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Time-harmonic scattering in waveguide

The acoustic waveguide: Ω = R× (0, 1), k = ω/c , e−iωt

∆u + k2u = 0

∂u
∂ν = 0

∂u
∂ν = 0

1

• A finite number of propagative modes for k > nπ:
u±n (x , y) = cos(nπy)e±iβnx βn =

√
k2 − n2π2

• An infinity of evanescent modes for k < nπ:
u±n (x , y) = cos(nπy)e∓γnx γn =

√
n2π2 − k2

(+/− correspond to right/left going modes)
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Time-harmonic scattering in waveguide

O ⊂ Ω
1 + ρ ≥ 0
supp(ρ) ⊂ O

O
incident wave

reflected wave transmitted wave

• The total field u = uinc + usca satisfies the equations

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

• The incident wave is a superposition of propagative modes:

uinc =

NP∑
n=0

anu
+
n

• The scattered field usca is outgoing:

x → ±∞ usca =
∞∑
n=0

b±n u
±
n ∼

NP∑
n=0

b±n u
±
n
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Scattering problem and trapped modes

By Fredholm analytic theory:

Theorem

The scattering problem is well-posed except maybe for a countable
sequence of k ∈ T at which trapped modes exist.

Definition

A trapped mode of the perturbed waveguide is a solution u 6= 0 of

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

such that u ∈ L2(Ω).

There is a huge literature on trapped modes: Davies, Evans, Exner,
Levitin, McIver, Nazarov, Vassiliev, ...
Existence of trapped modes is proved in specific configurations (for
instance symmetric with respect to the horizontal mid-axis) (Evans,
Levitin and Vassiliev, JFM, 1994)
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Invisibility notions

At particular frequencies k , it may occur that, for some uinc ,

x → −∞ usca → 0

It means that the obstacle O produces no reflection. It is invisible for an
observer located far at the left-hand side.

O
+

+

OBJECTIVE

Find a way to compute directly K by solving an eigenvalue problem,
instead of sweeping in k.
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Invisibility notions

Incident field uinc = e ikx

Total field u

Scattered field usca

Perturbation ρ
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Invisibility notions

The total field u satisfies homogeneous equations:

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

but this is not an eigenvalue problem because u /∈ L2(Ω).

A simple and important remark

For k ∈ K , the total field is ingoing at the left-hand side of O and
outgoing at the right-hand side of O.

O

The idea is to use an analytic dilation (and numerically PMLs), with
complex conjugate parameters at both sides of the obstacle, so that the
transformed u will belong to L2(Ω).

4 / 20



A simple example

Suppose O = (−0.5, 0.5)× (0, 1) and ρ is a constant in O.

1

O

Then K can be computed explicitly (no mode coupling):

K =
⋃
n≥0

K n
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A simple example

1

O

Then K can be computed explicitly (no mode coupling):

K =
⋃
n≥0

K n

with

K n =


√

j2 + n2

1 + ρ
π; j ∈ N


They is always (∀ρ 6= 0) an infinite countable sequence of values of k
such that O produces no reflection.
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A simple example

1

O

The study of K 0, with a spectral point of view, has been done in:

H. Hernandez-Coronado, D. Krejcirik and P. Siegl,
Perfect transmission scattering as a PT -symmetric spectral problem,
Physics Letters A (2011).

Our approach allows to extend some of their results to higher dimensions.
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Outline

1 A main tool: Perfectly Matched Layers

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies
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A main tool: Perfectly Matched Layers
(or complex stretching)

OΩ−R Ω+
R

−R +R

In order to use Perfectly Matched Layers to solve the scattering problem,
we start by splitting the waveguide into three parts:

ΩR = Ω ∩ {|x | < R}, Ω+
R = Ω ∩ {x > R} and Ω−R = Ω ∩ {x < −R}.
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A main tool: Perfectly Matched Layers
(or complex stretching)

OΩ−R Ω+
R

−R +R

Reformulation of the scattering problem:

∆u + k2(1 + ρ)u = 0 (ΩR)
∂u

∂ν
= 0 (∂Ω ∩ {|x | < R})

u = u+ and
∂u

∂x
=
∂u+

∂x
(x = R)

u − uinc = u− and
∂

∂x
(u − uinc) =

∂u−

∂x
(x = −R)

with u± =
∑

b±n u
±
n in Ω±R .
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A main tool: Perfectly Matched Layers
(or complex stretching)

