A NEW COMPLEX SPECTRUM ASSOCIATED TO INVISIBILITY IN WAVEGUIDES

Antoine Bera ${ }^{1} \quad$ Anne-Sophie Bonnet-Ben Dhia ${ }^{1}$ Lucas Chesnel ${ }^{2}$ Vincent Pagneux ${ }^{3}$
${ }^{1}$ POEMS (CNRS-ENSTA-INRIA), Palaiseau, France
${ }^{2}$ DEFI team (INRIA, CMAP-X), Palaiseau, France.
${ }^{3}$ LAUM (CNRS, Université du Maine), Le Mans, France

CIRM, June 2017

Time-Harmonic scattering in waveguide

The acoustic waveguide: $\Omega=\mathbb{R} \times(0,1), k=\omega / c, e^{-i \omega t}$

$$
\frac{\partial u}{\partial \nu}=0
$$

$$
\begin{equation*}
\Delta u+k^{2} u=0 \tag{1}
\end{equation*}
$$

$$
\frac{\partial u}{\partial \nu}=0
$$

- A finite number of propagative modes for $k>n \pi$:

$$
u_{n}^{ \pm}(x, y)=\cos (n \pi y) e^{ \pm i \beta_{n} x} \quad \beta_{n}=\sqrt{k^{2}-n^{2} \pi^{2}}
$$

- An infinity of evanescent modes for $k<n \pi$:

$$
u_{n}^{ \pm}(x, y)=\cos (n \pi y) e^{\mp \gamma_{n} x} \quad \gamma_{n}=\sqrt{n^{2} \pi^{2}-k^{2}}
$$

(+ / - correspond to right/left going modes)

Time-HARMONIC SCATTERING IN WAVEGUIDE

$$
\begin{aligned}
& \mathcal{O} \subset \Omega \\
& 1+\rho \geq 0 \\
& \operatorname{supp}(\rho) \subset \mathcal{O}
\end{aligned}
$$

incident wave
$\overleftarrow{\text { reflected wave }}$

transmitted wave

- The total field $u=u_{i n c}+u_{\text {sca }}$ satisfies the equations

$$
\Delta u+k^{2}(1+\rho) u=0 \quad(\Omega) \quad \frac{\partial u}{\partial \nu}=0 \quad(\partial \Omega)
$$

- The incident wave is a superposition of propagative modes:

$$
u_{i n c}=\sum_{n=0}^{N_{P}} a_{n} u_{n}^{+}
$$

- The scattered field $u_{s c a}$ is outgoing:

$$
x \rightarrow \pm \infty \quad u_{s c a}=\sum_{n=0}^{\infty} b_{n}^{ \pm} u_{n}^{ \pm} \sim \sum_{n=0}^{N_{P}} b_{n}^{ \pm} u_{n}^{ \pm}
$$

Scattering problem and trapped modes

By Fredholm analytic theory:

Theorem

The scattering problem is well-posed except maybe for a countable sequence of $k \in \mathscr{T}$ at which trapped modes exist.

Definition

A trapped mode of the perturbed waveguide is a solution $u \neq 0$ of

$$
\Delta u+k^{2}(1+\rho) u=0 \quad(\Omega) \quad \frac{\partial u}{\partial \nu}=0 \quad(\partial \Omega)
$$

such that $u \in L^{2}(\Omega)$.

Scattering problem and trapped modes

Theorem

The scattering problem is well-posed except maybe for a countable sequence of $k \in \mathscr{T}$ at which trapped modes exist.

Definition

A trapped mode of the perturbed waveguide is a solution $u \neq 0$ of

$$
\Delta u+k^{2}(1+\rho) u=0 \quad(\Omega) \quad \frac{\partial u}{\partial \nu}=0 \quad(\partial \Omega)
$$

such that $u \in L^{2}(\Omega)$.

- There is a huge literature on trapped modes: Davies, Evans, Exner, Levitin, Mclver, Nazarov, Vassiliev, ...
- Existence of trapped modes is proved in specific configurations (for instance symmetric with respect to the horizontal mid-axis) (Evans, Levitin and Vassiliev, JFM, 1994)

Invisibility notions

At particular frequencies k, it may occur that, for some $u_{\text {inc }}$,

$$
x \rightarrow-\infty \quad u_{s c a} \rightarrow 0
$$

It means that the obstacle \mathcal{O} produces no reflection. It is invisible for an observer located far at the left-hand side.

