lambda)$ and the bordered resolvent $\left.P_{\overline{\widetilde{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ where for any subspace $M, P_{M}$ denotes the orthogonal projection onto $M$.

## The general setting

What can be shown in the general setting ?
We first introduce the concepts of detectable subspace and of bordered resolvent.
For $\mu_{0} \notin \sigma\left(A_{B}\right)$, define the space (the bordered resolvent)

$$
\mathcal{S}=\operatorname{Span}_{\delta \notin \sigma\left(A_{B}\right)}\left(A_{B}-\delta I\right)^{-1} \operatorname{Ran}\left(S_{\mu_{0}, B}\right),
$$

Our aim is to study the relation between $M_{B}(\lambda)$ and the bordered resolvent $\left.P_{\overline{\widetilde{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ where for any subspace $M, P_{M}$ denotes the orthogonal projection onto $M$.

Our results are of two types, concerning uniqueness and reconstruction. (e.g Borg Levinson compared with Gel'fand-Levitan type results)

## Reconstruction from a single boundary-condition operator

We first look at gaining information on the $M$-function from knowledge of the resolvent for a single boundary-condition operator $B$.

## Reconstruction from a single boundary-condition operator

We first look at gaining information on the $M$-function from knowledge of the resolvent for a single boundary-condition operator $B$.

Our first theorem concerns uniqueness only.

## Theorem

Let $\lambda \in \rho\left(A_{B}\right)$. Then $\left.P_{\widetilde{\widetilde{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ uniquely determines $M_{B}(\lambda)$. In particular, if also $\lambda \in \rho\left(A_{C}\right)$, then $\left.P_{\overline{\widetilde{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}=\left.P_{\overline{\widetilde{\mathcal{S}}}}\left(A_{C}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ implies that $M_{B}(\lambda)=M_{C}(\lambda)$, and, if additionally $\lambda \in \rho\left(A_{\infty}\right)$, then $B=C$. Here, $A_{\infty}=\left.\widetilde{A}^{*}\right|_{\operatorname{ker} \Gamma_{0}}$.

## Reconstruction from a single boundary-condition operator

We first look at gaining information on the $M$-function from knowledge of the resolvent for a single boundary-condition operator $B$.

Our first theorem concerns uniqueness only.

## Theorem

Let $\lambda \in \rho\left(A_{B}\right)$. Then $\left.P_{\widetilde{\widetilde{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ uniquely determines $M_{B}(\lambda)$. In particular, if also $\lambda \in \rho\left(A_{C}\right)$, then $\left.P_{\overline{\widetilde{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}=\left.P_{\overline{\widetilde{\mathcal{S}}}}\left(A_{C}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ implies that $M_{B}(\lambda)=M_{C}(\lambda)$, and, if additionally $\lambda \in \rho\left(A_{\infty}\right)$, then $B=C$. Here, $A_{\infty}=\left.\widetilde{A}^{*}\right|_{\text {ker } \Gamma_{0}}$.

In the completely abstract case we need further information to recover $M_{B}$.

## Reconstruction from a single boundary-condition operators

## Theorem

Assume we know $\overline{\mathcal{S}},\left.P_{\overline{\overline{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ and the two sets $\overline{\operatorname{Ran}\left(S_{\mu, B}\right)}$,
$\operatorname{Ran}\left(\widetilde{S}_{\widetilde{\mu}, B^{*}}\right)$ for some $(\mu, \widetilde{\mu})$ with $\mu, \overline{\widetilde{\mu}} \in \rho\left(A_{B}\right)$. Then we can reconstruct $M_{B}(\lambda)$ uniquely if $B$ is known.