OΩ−R Ω+
R

−R +R

Formulation with a stretching in Ω±R :

∆u + k2(1 + ρ)u = 0 (ΩR)
∂u

∂ν
= 0 (∂Ω ∩ {|x | < R})

u = u+
α and

∂u

∂x
= α

∂u+
α

∂x
(x = R)

u − uinc = u−α and
∂

∂x
(u − uinc) = α

∂u−α
∂x

(x = −R)

with u±α (x , y) = u±
(
±R +

x ∓ R

α
, y

)
for (x , y) ∈ Ω±R .
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A main tool: Perfectly Matched Layers
(or complex stretching)

OΩ−R Ω+
R

−R +R

The magic idea of PMLs: using α ∈ C such that u±α ∈ L2(Ω±R ).

Indeed, if α = e−iθ with 0 < θ < π/2, propagative modes become
evanescent:

u+(x , y) =

NP∑
n=0

an cos(nπy)e i
√
k2−n2π2(x−R)

+
∑
n>NP

an cos(nπy)e−
√
n2π2−k2(x−R)

u+
α (x , y) =

∑
n≥0

an cos(nπy)e
−
√

n2π2−k2

α2 (x−R)

where <e
√
z > 0 for z ∈ C\R−.
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A main tool: Perfectly Matched Layers
(or complex stretching)

OΩ−R Ω+
R

−R +R

Final PML formulation:

∆u + k2(1 + ρ)u = 0 (ΩR)
∂u

∂ν
= 0 (∂Ω ∩ ∂ΩR)

∆θu
±
α + k2uα

± = 0 (Ω±R )
∂u

∂ν
= 0 (∂Ω ∩ {±x > R})

u = u+
α and

∂u

∂x
= α

∂u+
α

∂x
(x = R)

u − uinc = u−α and
∂

∂x
(u − uinc) = α

∂u−α
∂x

(x = −R)

where ∆θ = e−2iθ ∂
2

∂x2
+

∂2

∂y2
and u±α ∈ L2(Ω±R ).
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A main tool: Perfectly Matched Layers
(or complex stretching)

OPML PML

−R +R

Final PML formulation:

∆u + k2(1 + ρ)u = 0 (ΩR)
∂u

∂ν
= 0 (∂Ω ∩ ∂ΩR)

∆θu
±
α + k2uα

± = 0 (Ω±R )
∂u

∂ν
= 0 (∂Ω ∩ {±x > R})

u = u+
α and

∂u

∂x
= α

∂u+
α

∂x
(x = R)

u − uinc = u−α and
∂

∂x
(u − uinc) = α

∂u−α
∂x

(x = −R)

where ∆θ = e−2iθ ∂
2

∂x2
+

∂2

∂y2
and u±α ∈ L2(Ω±R ).
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Outline

1 A main tool: Perfectly Matched Layers

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies
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The spectral problem for trapped modes

Let us consider the following unbounded operator of L2(Ω):

D(A) = {u ∈ H2(Ω);
∂u

∂ν
= 0 on ∂Ω} Au = − 1

1 + ρ
∆u

The trapped modes (k ∈ T ) correspond to real eigenvalues k2 of A.

Spectral features of A

A is a positive self-adjoint operator.

σ(A) = σess(A) = R+ and σdisc(A) = ∅
Trapped modes are embedded eigenvalues of A !

Solution: introduce an analytic dilation (Aguilar, Balslev, Combes,
Simon... 70)
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The spectral problem for trapped modes

Let us consider now the following unbounded operator:

D(Aα) = {u ∈ L2(Ω);Aαu ∈ L2(Ω);
∂u

∂ν
= 0 on ∂Ω}

Aαu = − 1

1 + ρ(x)

(
α(x)

∂

∂x

(
α(x)

∂u

∂x

)
+
∂2u

∂y2

)

O

α(x) = 1where α(x) = e−iθ α(x) = e−iθ

−R +R

Spectral features of Aα

Aα is a non self-adjoint operator.

