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TIME-HARMONIC SCATTERING IN WAVEGUIDE

—iwt

The acoustic waveguide: Q =R x (0,1), k =w/c, e

ou __
% =0

Au+ kK2u=0 Il
B0

e A finite number of propagative modes for k > n:

uE(x,y) = cos(nmy)e=io g, =i YV

e An infinity of evanescent modes for k < nm: K
+

uf(x,y) = cos(nmwy)et* ~, =+/n272 — k2 -

(+/— correspond to right/left going modes)



TIME-HARMONIC SCATTERING IN WAVEGUIDE

0cq incident wave
’ transmitted wave
supp(p) C O reflected wave

e The total field u = uj,c + usc, satisfies the equations

)
Au+K(1+pu=0 (Q) ?ZZO (09)

e The incident wave is a superposition of propagative modes:

Np
Uinc = § a,,u,T
n=0

e The scattered field vy, is outgoing:

00 Np
X = £00  Uscs = g brut ~ E bEu*
n=0 n=0



SCATTERING PROBLEM AND TRAPPED MODES

By Fredholm analytic theory:

THEOREM

The scattering problem is well-posed except maybe for a countable
sequence of k € .7 at which trapped modes exist.

DEFINITION

A trapped mode of the perturbed waveguide is a solution u # 0 of

Au+ kK (1+pu=0 (Q) 9u (09)

ov
such that u € L%(Q).



SCATTERING PROBLEM AND TRAPPED MODES

THEOREM

The scattering problem is well-posed except maybe for a countable
sequence of k € 7 at which trapped modes exist.

DEFINITION

A trapped mode of the perturbed waveguide is a solution u = 0 of
0
Au+ K1 +pu=0 (Q) 8—5 =0 (09)
such that u € L%(Q).

m There is a huge literature on trapped modes: Davies, Evans, Exner,
Levitin, Mclver, Nazarov, Vassiliev, ...

m Existence of trapped modes is proved in specific configurations (for
instance symmetric with respect to the horizontal mid-axis) (Evans,
Levitin and Vassiliev, JFM, 1994)



INVISIBILITY NOTIONS

At particular frequencies k , it may occur that, for some uj,c,
X — —00 Usea — 0

It means that the obstacle O produces no reflection. It is invisible for an
observer located far at the left-hand side.
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INVISIBILITY NOTIONS

At particular frequencies k , it may occur that, for some uj,c,
X — —00 Usea — 0

It means that the obstacle O produces no reflection. It is invisible for an
observer located far at the left-hand side.

OBJECTIVE

Find a way to compute directly Z" by solving an eigenvalue problem,
instead of sweeping in k.



INVISIBILITY NOTIONS
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Incident field ujpe = €™

04]2

Total field u

Scattered field usc,
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INVISIBILITY NOTIONS

The total field u satisfies homogeneous equations:
Au+K(1+pu=0 (2 =0 (99)

but this is not an eigenvalue problem because u ¢ L2(Q).

A SIMPLE AND IMPORTANT REMARK

For k € 2, the total field is ingoing at the left-hand side of O and
outgoing at the right-hand side of O.

The idea is to use an analytic dilation (and numerically PMLs), with
complex conjugate parameters at both sides of the obstacle, so that the
transformed u will belong to L?(Q).



A SIMPLE EXAMPLE

Suppose O = (—0.5,0.5) x (0,1) and p is a constant in O.

_ 0 —

Then . can be computed explicitly (no mode coupling):

%:U%”

n>0



A SIMPLE EXAMPLE

_ 0 —

1

Then " can be computed explicitly (no mode coupling):

H ="
n>0
with
j2 + n2

A =
1+p

mjeN

They is always (Vp # 0) an infinite countable sequence of values of k
such that O produces no reflection.



A SIMPLE EXAMPLE

The study of .#0, with a spectral point of view, has been done in:

H. Hernandez-Coronado, D. Krejcirik and P. Siegl,

Perfect transmission scattering as a P -symmetric spectral problem,
Physics Letters A (2011).

Our approach allows to extend some of their results to higher dimensions.



