A NEW COMPLEX SPECTRUM ASSOCIATED TO INVISIBILITY IN WAVEGUIDES

Antoine Bera¹ Anne-Sophie Bonnet-Ben Dhia¹ Lucas Chesnel² Vincent Pagneux³

POEMS (CNRS-ENSTA-INRIA), Palaiseau, France
 DEFI team (INRIA, CMAP-X), Palaiseau, France.
 LAUM (CNRS, Université du Maine), Le Mans, France

CIRM, June 2017

Porm

▲口> ▲圖> ▲理> ▲理> 三理 ---

TIME-HARMONIC SCATTERING IN WAVEGUIDE

The acoustic waveguide: $\Omega = \mathbb{R} \times (0, 1)$, $k = \omega/c$, $e^{-i\omega t}$

$$\frac{\frac{\partial u}{\partial \nu} = 0}{\Delta u + k^2 u = 0} \int 1$$
$$\frac{\frac{\partial u}{\partial \nu} = 0}{\frac{\partial u}{\partial \nu} = 0}$$

- A finite number of propagative modes for $k > n\pi$: $u_n^{\pm}(x, y) = \cos(n\pi y)e^{\pm i\beta_n x}$ $\beta_n = \sqrt{k^2 - n^2\pi^2}$
- An infinity of evanescent modes for $k < n\pi$: $u_n^{\pm}(x, y) = \cos(n\pi y)e^{\mp \gamma_n x}$ $\gamma_n = \sqrt{n^2 \pi^2 - k^2}$

(+/- correspond to right/left going modes)

イロト 不得下 イヨト イヨト 二日

2 / 20

TIME-HARMONIC SCATTERING IN WAVEGUIDE

 $\begin{array}{c} \mathcal{O} \subset \Omega \\ 1 + \rho \geq 0 \\ \operatorname{supp}(\rho) \subset \mathcal{O} \end{array} \qquad \overbrace{\text{reflected wave}}^{\text{incident wave}} \mathcal{O} \xrightarrow{\text{transmitted wave}}$

• The total field $u = u_{inc} + u_{sca}$ satisfies the equations $\Delta u + k^2 (1 + \rho) u = 0 \quad (\Omega) \qquad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega)$

• The incident wave is a superposition of propagative modes:

$$u_{inc} = \sum_{n=0}^{N_P} a_n u_n^+$$

• The scattered field *u*_{sca} is outgoing:

SCATTERING PROBLEM AND TRAPPED MODES

By Fredholm analytic theory:

Theorem

The scattering problem is well-posed except maybe for a countable sequence of $k \in \mathcal{T}$ at which trapped modes exist.

DEFINITION

A trapped mode of the perturbed waveguide is a solution $u \neq 0$ of

$$\Delta u + k^2 (1 + \rho) u = 0$$
 (Ω) $\frac{\partial u}{\partial u} = 0$ ($\partial \Omega$)

such that $u \in L^2(\Omega)$.

SCATTERING PROBLEM AND TRAPPED MODES

Theorem

The scattering problem is well-posed except maybe for a countable sequence of $k \in \mathcal{T}$ at which trapped modes exist.

DEFINITION

A trapped mode of the perturbed waveguide is a solution $u \neq 0$ of $\Delta u + k^2(1 + \rho)u = 0$ (Ω) $\frac{\partial u}{\partial \nu} = 0$ ($\partial \Omega$) such that $u \in L^2(\Omega)$.

- There is a huge literature on trapped modes: Davies, Evans, Exner, Levitin, McIver, Nazarov, Vassiliev, ...
- Existence of trapped modes is proved in specific configurations (for instance symmetric with respect to the horizontal mid-axis) (Evans, Levitin and Vassiliev, JFM, 1994)

At particular frequencies k, it may occur that, for some u_{inc} ,

 $x \rightarrow -\infty$ $u_{sca} \rightarrow 0$

It means that the obstacle \mathcal{O} produces no reflection. It is invisible for an observer located far at the left-hand side.

At particular frequencies k, it may occur that, for some u_{inc} ,

 $x \rightarrow -\infty$ $u_{sca} \rightarrow 0$

It means that the obstacle \mathcal{O} produces no reflection. It is invisible for an observer located far at the left-hand side.

At particular frequencies k, it may occur that, for some u_{inc} ,

$$x \to -\infty$$
 $u_{sca} \to 0$

It means that the obstacle \mathcal{O} produces no reflection. It is invisible for an observer located far at the left-hand side.

$$k \in \mathscr{K}$$

OBJECTIVE

Find a way to compute directly \mathcal{K} by solving an eigenvalue problem, instead of sweeping in k.