\mathcal{O}
WW+-

Invisibility notions

At particular frequencies k, it may occur that, for some $u_{\text {inc }}$,

$$
x \rightarrow-\infty \quad u_{s c a} \rightarrow 0
$$

It means that the obstacle \mathcal{O} produces no reflection. It is invisible for an observer located far at the left-hand side.

$$
k \in \mathscr{H} \nsupseteq \mathcal{O A N + \cdots}
$$

Invisibility notions

At particular frequencies k, it may occur that, for some $u_{\text {inc }}$,

$$
x \rightarrow-\infty \quad u_{s c a} \rightarrow 0
$$

It means that the obstacle \mathcal{O} produces no reflection. It is invisible for an observer located far at the left-hand side.

$$
k \in \mathscr{H} \text { WAN }
$$

OBJECTIVE

Find a way to compute directly \mathscr{K} by solving an eigenvalue problem, instead of sweeping in k.

Invisibility notions

Invisibility notions

The total field u satisfies homogeneous equations:

$$
\Delta u+k^{2}(1+\rho) u=0 \quad(\Omega) \quad \frac{\partial u}{\partial \nu}=0 \quad(\partial \Omega)
$$

but this is not an eigenvalue problem because $u \notin L^{2}(\Omega)$.

A SIMPLE AND IMPORTANT REMARK

For $k \in \mathscr{K}$, the total field is ingoing at the left-hand side of \mathcal{O} and outgoing at the right-hand side of \mathcal{O}.

The idea is to use an analytic dilation (and numerically PMLs), with complex conjugate parameters at both sides of the obstacle, so that the transformed u will belong to $L^{2}(\Omega)$.

A simple example

Suppose $\mathcal{O}=(-0.5,0.5) \times(0,1)$ and ρ is a constant in \mathcal{O}.

Then \mathscr{K} can be computed explicitly (no mode coupling):

$$
\mathscr{K}=\bigcup_{n \geq 0} \mathscr{K}^{n}
$$

A simple example

Then \mathscr{K} can be computed explicitly (no mode coupling):

$$
\mathscr{K}=\bigcup_{n \geq 0} \mathscr{K}^{n}
$$

with

$$
\mathscr{K}^{n}=\left\{\sqrt{\frac{j^{2}+n^{2}}{1+\rho}} \pi ; j \in \mathbb{N}\right\}
$$

They is always $(\forall \rho \neq 0)$ an infinite countable sequence of values of k such that \mathcal{O} produces no reflection.

A simple example

The study of \mathscr{K}^{0}, with a spectral point of view, has been done in:
H. Hernandez-Coronado, D. Krejcirik and P. Siegl,

Perfect transmission scattering as a $\mathcal{P} \mathcal{T}$-symmetric spectral problem, Physics Letters A (2011).

Our approach allows to extend some of their results to higher dimensions.

Outline

1 A main tool: Perfectly Matched Layers

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies

Outline

1 A main tool: Perfectly Matched Layers

2 Spectrum of Trapped modes frequencies

3 Spectrum of no-REFLECTION FREQUENCIES

A main tool: Perfectly Matched Layers

(OR COMPLEX STRETCHING)

In order to use Perfectly Matched Layers to solve the scattering problem, we start by splitting the waveguide into three parts:

$$
\Omega_{R}=\Omega \cap\{|x|<R\}, \Omega_{R}^{+}=\Omega \cap\{x>R\} \text { and } \Omega_{R}^{-}=\Omega \cap\{x<-R\} .
$$

A main tool: Perfectly Matched Layers

 (OR COMPLEX STRETCHING)

Reformulation of the scattering problem:

$$
\begin{aligned}
& \Delta u+k^{2}(1+\rho) u=0 \quad\left(\Omega_{R}\right) \quad \frac{\partial u}{\partial \nu}=0 \quad(\partial \Omega \cap\{|x|<R\}) \\
& u=u^{+} \text {and } \frac{\partial u}{\partial x}=\frac{\partial u^{+}}{\partial x} \quad(x=R) \\
& u-u_{\text {inc }}=u^{-} \text {and } \frac{\partial}{\partial x}\left(u-u_{\text {inc }}\right)=\frac{\partial u^{-}}{\partial x} \quad(x=-R)
\end{aligned}
$$

with $u^{ \pm}=\sum b_{n}^{ \pm} u_{n}^{ \pm}$in $\Omega_{R}^{ \pm}$.