OUTLINE

A MAIN TOOL: PERFECTLY MATCHED LAYERS

SPECTRUM OF TRAPPED MODES FREQUENCIES

SPECTRUM OF NO-REFLECTION FREQUENCIES

5 /20



A MAIN TOOL: PERFECTLY MATCHED LAYERS
SPECTRUM OF TRAPPED MODES FREQUENCIES

SPECTRUM OF NO-REFLECTION FREQUENCIES

«O>» «Fr <

it
v

it
v

Do
7/20



A MAIN TOOL: PERFECTLY MATCHED LAYERS

(OR COMPLEX STRETCHING)

In order to use Perfectly Matched Layers to solve the scattering problem,
we start by splitting the waveguide into three parts:

Qr=0N{x| <R}, Qp =QN{x>R}and Qz = QN {x < —R}.



A MAIN TOOL: PERFECTLY MATCHED LAYERS

(OR COMPLEX STRETCHING)

Au+ K1+ pu=0 (QR) 2520 QN {|x| < R})
du  out
= + —_— = — pr
u=u" and %~ Bx (x=R) ;
_ u-
U— Upe = u_ and a(u — Ujnc) = o (x=—R)

with u = 3" but in QF.

n



A MAIN TOOL: PERFECTLY MATCHED LAYERS

(OR COMPLEX STRETCHING)

+
u=ul and Ou = aau” (x=R)

Ox Ox
ou-

- 9 ) a _
U — Ujnc = u, and a(u — Ujnc) = a— - (x =—R)

IS + X¥R +
with v (x,y) =u <:|:R+ } ,y) for (x,y) € Q.

C



A MAIN TOOL: PERFECTLY MATCHED LAYERS

(OR COMPLEX STRETCHING)

The magic idea of PMLs: using o € C such that uF € L?(QF).

Indeed, if o = e with 0 < 0 < /2, propagative modes become

evanescent:
Np
ut(xy) = Y ancos(mmy)eVRTITOCR)n p A
n=0
+ Z a,,cos(mry)e‘v”2“2_k2(X_R) \
n>Np

2 2 2
ut(x,y) E ap cos(nmy)e

(x=R) (\
n>0

where Rey/z > 0 for z € C\R™.



A MAIN TOOL: PERFECTLY MATCHED LAYERS

(OR COMPLEX STRETCHING)

au

a(91/

Bouf +Kut =0 () 5 =0 (82N {+x>R})
du ut
u=u" andax—o«,ax (x=R) i
U — Ujpc = U, 87( U,nc)—(laau; ( :—R)
2

where Ay = 672’688— 88 and ut € [2(Q%)



A MAIN TOOL: PERFECTLY MATCHED LAYERS

(OR COMPLEX STRETCHING)

Au+ K (1+pu=0 (QR)

Aguf + KPu,t=0 (Q%)

+
u(,)

ou
u-u and — =«

Ox

U — Uppc = U,

88( — Ujnc) = a—= (x=—-R)
72/§87 82
Ox?

where Ay = e



A MAIN TOOL: PERFECTLY MATCHED LAYERS
SPECTRUM OF TRAPPED MODES FREQUENCIES

SPECTRUM OF NO-REFLECTION FREQUENCIES
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

Let us consider the following unbounded operator of L?():

1
D(A)={ue H%Q);%:Oon 0Q} Au:_mAu

The trapped modes (k € 7) correspond to real eigenvalues k2 of A.



THE SPECTRAL PROBLEM FOR TRAPPED MODES

Let us consider the following unbounded operator of L?():

1
D(A)={ue H%Q);%:Oon 0Q} Au:_mAu

The trapped modes (k € 7) correspond to real eigenvalues k2 of A.

SPECTRAL FEATURES OF A

m A is a positive self-adjoint operator.
B 0(A) = 0ess(A) = RT and o45c(A) = 0

m Trapped modes are embedded eigenvalues of A !

Solution: introduce an analytic dilation (Aguilar, Balslev, Combes,
Simon... 70)



THE SPECTRAL PROBLEM FOR TRAPPED MODES

Let us consider now the following unbounded operator:

D(A)) = {uel?Q);A.uc l?Q); % 5 on o0}

o
po =~ (a0 (a5t ) < 28

where  a(x) =e " alx)=1 a(x) = e



THE SPECTRAL PROBLEM FOR TRAPPED MODES

Let us consider now the following unbounded operator:

D(A,) = {uel?Q);A.uc l?Q); % =0 on 9Q}
x)

o = -t o (o) -3

SPECTRAL FEATURES OF A,

A, is a non self-adjoint operator.