4/20

The total field u satisfies homogeneous equations:

$$\Delta u + k^2 (1 + \rho) u = 0$$
 (Ω) $\frac{\partial u}{\partial \nu} = 0$ ($\partial \Omega$)

but this is not an eigenvalue problem because $u \notin L^2(\Omega)$.

A SIMPLE AND IMPORTANT REMARK

For $k \in \mathcal{K}$, the total field is ingoing at the left-hand side of \mathcal{O} and outgoing at the right-hand side of \mathcal{O} .

$$\longrightarrow \mathcal{O} \longrightarrow$$

The idea is to use an analytic dilation (and numerically PMLs), with complex conjugate parameters at both sides of the obstacle, so that the transformed u will belong to $L^2(\Omega)$.

A SIMPLE EXAMPLE

Suppose $\mathcal{O} = (-0.5, 0.5) \times (0, 1)$ and ρ is a constant in \mathcal{O} .

Then \mathscr{K} can be computed explicitly (no mode coupling):

$$\mathscr{K} = \bigcup_{n \ge 0} \mathscr{K}^n$$

A SIMPLE EXAMPLE

Then \mathscr{K} can be computed explicitly (no mode coupling):

$$\mathscr{K} = \bigcup_{n \ge 0} \mathscr{K}^n$$

with

$$\mathscr{K}^{n} = \left\{ \sqrt{\frac{j^{2} + n^{2}}{1 + \rho}} \pi; j \in \mathbb{N} \right\}$$

They is always $(\forall \rho \neq 0)$ an infinite countable sequence of values of k such that \mathcal{O} produces no reflection.

5/20

A SIMPLE EXAMPLE

The study of \mathscr{K}^0 , with a spectral point of view, has been done in:

H. Hernandez-Coronado, D. Krejcirik and P. Siegl, Perfect transmission scattering as a \mathcal{PT} -symmetric spectral problem, Physics Letters A (2011).

Our approach allows to extend some of their results to higher dimensions.

1 A main tool: Perfectly Matched Layers

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies

1 A main tool: Perfectly Matched Layers

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies

In order to use Perfectly Matched Layers to solve the scattering problem, we start by splitting the waveguide into three parts:

イロン イロン イヨン イヨン 三日

 $\Omega_R = \Omega \cap \{ |x| < R \}, \ \Omega_R^+ = \Omega \cap \{ x > R \} \text{ and } \Omega_R^- = \Omega \cap \{ x < -R \}.$

$$\Omega_R^ \mathcal{O}$$
 Ω_R^+ Ω_R^+

REFORMULATION OF THE SCATTERING PROBLEM:

$$\Delta u + k^{2}(1+\rho)u = 0 \quad (\Omega_{R}) \qquad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega \cap \{|x| < R\})$$
$$u = u^{+} \text{ and } \frac{\partial u}{\partial x} = \frac{\partial u^{+}}{\partial x} \quad (x = R)$$
$$u - u_{inc} = u^{-} \text{ and } \frac{\partial}{\partial x}(u - u_{inc}) = \frac{\partial u^{-}}{\partial x} \quad (x = -R)$$

with $u^{\pm} = \sum b_n^{\pm} u_n^{\pm}$ in Ω_R^{\pm} .

Formulation with a stretching in Ω_{R}^{\pm} :

$$\Delta u + k^{2}(1+\rho)u = 0 \quad (\Omega_{R}) \qquad \frac{\partial u}{\partial \nu} = 0 \quad (\partial \Omega \cap \{|x| < R\})$$
$$u = u_{\alpha}^{+} \text{ and } \frac{\partial u}{\partial x} = \alpha \frac{\partial u_{\alpha}^{+}}{\partial x} \quad (x = R)$$
$$u - u_{inc} = u_{\alpha}^{-} \text{ and } \frac{\partial}{\partial x}(u - u_{inc}) = \alpha \frac{\partial u_{\alpha}^{-}}{\partial x} \quad (x = -R)$$
with $u_{\alpha}^{\pm}(x, y) = u^{\pm} \left(\pm R + \frac{x \mp R}{\alpha}, y\right) \text{ for } (x, y) \in \Omega_{R}^{\pm}.$