A main tool: Perfectly Matched Layers

 (OR COMPLEX STRETCHING)

Formulation with a stretching in $\Omega_{R}^{ \pm}$:

$\Delta u+k^{2}(1+\rho) u=0 \quad\left(\Omega_{R}\right) \quad \frac{\partial u}{\partial \nu}=0 \quad(\partial \Omega \cap\{|x|<R\})$
$u=u_{\alpha}^{+}$and $\frac{\partial u}{\partial x}=\alpha \frac{\partial u_{\alpha}^{+}}{\partial x} \quad(x=R)$
$u-u_{\text {inc }}=u_{\alpha}^{-}$and $\frac{\partial}{\partial x}\left(u-u_{\text {inc }}\right)=\alpha \frac{\partial u_{\alpha}^{-}}{\partial x} \quad(x=-R)$
with $u_{\alpha}^{ \pm}(x, y)=u^{ \pm}\left(\pm R+\frac{x \mp R}{\alpha}, y\right)$ for $(x, y) \in \Omega_{R}^{ \pm}$.

A main tool: Perfectly Matched Layers

(OR COMPLEX STRETCHING)

The magic idea of PMLs: using $\alpha \in \mathbb{C}$ such that $u_{\alpha}^{ \pm} \in L^{2}\left(\Omega_{R}^{ \pm}\right)$.
Indeed, if $\alpha=e^{-i \theta}$ with $0<\theta<\pi / 2$, propagative modes become evanescent:

$$
\begin{array}{rlr}
u^{+}(x, y) & =\sum_{n=0}^{N_{P}} a_{n} \cos (n \pi y) e^{i \sqrt{k^{2}-n^{2} \pi^{2}}(x-R)} \\
& +\sum_{n>N_{P}} a_{n} \cos (n \pi y) e^{-\sqrt{n^{2} \pi^{2}-k^{2}}(x-R)} \\
u_{\alpha}^{+}(x, y) & =\sum_{n \geq 0} a_{n} \cos (n \pi y) e^{-\sqrt{\frac{n^{2} \pi^{2}-k^{2}}{\alpha^{2}}}(x-R)}
\end{array}
$$

where $\Re e \sqrt{z}>0$ for $z \in \mathbb{C} \backslash \mathbb{R}^{-}$.

A main tool: Perfectly Matched Layers

 (OR COMPLEX STRETCHING)

Final PML formulation:
$\Delta u+k^{2}(1+\rho) u=0 \quad\left(\Omega_{R}\right) \quad \frac{\partial u}{\partial \nu}=0 \quad\left(\partial \Omega \cap \partial \Omega_{R}\right)$
$\Delta_{\theta} u_{\alpha}^{ \pm}+k^{2} u_{\alpha}{ }^{ \pm}=0 \quad\left(\Omega_{R}^{ \pm}\right) \quad \frac{\partial u}{\partial \nu}=0 \quad(\partial \Omega \cap\{ \pm x>R\})$
$u=u_{\alpha}^{+}$and $\frac{\partial u}{\partial x}=\alpha \frac{\partial u_{\alpha}^{+}}{\partial x} \quad(x=R)$
$u-u_{\text {inc }}=u_{\alpha}^{-}$and $\frac{\partial}{\partial x}\left(u-u_{\text {inc }}\right)=\alpha \frac{\partial u_{\alpha}^{-}}{\partial x} \quad(x=-R)$
where $\Delta_{\theta}=e^{-2 i \theta} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ and $u_{\alpha}^{ \pm} \in L^{2}\left(\Omega_{R}^{ \pm}\right)$.