σess(Aα) = ∪n≥0{n2π2 + e−2iθt2; t ∈ R} (Weyl sequences)

σ(Aα)\σess(Aα) = σdisc(Aα)

σdisc(Aα) ⊂ {z ∈ C;−2θ < arg(z) ≤ 0}
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The spectral problem for trapped modes

Proof of the second item:

σess(Aα) = σess(−∆θ) ∆θ = e−2iθ ∂
2

∂x2
+

∂2

∂y2

=
⋃
n≥0

σess(−∆
(n)
θ ) ∆

(n)
θ = e−2iθ ∂

2

∂x2
+ n2π2

=
⋃
n≥0

{n2π2 + e−2iθt2; t ∈ R}

Essential spectrum of Aα:

π2 4π2 9π2

2θ
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The spectral problem for trapped modes

Proof of the third item: σ(Aα)\σess(Aα) = σdisc(Aα)

For z ∈ C and u ∈ H1(Ω):(
1 + ρ

α
(Aα − z)u, u

)
L2(Ω)

=

∫
Ω
α

∣∣∣∣∂u∂x
∣∣∣∣2 +

1

α

∣∣∣∣∂u∂y
∣∣∣∣2 − z(1 + ρ)

α
|u|2

Since <e(α(x)) = <e
(

1
α(x)

)
≥ cos θ > 0, we get for z = −t2 < 0:

<e
(

1 + ρ

α
(Aα − z)u, u

)
L2(Ω)

≥ C‖u‖2
H1(Ω)

so that z = −t2 /∈ σ(Aα).
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The spectral problem for trapped modes

Proof of the third item: σ(Aα)\σess(Aα) = σdisc(Aα)

The result follows because:

1 U = C\σess(Aα) is a connected set.

2 There is a point z ∈ U such that Aα − z is invertible.

(See D.E. Edmunds and W.D. Evans, Spectral theory and differential
operators, 1987.)

π2 4π2 9π2

z = −t2 2θ
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The spectral problem for trapped modes

Discrete spectrum of Aα

Trapped modes are discrete real eigenvalues of Aα !

Complex discrete eigenvalues correspond to leaky modes (or
complex resonances), which are exponentially growing at infinity.

Spectrum of Aα:

π2 4π2 9π2

leaky mode
trapped mode

2θ

10 / 20



Numerical illustration

The numerical results have been obtained by Lucas Chesnel with
FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle
of the waveguide:

In the next slides, we represent the square-root of the spectrum, which
corresponds to k values.
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Numerical illustration
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Numerical illustration

There are two trapped modes:
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Outline

1 A main tool: Perfectly Matched Layers

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies
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A new complex spectrum linked to K
with ”conjugate” PMLs

Let us consider now the following unbounded operator :

D(Aα̃) = {u ∈ L2(Ω);Aα̃u ∈ L2(Ω);
∂u

∂ν
= 0 on ∂Ω}

Aα̃u = − 1

1 + ρ

(
α̃(x)

∂

∂x

(
α̃(x)

∂u

∂x

)
+
∂2u

∂y2

)

O

α̃(x) = 1α̃(x) = e iθ α̃(x) = e−iθ

−R +R
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A new complex spectrum linked to K
with ”conjugate” PMLs

Let us consider now the following unbounded operator :

D(Aα̃) = {u ∈ L2(Ω);Aα̃u ∈ L2(Ω);
∂u

∂ν
= 0 on ∂Ω}

Aα̃u = − 1

1 + ρ

(
α̃(x)

∂

∂x

(
α̃(x)

∂u

∂x

)
+
∂2u

∂y2

)

Spectral features of Aα̃

Aα̃ is a non self-adjoint operator.

σess(Aα̃) =
⋃

n≥0{n2π2 + e2iθt2; t ∈ R} ∪ {n2π2 + e−2iθt2; t ∈ R}
σdisc(Aα̃) ⊂ {z ∈ C;−2θ < arg(z) < 2θ}
Conjecture: σ(Aα̃)\σess(Aα̃) = σdisc(Aα̃) if ρ 6= 0.