<ロ> < 部> < 語> < 語> < 語> 目 のへの 8/20

$$\Omega_R^ \mathcal{O}$$
 Ω_R^+ Ω_R^+

The magic idea of PMLs: using $\alpha \in \mathbb{C}$ such that $u_{\alpha}^{\pm} \in L^{2}(\Omega_{R}^{\pm})$. Indeed, if $\alpha = e^{-i\theta}$ with $0 < \theta < \pi/2$, propagative modes become evanescent:

$$u^{+}(x,y) = \sum_{n=0}^{N_{P}} a_{n} \cos(n\pi y) e^{i\sqrt{k^{2}-n^{2}\pi^{2}}(x-R)} \qquad (44.4)$$
$$+ \sum_{n>N_{P}} a_{n} \cos(n\pi y) e^{-\sqrt{n^{2}\pi^{2}-k^{2}}(x-R)} \qquad (44.4)$$
$$u^{+}_{\alpha}(x,y) = \sum_{n\geq0} a_{n} \cos(n\pi y) e^{-\sqrt{\frac{n^{2}\pi^{2}-k^{2}}{\alpha^{2}}}(x-R)} \qquad (44.4)$$

where $\Re e\sqrt{z} > 0$ for $z \in \mathbb{C} \setminus \mathbb{R}^-$.

A MAIN TOOL: PERFECTLY MATCHED LAYERS

(OR COMPLEX STRETCHING)

FINAL PML FORMULATION:

$$\Delta u + k^{2}(1+\rho)u = 0 \quad (\Omega_{R}) \qquad \frac{\partial u}{\partial \nu} = 0 \quad (\partial\Omega \cap \partial\Omega_{R})$$

$$\Delta_{\theta}u_{\alpha}^{\pm} + k^{2}u_{\alpha}^{\pm} = 0 \quad (\Omega_{R}^{\pm}) \qquad \frac{\partial u}{\partial \nu} = 0 \quad (\partial\Omega \cap \{\pm x > R\})$$

$$u = u_{\alpha}^{+} \text{ and } \frac{\partial u}{\partial x} = \alpha \frac{\partial u_{\alpha}^{+}}{\partial x} \quad (x = R)$$

$$u - u_{inc} = u_{\alpha}^{-} \text{ and } \frac{\partial}{\partial x}(u - u_{inc}) = \alpha \frac{\partial u_{\alpha}^{-}}{\partial x} \quad (x = -R)$$
where $\Delta_{\theta} = e^{-2i\theta} \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \text{ and } u_{\alpha}^{\pm} \in L^{2}(\Omega_{R}^{\pm}).$

8 / 20

A MAIN TOOL: PERFECTLY MATCHED LAYERS

(OR COMPLEX STRETCHING)

FINAL PML FORMULATION:

$$\Delta u + k^{2}(1+\rho)u = 0 \quad (\Omega_{R}) \qquad \frac{\partial u}{\partial \nu} = 0 \quad (\partial\Omega \cap \partial\Omega_{R})$$

$$\Delta_{\theta}u_{\alpha}^{\pm} + k^{2}u_{\alpha}^{\pm} = 0 \quad (\Omega_{R}^{\pm}) \qquad \frac{\partial u}{\partial \nu} = 0 \quad (\partial\Omega \cap \{\pm x > R\})$$

$$u = u_{\alpha}^{+} \text{ and } \frac{\partial u}{\partial x} = \alpha \frac{\partial u_{\alpha}^{+}}{\partial x} \quad (x = R)$$

$$u - u_{inc} = u_{\alpha}^{-} \text{ and } \frac{\partial}{\partial x}(u - u_{inc}) = \alpha \frac{\partial u_{\alpha}^{-}}{\partial x} \quad (x = -R)$$
where $\Delta_{\theta} = e^{-2i\theta} \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \text{ and } u_{\alpha}^{\pm} \in L^{2}(\Omega_{R}^{\pm}).$

8 / 20

1 A main tool: Perfectly Matched Layers

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies

 Let us consider the following unbounded operator of $L^2(\Omega)$:

$$D(A) = \{ u \in H^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \} \qquad Au = -\frac{1}{1+\rho} \Delta u$$

The trapped modes $(k \in \mathscr{T})$ correspond to real eigenvalues k^2 of A.

Let us consider the following unbounded operator of $L^2(\Omega)$:

$$D(A) = \{ u \in H^2(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \} \qquad Au = -\frac{1}{1+\rho} \Delta u$$

The trapped modes $(k \in \mathscr{T})$ correspond to real eigenvalues k^2 of A.

Spectral features of A

- A is a positive self-adjoint operator.
- $\sigma(A) = \sigma_{ess}(A) = \mathbb{R}^+$ and $\sigma_{disc}(A) = \emptyset$
- Trapped modes are embedded eigenvalues of A !