A main tool: Perfectly Matched Layers

 (OR COMPLEX STRETCHING)

Final PML formulation:
$\Delta u+k^{2}(1+\rho) u=0 \quad\left(\Omega_{R}\right) \quad \frac{\partial u}{\partial \nu}=0 \quad\left(\partial \Omega \cap \partial \Omega_{R}\right)$
$\Delta_{\theta} u_{\alpha}^{ \pm}+k^{2} u_{\alpha}{ }^{ \pm}=0 \quad\left(\Omega_{R}^{ \pm}\right) \quad \frac{\partial u}{\partial \nu}=0 \quad(\partial \Omega \cap\{ \pm x>R\})$
$u=u_{\alpha}^{+}$and $\frac{\partial u}{\partial x}=\alpha \frac{\partial u_{\alpha}^{+}}{\partial x} \quad(x=R)$
$u-u_{\text {inc }}=u_{\alpha}^{-}$and $\frac{\partial}{\partial x}\left(u-u_{\text {inc }}\right)=\alpha \frac{\partial u_{\alpha}^{-}}{\partial x} \quad(x=-R)$
where $\Delta_{\theta}=e^{-2 i \theta} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ and $u_{\alpha}^{ \pm} \in L^{2}\left(\Omega_{R}^{ \pm}\right)$.

Outline

1 A main tool: Perfectly Matched Layers

2 Spectrum of trapped modes frequencies

3 Spectrum of no-REFLECTION FREQUENCIES

The spectral problem for trapped modes

Let us consider the following unbounded operator of $L^{2}(\Omega)$:
$D(A)=\left\{u \in H^{2}(\Omega) ; \frac{\partial u}{\partial \nu}=0\right.$ on $\left.\partial \Omega\right\} \quad A u=-\frac{1}{1+\rho} \Delta u$
The trapped modes $(k \in \mathscr{T})$ correspond to real eigenvalues k^{2} of A.

THE SPECTRAL PROBLEM FOR TRAPPED MODES

Let us consider the following unbounded operator of $L^{2}(\Omega)$:
$D(A)=\left\{u \in H^{2}(\Omega) ; \frac{\partial u}{\partial \nu}=0\right.$ on $\left.\partial \Omega\right\} \quad A u=-\frac{1}{1+\rho} \Delta u$
The trapped modes $(k \in \mathscr{T})$ correspond to real eigenvalues k^{2} of A.

Spectral features of A

- A is a positive self-adjoint operator.
- $\sigma(A)=\sigma_{\text {ess }}(A)=\mathbb{R}^{+}$and $\sigma_{\text {disc }}(A)=\emptyset$
- Trapped modes are embedded eigenvalues of A !

Solution: introduce an analytic dilation (Aguilar, Balslev, Combes, Simon... 70)

The spectral problem for trapped modes

Let us consider now the following unbounded operator:

$$
\begin{aligned}
D\left(A_{\alpha}\right) & =\left\{u \in L^{2}(\Omega) ; A_{\alpha} u \in L^{2}(\Omega) ; \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega\right\} \\
A_{\alpha} u & =-\frac{1}{1+\rho(x)}\left(\alpha(x) \frac{\partial}{\partial x}\left(\alpha(x) \frac{\partial u}{\partial x}\right)+\frac{\partial^{2} u}{\partial y^{2}}\right)
\end{aligned}
$$

where $\quad \alpha(x)=e^{-i \theta}$
$\alpha(x)=1$
$\alpha(x)=e^{-i \theta}$

The spectral problem for trapped modes

Let us consider now the following unbounded operator:

$$
\begin{aligned}
D\left(A_{\alpha}\right) & =\left\{u \in L^{2}(\Omega) ; A_{\alpha} u \in L^{2}(\Omega) ; \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega\right\} \\
A_{\alpha} u & =-\frac{1}{1+\rho(x)}\left(\alpha(x) \frac{\partial}{\partial x}\left(\alpha(x) \frac{\partial u}{\partial x}\right)+\frac{\partial^{2} u}{\partial y^{2}}\right)
\end{aligned}
$$

Spectral features of A_{α}

- A_{α} is a non self-adjoint operator.
- $\sigma_{\text {ess }}\left(A_{\alpha}\right)=\cup_{n \geq 0}\left\{n^{2} \pi^{2}+e^{-2 i \theta} t^{2} ; t \in \mathbb{R}\right\}$
(Weyl sequences)
- $\sigma\left(A_{\alpha}\right) \backslash \sigma_{\text {ess }}\left(A_{\alpha}\right)=\sigma_{\text {disc }}\left(A_{\alpha}\right)$
- $\sigma_{\text {disc }}\left(A_{\alpha}\right) \subset\{z \in \mathbb{C} ;-2 \theta<\arg (z) \leq 0\}$