## Reconstruction from a single boundary-condition operators

## Theorem

Assume we know $\overline{\mathcal{S}},\left.P_{\overline{\tilde{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ and the two sets $\overline{\operatorname{Ran}\left(S_{\mu, B}\right)}$, $\overline{\operatorname{Ran}\left(\widetilde{S}_{\widetilde{\mu}, B^{*}}\right)}$ for some $(\mu, \widetilde{\mu})$ with $\mu, \overline{\widetilde{\mu}} \in \rho\left(A_{B}\right)$. Then we can reconstruct $M_{B}(\lambda)$ uniquely if $B$ is known.

A key hypothesis is the assumption that we know the closed ranges of the solution operators.

## Reconstruction from a single boundary-condition operators

## Theorem

Assume we know $\overline{\mathcal{S}},\left.P_{\overline{\tilde{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ and the two sets $\overline{\operatorname{Ran}\left(S_{\mu, B}\right)}$, $\overline{\operatorname{Ran}\left(\widetilde{S}_{\widetilde{\mu}, B^{*}}\right)}$ for some $(\mu, \widetilde{\mu})$ with $\mu, \overline{\widetilde{\mu}} \in \rho\left(A_{B}\right)$. Then we can reconstruct $M_{B}(\lambda)$ uniquely if $B$ is known.

A key hypothesis is the assumption that we know the closed ranges of the solution operators.

## Theorem

Assume we know $\operatorname{Ran} S_{\lambda, B}$ and $\operatorname{Ran} \widetilde{S}_{\mu, B^{*}}$ for some $\lambda, \mu$ for the Hain-Lüst operator. Then the operator is not uniquely determined.

## Reconstruction from a single boundary-condition operators

## Theorem

Assume we know $\overline{\mathcal{S}},\left.P_{\overline{\overline{\mathcal{S}}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ and the two sets $\overline{\operatorname{Ran}\left(S_{\mu, B}\right)}$,
$\overline{\operatorname{Ran}\left(\widetilde{S}_{\widetilde{\mu}, B^{*}}\right)}$ for some $(\mu, \widetilde{\mu})$ with $\mu, \overline{\widetilde{\mu}} \in \rho\left(A_{B}\right)$. Then we can reconstruct $M_{B}(\lambda)$ uniquely if $B$ is known.

A key hypothesis is the assumption that we know the closed ranges of the solution operators.

## Theorem

Assume we know $\operatorname{Ran} S_{\lambda, B}$ and $\operatorname{Ran} \widetilde{S}_{\mu, B^{*}}$ for some $\lambda, \mu$ for the Hain-Lüst operator. Then the operator is not uniquely determined.

However in the case of the Friedrichs model (a first order integrable operator) where the closed range of the solution operator is known, it is determined.

## Reconstruction from two bordered resolvents

By allowing ourselves information from two bordered resolvents belonging to different boundary conditions, we obtain reconstruction procedures for the $M$-function.

## Reconstruction from two bordered resolvents

By allowing ourselves information from two bordered resolvents belonging to different boundary conditions, we obtain reconstruction procedures for the $M$-function.

## Theorem

Assume $\left.P_{\overline{\mathcal{S}}}\left(A_{B}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ and $\left.P_{\overline{\tilde{S}}}\left(A_{C}-\lambda\right)^{-1}\right|_{\overline{\mathcal{S}}}$ are known. In addition, assume that
(i) $\Gamma_{0}\left(A_{C}-\lambda\right)^{-1} \overline{\mathcal{S}}$ and $\widetilde{\Gamma}_{0}\left(A_{C}-\lambda\right)^{-*} \overline{\widetilde{\mathcal{S}}}$ are known,
(ii) $\Gamma_{0}\left(A_{C}-\lambda\right)^{-1} \overline{\mathcal{S}}$ is dense in $\mathcal{H}$ and $\widetilde{\Gamma}_{0}\left(A_{C}-\lambda\right)^{-*} \overline{\mathcal{S}}$ is dense in $\mathcal{K}$, (iii) $\operatorname{Ran}(B-C)$ is dense in $\mathcal{H}$ and $\operatorname{ker}(B-C)=\{0\}$.

Then $M_{B}(\lambda)$ can be recovered.