Difficulty: C\σess(Aα̃) is not a connected set.
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A new complex spectrum linked to K
with ”conjugate” PMLs

Typical expected spectrum of Aα̃:

π2 4π2 9π2

2θ
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Pathological cases

In the unperturbed case (ρ = 0):

−R +R

π2 4π2 9π2

2θ

σp(Aα̃) = {z ∈ C;−2θ < arg(z) ≤ 2θ}
Proof: Use the strechted plane wave as an eigenvector:

Aα̃u = k2u

for u(x , y) =


e ik(−R+(x+R)e−iθ) if x < −R

e ikx if −R < x < R

e ik(R+(x−R)e iθ) if R < x
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Pathological cases

And the same result holds with horizontal cracks !

−R +R

π2 4π2 9π2

2θ

σp(Aα̃) = {z ∈ C;−2θ < arg(z) ≤ 2θ}
Proof: Use the strechted plane wave as an eigenvector:

Aα̃u = k2u

for u(x , y) =


e ik(−R+(x+R)e−iθ) if x < −R

e ikx if −R < x < R

e ik(R+(x−R)e iθ) if R < x
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Link bewteen the discrete spectrum and K

π2 4π2 9π2

??
??

2θ

For real eigenvalues, the eigenmode is such that

Ou is ingoing u is outgoing
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Link bewteen the discrete spectrum and K

For k2 ∈ σdisc(Aα̃) ∩ R, the eigenmode is such that:

O
u is ingoing

+ +
u is outgoing

There are two cases:

Either u on the left-hand side contains a propagative part and it is a
case of no-reflection: k ∈ K .

Either u is evanescent on both sides and k is associated to a
trapped mode: k ∈ T .

Theorem

σdisc(Aα̃)∩R = {k2 ∈ R; k ∈ K ∪T }

15 / 20



PT -symmetry
Space-time reflection symmetry

P stands for parity and T for time reversal:

Pu(x , y) = u(−x , y) and T u(x , y) = u(x , y)

PT -symmetry of Aα̃

If the obstacle is symmetric i.e. ρ(−x , y) = ρ(x , y), then the operator Aα̃
is PT -symmetric:

P T Aα̃ P T = Aα̃

As a consequence σ(Aα̃) = σ(Aα̃).

In particular:

Aα̃u = λu ⇐⇒ Aα̃ũ = λũ with ũ(x , y) = u(−x , y)

16 / 20



Numerical illustration
for a rectangular symmetric cavity
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The spectrum is symmetric w.r.t. the real axis (PT -symmetry) .

There are much more real eigenvalues than for trapped modes.
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Numerical illustration
for a rectangular symmetric cavity

This is a representation of the computed modes for the 10 first real
eigenvalues and in the whole computational domain (including PMLs).
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Numerical illustration
for a rectangular symmetric cavity

Let us focus on the eigenmodes such that 0 < k < π:

First trapped mode:
k = 1.2355 · · ·

First no-reflection mode:
k = 1.4513 · · ·

Second trapped mode:
k = 2.3897 · · ·

Second no-reflection mode:
k = 2.8896 · · ·

17 / 20



Numerical illustration
for a rectangular symmetric cavity

To validate this result, we compute the amplitude of the reflected plane
wave for 0 < k < π:

First no-reflection mode:
k = 1.4513 · · ·

Second no-reflection mode:
k = 2.8896 · · ·

There is a perfect agreement!
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Numerical illustration
in a non PT -symmetric case

Here the scatterer is a not symetric in x , and neither in y :

We expect:

No trapped modes

No invariance of the spectrum by complex conjugation
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Numerical illustration
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The spectrum is no longer symmetric w.r.t. the real axis.

There are several eigenvalues near the real axis.
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Numerical illustration
in a non PT -symmetric case

Again results can be validated by computing R(k) for 0 < k < π:

k = 1.2803 + 0.0003i k = 2.3868 + 0.0004i k = 2.8650 + 0.0241i

Complex eigenvalues also contain useful information about almost
no-reflection.
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Numerical illustration of coalescence
T spectrum in red, K spectrum in blue

Two series of computations: one with classical PMLs, one with conjugate
PMLs. We compute the spectra for a range of L .

` = 1

L
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Numerical illustration of coalescence
T spectrum in red, K spectrum in blue
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Summary and future works

There is still a lot of work to do !

Prove the conjecture concerning the discrete spectrum of Aα̃.
Prove the existence of real eigenvalues, at least in PT -symmetric
cases (⇔ K 6= ∅).
Combine this approach with our method for building invisible
obstacles.
...
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