The spectral problem for trapped modes

Proof of the second item:

$$
\begin{array}{rlrl}
\sigma_{\text {ess }}\left(A_{\alpha}\right) & =\sigma_{\text {ess }}\left(-\Delta_{\theta}\right) & \Delta_{\theta} & =e^{-2 i \theta} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \\
& =\bigcup_{n \geq 0} \sigma_{\text {ess }}\left(-\Delta_{\theta}^{(n)}\right) & \Delta_{\theta}^{(n)}=e^{-2 i \theta} \frac{\partial^{2}}{\partial x^{2}}+n^{2} \pi^{2} \\
& =\bigcup_{n \geq 0}\left\{n^{2} \pi^{2}+e^{-2 i \theta} t^{2} ; t \in \mathbb{R}\right\} & &
\end{array}
$$

Essential spectrum of A_{α} :

The spectral Problem for trapped modes

Proof of the third item: $\sigma\left(A_{\alpha}\right) \backslash \sigma_{\text {ess }}\left(A_{\alpha}\right)=\sigma_{\text {disc }}\left(A_{\alpha}\right)$
For $z \in \mathbb{C}$ and $u \in H^{1}(\Omega)$:

$$
\left(\frac{1+\rho}{\alpha}\left(A_{\alpha}-z\right) u, u\right)_{L^{2}(\Omega)}=\int_{\Omega} \alpha\left|\frac{\partial u}{\partial x}\right|^{2}+\frac{1}{\alpha}\left|\frac{\partial u}{\partial y}\right|^{2}-\frac{z(1+\rho)}{\alpha}|u|^{2}
$$

Since $\Re e(\alpha(x))=\Re e\left(\frac{1}{\alpha(x)}\right) \geq \cos \theta>0$, we get for $z=-t^{2}<0$:

$$
\Re e\left(\frac{1+\rho}{\alpha}\left(A_{\alpha}-z\right) u, u\right)_{L^{2}(\Omega)} \geq C\|u\|_{H^{1}(\Omega)}^{2}
$$

so that $z=-t^{2} \notin \sigma\left(A_{\alpha}\right)$.

The spectral problem for trapped modes

Proof of the third item: $\sigma\left(A_{\alpha}\right) \backslash \sigma_{\text {ess }}\left(A_{\alpha}\right)=\sigma_{\text {disc }}\left(A_{\alpha}\right)$
The result follows because:
$1 U=\mathbb{C} \backslash \sigma_{\text {ess }}\left(A_{\alpha}\right)$ is a connected set.
2 There is a point $z \in U$ such that $A_{\alpha}-z$ is invertible.
(See D.E. Edmunds and W.D. Evans, Spectral theory and differential operators, 1987.)

The spectral Problem for trapped modes

Discrete spectrum of A_{α}

- Trapped modes are discrete real eigenvalues of A_{α} !
- Complex discrete eigenvalues correspond to leaky modes (or complex resonances), which are exponentially growing at infinity.

Spectrum of A_{α} :

Numerical illustration

The numerical results have been obtained by Lucas Chesnel with FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle of the waveguide:

Numerical illustration

The numerical results have been obtained by Lucas Chesnel with FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle of the waveguide:

In the next slides, we represent the square-root of the spectrum, which corresponds to k values.

Numerical illustration

Square root of the spectrum

Numerical illustration

Square root of the spectra

Numerical illustration

There are two trapped modes:

Outline

1 A main tool: Perfectly Matched Layers

2 Spectrum of Trapped modes frequencies

3 Spectrum of no-REFLECTION FREQUENCIES

A New COMPLEX SPECTRUM LINKED TO \mathscr{K}

with "CONJugate" PMLs

Let us consider now the following unbounded operator :

$$
\begin{aligned}
D\left(A_{\tilde{\alpha}}\right) & =\left\{u \in L^{2}(\Omega) ; A_{\tilde{\alpha}} u \in L^{2}(\Omega) ; \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega\right\} \\
A_{\tilde{\alpha} u} & =-\frac{1}{1+\rho}\left(\tilde{\alpha}(x) \frac{\partial}{\partial x}\left(\tilde{\alpha}(x) \frac{\partial u}{\partial x}\right)+\frac{\partial^{2} u}{\partial y^{2}}\right)
\end{aligned}
$$

$$
\tilde{\alpha}(x)=e^{i \theta} \quad \tilde{\alpha}(x)=1 \quad \tilde{\alpha}(x)=e^{-i \theta}
$$