Solution: introduce an analytic dilation (Aguilar, Balslev, Combes, Simon... 70)

Let us consider now the following unbounded operator:

$$D(A_{\alpha}) = \{ u \in L^{2}(\Omega); A_{\alpha}u \in L^{2}(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega \}$$
$$A_{\alpha}u = -\frac{1}{1+\rho(x)} \left(\alpha(x)\frac{\partial}{\partial x} \left(\alpha(x)\frac{\partial u}{\partial x} \right) + \frac{\partial^{2}u}{\partial y^{2}} \right)$$

 Let us consider now the following unbounded operator:

$$D(A_{\alpha}) = \{ u \in L^{2}(\Omega); A_{\alpha}u \in L^{2}(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega \}$$
$$A_{\alpha}u = -\frac{1}{1+\rho(x)} \left(\alpha(x)\frac{\partial}{\partial x} \left(\alpha(x)\frac{\partial u}{\partial x} \right) + \frac{\partial^{2}u}{\partial y^{2}} \right)$$

Spectral features of A_{α}

■ A_{α} is a non self-adjoint operator. ■ $\sigma_{ess}(A_{\alpha}) = \bigcup_{n \ge 0} \{n^2 \pi^2 + e^{-2i\theta} t^2; t \in \mathbb{R}\}$ (Weyl sequences) ■ $\sigma(A_{\alpha}) \setminus \sigma_{ess}(A_{\alpha}) = \sigma_{disc}(A_{\alpha})$ ■ $\sigma_{disc}(A_{\alpha}) \subset \{z \in \mathbb{C}; -2\theta < \arg(z) \le 0\}$

Proof of the second item:

 $\sigma_{ess}(A_{\alpha}) = \sigma_{ess}(-\Delta_{\theta})$ $= \bigcup_{n \ge 0} \sigma_{ess}(-\Delta_{\theta}^{(n)})$ $= \bigcup_{n \ge 0} \{n^2 \pi^2 + e^{-2i\theta} t^2; t \in \mathbb{R}\}$

$$\Delta_{\theta} = e^{-2i\theta} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
$$\Delta_{\theta}^{(n)} = e^{-2i\theta} \frac{\partial^2}{\partial x^2} + n^2 \pi^2$$

Essential spectrum of A_{α} :

Proof of the third item: $\sigma(A_{\alpha}) \setminus \sigma_{ess}(A_{\alpha}) = \sigma_{disc}(A_{\alpha})$ For $z \in \mathbb{C}$ and $u \in H^{1}(\Omega)$:

$$\left(\frac{1+\rho}{\alpha}(A_{\alpha}-z)u,u\right)_{L^{2}(\Omega)}=\int_{\Omega}\alpha\left|\frac{\partial u}{\partial x}\right|^{2}+\frac{1}{\alpha}\left|\frac{\partial u}{\partial y}\right|^{2}-\frac{z(1+\rho)}{\alpha}|u|^{2}$$

Since $\Re e(\alpha(x)) = \Re e\left(\frac{1}{\alpha(x)}\right) \ge \cos \theta > 0$, we get for $z = -t^2 < 0$:

$$\Re e\left(\frac{1+
ho}{lpha}(A_{lpha}-z)u,u
ight)_{L^{2}(\Omega)}\geq C\|u\|_{H^{1}(\Omega)}^{2}$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

so that $z = -t^2 \notin \sigma(A_{\alpha})$.

Proof of the third item: $\sigma(A_{\alpha}) \setminus \sigma_{ess}(A_{\alpha}) = \sigma_{disc}(A_{\alpha})$

The result follows because:

1 $U = \mathbb{C} \setminus \sigma_{ess}(A_{\alpha})$ is a connected set.

2 There is a point $z \in U$ such that $A_{\alpha} - z$ is invertible.

(See D.E. Edmunds and W.D. Evans, Spectral theory and differential operators, 1987.)

Discrete spectrum of A_{α}

- **Trapped modes are discrete real eigenvalues of** A_{α} !
- Complex discrete eigenvalues correspond to leaky modes (or complex resonances), which are exponentially growing at infinity.

Spectrum of A_{α} **:**

The numerical results have been obtained by Lucas Chesnel with FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle of the waveguide:

The numerical results have been obtained by Lucas Chesnel with FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle of the waveguide:

In the next slides, we represent the square-root of the spectrum, which corresponds to k values.