Tess(An) = U,,Zo{n27r2 TN R} (Weyl sequences)
0(Au)\Cess(An) = 0disc(An)

odisc(An) C {z € C; -20 < arg(z) < 0}



THE SPECTRAL PROBLEM FOR TRAPPED MODES

Proof of the second item:

21 O° 02
Tess(Aa) = OTess(—A0) Dg=e" 87)52 i ay?
_ _Aln) (n) _ 209" _ 5 >
- UUGSS( A7) Ay’ =e 5 +n°m
Ox
n>0
_ U{”27T2 +e 202t ¢ R}
n>0

Essential spectrum of A:




THE SPECTRAL PROBLEM FOR TRAPPED MODES

Proof of the third item: (A, )\0ess(An) = aisc(An)
For z € C and u € HY(Q):

<1+p(A(,—z)u,u> _/(k
“ 2@ /9

Since Re(a(x)) = Re ((}(X)> > cosf) > 0, we get for z = —t> < 0:

oul?

oul*  1|ouf?
Ox

Z(l + p) |u|2
dy

a

(0%

1+p
Re < (Aw — 2)u u) > C||u\|f_,1(9)
L2(Q)

(0]

so that z = —t2 ¢ o(A,).



THE SPECTRAL PROBLEM FOR TRAPPED MODES

Proof of the third item: 0(A,)\0ess(An) = Tdisc(An)
The result follows because:

U = C\oess(As) is a connected set.

There is a point z € U such that A, — z is invertible.

(See D.E. Edmunds and W.D. Evans, Spectral theory and differential
operators, 1987.)




THE SPECTRAL PROBLEM FOR TRAPPED MODES

DISCRETE SPECTRUM OF A,

m Trapped modes are discrete real eigenvalues of A, !

m Complex discrete eigenvalues correspond to leaky modes (or
complex resonances), which are exponentially growing at infinity.

Spectrum of A.:

etrapped mode,
eleaky mode



NUMERICAL ILLUSTRATION
The numerical results have been obtained by Lucas Chesnel with
FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle
of the waveguide:




NUMERICAL ILLUSTRATION
The numerical results have been obtained by Lucas Chesnel with
FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle
of the waveguide:

In the next slides, we represent the square-root of the spectrum, which
corresponds to k values.



NUMERICAL ILLUSTRATION

-10

Square root of the spectrum
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NUMERICAL ILLUSTRATION

Square root of the spectra
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NUMERICAL ILLUSTRATION

There are two trapped modes

0.62
EO.SO
—ﬁ 25

-0.50

-0.62

0.62
EUJU

70 25

-0.50

-0.62
[m]

Qe
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A MAIN TOOL: PERFECTLY MATCHED LAYERS

SPECTRUM OF TRAPPED MODES FREQUENCIES

SPECTRUM OF NO-REFLECTION FREQUENCIES
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A NEW COMPLEX SPECTRUM LINKED TO %

WITH ” CONJUGATE” PMLS
Let us consider now the following unbounded operator :

D(Az) = {u€l?(Q);Asuc L%(Q); % =0 on 09Q}

1 ., 0 (. Ou 2%u
A&U = —m <O(X)ax ((}(X)ax> + ay2>




A NEW COMPLEX SPECTRUM LINKED TO %

WITH ” CONJUGATE” PMLS

Let us consider now the following unbounded operator :

D(Az) = {u€l?(Q);Asuc L*(Q); ? =0 on 0Q}
14

1 . o (., 6 ou 0%u
Aﬁu = —m <(1(X)8X ((l(X)aX> + 8)/2>

SPECTRAL FEATURES OF Ag

Az is a non self-adjoint operator.

Oess(Aa) = U, so{n?m? + 2% t e R} U {n?m? + e 2942, t € R}
odisc(Aa) C {z_E C; —26 < arg(z) < 26}

Conjecture: 0(As)\Oess(Az) = o4isc(As) if p # 0.

Difficulty: C\oess(Az) is not a connected set.