A New COMPLEX SPECTRUM LINKED TO \mathscr{K}

 with " conjugate" PMLsLet us consider now the following unbounded operator :

$$
\begin{aligned}
D\left(A_{\tilde{\alpha}}\right) & =\left\{u \in L^{2}(\Omega) ; A_{\tilde{\alpha} u} u L^{2}(\Omega) ; \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega\right\} \\
A_{\tilde{\alpha} u} & =-\frac{1}{1+\rho}\left(\tilde{\alpha}(x) \frac{\partial}{\partial x}\left(\tilde{\alpha}(x) \frac{\partial u}{\partial x}\right)+\frac{\partial^{2} u}{\partial y^{2}}\right)
\end{aligned}
$$

Spectral features of $A_{\tilde{\alpha}}$

- $A_{\tilde{\alpha}}$ is a non self-adjoint operator.
- $\sigma_{\text {ess }}\left(A_{\tilde{\alpha}}\right)=\bigcup_{n \geq 0}\left\{n^{2} \pi^{2}+e^{2 i \theta} t^{2} ; t \in \mathbb{R}\right\} \cup\left\{n^{2} \pi^{2}+e^{-2 i \theta} t^{2} ; t \in \mathbb{R}\right\}$
- $\sigma_{\text {disc }}\left(A_{\tilde{\alpha}}\right) \subset\{z \in \mathbb{C} ;-2 \theta<\arg (z)<2 \theta\}$
- Conjecture: $\sigma\left(A_{\tilde{\alpha}}\right) \backslash \sigma_{\text {ess }}\left(A_{\tilde{\alpha}}\right)=\sigma_{\text {disc }}\left(A_{\tilde{\alpha}}\right)$ if $\rho \neq 0$.

Difficulty: $\mathbb{C} \backslash \sigma_{\text {ess }}\left(A_{\tilde{\alpha}}\right)$ is not a connected set.

A new complex spectrum linked to \mathscr{K}

 with "conjugate" PMLsTypical expected spectrum of $A_{\tilde{\alpha}}$:

Pathological cases

In the unperturbed case ($\rho=0$):

$$
\sigma_{p}\left(A_{\tilde{\alpha}}\right)=\{z \in \mathbb{C} ;-2 \theta<\arg (z) \leq 2 \theta\}
$$

Proof: Use the strechted plane wave as an eigenvector:

$$
A_{\tilde{\alpha}} u=k^{2} u
$$

for $u(x, y)=\left\{\begin{array}{ccc}e^{i k\left(-R+(x+R) e^{-i \theta}\right)} & \text { if } & x<-R \\ e^{i k x} & \text { if } & -R<x<R \\ e^{i k\left(R+(x-R) e^{i \theta}\right)} & \text { if } & R<x\end{array}\right.$

Pathological cases

And the same result holds with horizontal cracks !

$$
\sigma_{p}\left(A_{\tilde{\alpha}}\right)=\{z \in \mathbb{C} ;-2 \theta<\arg (z) \leq 2 \theta\}
$$

Proof: Use the strechted plane wave as an eigenvector:

$$
A_{\tilde{\alpha}} u=k^{2} u
$$

for $u(x, y)=\left\{\begin{array}{ccc}e^{i k\left(-R+(x+R) e^{-i \theta}\right)} & \text { if } & x<-R \\ e^{i k x} & \text { if } & -R<x<R \\ e^{i k\left(R+(x-R) e^{i \theta}\right)} & \text { if } & R<x\end{array}\right.$

Link bewteen the discrete spectrum and \mathscr{K}

For real eigenvalues, the eigenmode is such that

$$
u \text { is ingoing } \quad \mathcal{O} \quad u \text { is outgoing }
$$

Link bewteen the discrete spectrum and

For $k^{2} \in \sigma_{\text {disc }}\left(A_{\tilde{\alpha}}\right) \cap \mathbb{R}$, the eigenmode is such that:

There are two cases:

- Either u on the left-hand side contains a propagative part and it is a case of no-reflection: $k \in \mathscr{K}$.
- Either u is evanescent on both sides and k is associated to a trapped mode: $k \in \mathscr{T}$.

Theorem

$$
\sigma_{\text {disc }}\left(A_{\tilde{\alpha}}\right) \cap \mathbb{R}=\left\{k^{2} \in \mathbb{R} ; k \in \mathscr{K} \cup \mathscr{T}\right\}
$$

$\mathcal{P} \mathcal{T}$-SYMMETRY

Space-Time Reflection symmetry

\mathcal{P} stands for parity and \mathcal{T} for time reversal:

$$
\mathcal{P} u(x, y)=u(-x, y) \text { and } \mathcal{T} u(x, y)=\overline{u(x, y)}
$$

$\mathcal{P T}$-SYMMETRY OF $A_{\tilde{\alpha}}$

If the obstacle is symmetric i.e. $\rho(-x, y)=\rho(x, y)$, then the operator $A_{\tilde{\alpha}}$ is $\mathcal{P T}$-symmetric:

$$
\mathcal{P} \mathcal{T} A_{\tilde{\alpha}} \mathcal{P} \mathcal{T}=A_{\tilde{\alpha}}
$$

As a consequence $\sigma\left(A_{\tilde{\alpha}}\right)=\overline{\sigma\left(A_{\tilde{\alpha}}\right)}$.
In particular:

$$
A_{\tilde{\alpha}} u=\lambda u \Longleftrightarrow A_{\tilde{\alpha}} \tilde{u}=\bar{\lambda} \tilde{u} \quad \text { with } \quad \tilde{u}(x, y)=\overline{u(-x, y)}
$$

Numerical ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

Square root of the spectrum

- The spectrum is symmetric w.r.t. the real axis ($\mathcal{P} \mathcal{T}$-symmetry) .
- There are much more real eigenvalues than for trapped modes.

Numerical illustration

```
FOR A RECTANGULAR SYMMETRIC CAVITY
```


This is a representation of the computed modes for the 10 first real eigenvalues and in the whole computational domain (including PMLs).

Numerical illustration

```
FOR A RECTANGULAR SYMMETRIC CAVITY
```

Let us focus on the eigenmodes such that $0<k<\pi$:

First trapped mode:

$$
k=1.2355 \cdots
$$

First no-reflection mode:

$$
k=1.4513 \cdots
$$

Second trapped mode:

$$
k=2.3897 \cdots
$$

Second no-reflection mode:

$$
k=2.8896 \cdots
$$

Numerical ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

To validate this result, we compute the amplitude of the reflected plane wave for $0<k<\pi$:

First no-reflection mode:

$$
k=1.4513 \cdots
$$

Second no-reflection mode:

$$
k=2.8896 \cdots
$$

There is a perfect agreement!

Numerical illustration

IN A NON $\mathcal{P} \mathcal{T}$-SYMMETRIC CASE

Here the scatterer is a not symetric in x, and neither in y :

We expect:

- No trapped modes

■ No invariance of the spectrum by complex conjugation

Numerical illustration

IN A NON $\mathcal{P} \mathcal{T}$-SYMMETRIC CASE

Square root of the spectrum

- The spectrum is no longer symmetric w.r.t. the real axis.
- There are several eigenvalues near the real axis.

Numerical illustration

IN A NON $\mathcal{P} \mathcal{T}$-SYMMETRIC CASE

Again results can be validated by computing $R(k)$ for $0<k<\pi$:

Complex eigenvalues also contain useful information about almost no-reflection.

Numerical illustration of coalescence

\mathscr{T} Spectrum in Red, \mathscr{K} spectrum in Blue

Two series of computations: one with classical PMLs, one with conjugate PMLs. We compute the spectra for a range of L.

Numerical illustration of coalescence

\mathscr{T} Spectrum in Red, \mathscr{K} spectrum in blue

Summary and future works

There is still a lot of work to do!

- Prove the conjecture concerning the discrete spectrum of $A_{\tilde{\alpha}}$.

■ Prove the existence of real eigenvalues, at least in $\mathcal{P} \mathcal{T}$-symmetric cases $(\Leftrightarrow \mathscr{K} \neq \emptyset)$.

- Combine this approach with our method for building invisible obstacles.
■ ...