A NEW COMPLEX SPECTRUM LINKED TO %

WITH ” CONJUGATE” PMLS

Typical expected spectrum of A;:




PATHOLOGICAL CASES

In the unperturbed case (p = 0):

op(Az) = {z € C; 20 < arg(z) < 260}

Proof: Use the strechted plane wave as an eigenvector:

Asu = k%u

eik(fRJr(erR)e*’p) if x < —R
for u(x,y) = elkx if —R<x<R

eik(R+(x—R)ei9) if R < x




PATHOLOGICAL CASES

And the same result holds with horizontal cracks !

op(As) ={z € C; -20 < arg(z) < 26}

Proof: Use the strechted plane wave as an eigenvector:

Asu = k’u
eik(fRJr(erR)e*’p) if x < —R
for u(x,y) = elkx if —R<x<R

eik(R+(x—R)ei9) if R < x



LINK BEWTEEN THE DISCRETE SPECTRUM AND ¢

For real eigenvalues, the eigenmode is such that

u is ingoing @) u is outgoing




LINK BEWTEEN THE DISCRETE SPECTRUM AND ¢

For k? € 04isc(As) NR, the eigenmode is such that:

WWH—" 5 WA

u is ingoing u is outgoing

There are two cases:
m Either u on the left-hand side contains a propagative part and it is a
case of no-reflection: k € 7.
m Either u is evanescent on both sides and k is associated to a
trapped mode: k € 7.

THEOREM

O'disc(/é\d)ﬁ]R — {k2 eER; k e %Uy}



PT-SYMMETRY

SPACE-TIME REFLECTION SYMMETRY

‘P stands for parity and T for time reversal:

Pu(x,y) = u(—x,y) and Tu(x,y) = u(x,y)

PT-SYMMETRY OF Ag

If the obstacle is symmetric i.e. p(—x,y) = p(x,y), then the operator A
is PT-symmetric:

PTA:PT = Az

As a consequence o(Az) = o(Az).

In particular:

Asu = u<+= Azii = i with i(x,y) = u(—x,y)



NUMERICAL ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

Square root of the spectrum
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m The spectrum is symmetric w.r.t. the real axis (P7-symmetry) .
m There are much more real eigenvalues than for trapped modes.



NUMERICAL ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

I SRR B
BN TN N eL__-elhmmmm
I S

] mee] - R > |
-l R L

This is a representation of the computed modes for the 10 first real
eigenvalues and in the whole computational domain (including PMLs).

o = = = = wac
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NUMERICAL ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

Let us focus on the eigenmodes such that 0 < k < 7

ﬂ —i
L—
First trapped mode:

k=1.2355--.

Second trapped mode:
k =12.3897---

-_E
First no-reflection mode:
k =1.4513- ..

Second no-reflection mode:

k =12.8896---

[m]

=

17/20



NUMERICAL ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

To validate this result, we compute the amplitude of the reflected plane

wave for 0 < k < 7
os [R(K)|
\f Y

15 2

! = | i ||
First no-reflection mode: Second no-reflection mode:
k =1.4513--. k =12.8806---

There is a perfect agreement!

7/20



NUMERICAL ILLUSTRATION

IN A NON PT-SYMMETRIC CASE

Here the scatterer is a not symetric in x, and neither in y:

We expect:
m No trapped modes

m No invariance of the spectrum by complex conjugation



NUMERICAL ILLUSTRATION

IN A NON PT-SYMMETRIC CASE

Square root of the spectrum

. e
P

10

m The spectrum is no longer symmetric w.r.t. the real axis.

m There are several eigenvalues near the real axis.



NUMERICAL ILLUSTRATION

IN A NON PT-SYMMETRIC CASE

Again results can be validated by computing R(k) for 0 < k <

[R(K)|

b
b
H
3
/W
25

05 1 15 2 3

k = 1.2803 + 0.0003/ k = 2.3868 + 0.0004/ k = 2.8650 + 0.0241/

Complex eigenvalues also contain useful information about almost
no-reflection.

18 /20



NUMERICAL ILLUSTRATION OF COALESCENCE

7 SPECTRUM IN RED, & SPECTRUM IN BLUE

Two series of computations: one with classical PMLs, one with conjugate
PMLs. We compute the spectra for a range of L.

(=1
> <

v




NUMERICAL ILLUSTRATION OF COALESCENCE

7 SPECTRUM IN RED, # SPECTRUM IN BLUE

L = 1.0267
0.6 %‘ T T T
% *
0.4r
* * *
0.2 % %
* ok
ok £« *—% *
- * o
0.2t ?f + ¥+
* *
0.4} + ﬁ‘é - i
g -
- i

R R R S S
N EIR B ENE Y e




SUMMARY AND FUTURE WORKS

There is still a lot of work to do !

Prove the conjecture concerning the discrete spectrum of A;.
Prove the existence of real eigenvalues, at least in P7T-symmetric
cases (& A #0).

m Combine this approach with our method for building invisible
obstacles.
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