There are two trapped modes:

1 A main tool: Perfectly Matched Layers

2 Spectrum of trapped modes frequencies

3 Spectrum of no-reflection frequencies

A NEW COMPLEX SPECTRUM LINKED TO \mathscr{K} with "conjugate" PMLs

Let us consider now the following unbounded operator :

$$D(A_{\tilde{\alpha}}) = \{ u \in L^{2}(\Omega); A_{\tilde{\alpha}}u \in L^{2}(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega \}$$
$$A_{\tilde{\alpha}}u = -\frac{1}{1+\rho} \left(\tilde{\alpha}(x)\frac{\partial}{\partial x} \left(\tilde{\alpha}(x)\frac{\partial u}{\partial x} \right) + \frac{\partial^{2}u}{\partial y^{2}} \right)$$

A NEW COMPLEX SPECTRUM LINKED TO \mathscr{K} with "conjugate" PMLs

Let us consider now the following unbounded operator :

$$D(A_{\tilde{\alpha}}) = \{ u \in L^{2}(\Omega); A_{\tilde{\alpha}}u \in L^{2}(\Omega); \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega \}$$
$$A_{\tilde{\alpha}}u = -\frac{1}{1+\rho} \left(\tilde{\alpha}(x)\frac{\partial}{\partial x} \left(\tilde{\alpha}(x)\frac{\partial u}{\partial x} \right) + \frac{\partial^{2}u}{\partial y^{2}} \right)$$

Spectral features of $A_{\tilde{\alpha}}$

- $A_{\tilde{\alpha}}$ is a non self-adjoint operator.
- $\sigma_{ess}(A_{\tilde{\alpha}}) = \bigcup_{n \ge 0} \{n^2 \pi^2 + e^{2i\theta} t^2; t \in \mathbb{R}\} \cup \{n^2 \pi^2 + e^{-2i\theta} t^2; t \in \mathbb{R}\}$
- $\sigma_{disc}(A_{\tilde{\alpha}}) \subset \{z \in \mathbb{C}; -2\theta < \arg(z) < 2\theta\}$
- Conjecture: $\sigma(A_{\tilde{\alpha}}) \setminus \sigma_{ess}(A_{\tilde{\alpha}}) = \sigma_{disc}(A_{\tilde{\alpha}})$ if $\rho \neq 0$.

Difficulty: $\mathbb{C}\setminus\sigma_{ess}(A_{\tilde{\alpha}})$ is not a connected set.

A New complex spectrum linked to $\mathscr K$

WITH "CONJUGATE" PMLS

Typical expected spectrum of $A_{\tilde{\alpha}}$:

PATHOLOGICAL CASES

In the unperturbed case ($\rho = 0$):

 $\sigma_p(A_{\tilde{lpha}}) = \{z \in \mathbb{C}; -2\theta < \arg(z) \le 2\theta\}$

Proof: Use the strechted plane wave as an eigenvector:

$$A_{\tilde{\alpha}}u = k^{2}u$$
for $u(x, y) = \begin{cases} e^{ik(-R+(x+R)e^{-i\theta})} & \text{if } x < -R \\ e^{ikx} & \text{if } -R < x < R \\ e^{ik(R+(x-R)e^{i\theta})} & \text{if } R < x \\ e^{ik(R+(x-R)e^{i\theta})} & \text{if } R < x \\ e^{ik(R+(x-R)e^{i\theta})} & \text{if } R < x \\ e^{ik(R+(x-R)e^{i\theta})} & e^{ik(R+(x-R)e^{i\theta})} & e^{ik(R+(x-R)e^{i\theta})} \end{cases}$

PATHOLOGICAL CASES

And the same result holds with horizontal cracks !

 $\sigma_p(A_{\widetilde{lpha}}) = \{z \in \mathbb{C}; -2\theta < \arg(z) \le 2\theta\}$

Proof: Use the strechted plane wave as an eigenvector:

$$A_{\tilde{\alpha}}u = k^2 u$$

for
$$u(x,y) = \begin{cases} e^{ik(-R+(x+R)e^{-i\theta})} & \text{if } x < -R \\ e^{ikx} & \text{if } -R < x < R \\ e^{ik(R+(x-R)e^{i\theta})} & \text{if } R < x \\ e^{ik(R$$

Link bewteen the discrete spectrum and ${\mathscr K}$

For real eigenvalues, the eigenmode is such that

u is ingoing O u is outgoing

□ > < @ > < E > < E > E 少へで 15/20 For $k^2 \in \sigma_{disc}(A_{\tilde{\alpha}}) \cap \mathbb{R}$, the eigenmode is such that:

$$\underbrace{W}_{u \text{ is ingoing}} O \qquad \underbrace{W}_{u \text{ is outgoing}} U$$

There are two cases:

- Either *u* on the left-hand side contains a propagative part and it is a case of no-reflection: $k \in \mathcal{K}$.
- Either *u* is evanescent on both sides and *k* is associated to a trapped mode: $k \in \mathcal{T}$.

\mathcal{PT} -Symmetry

Space-time reflection symmetry

 ${\mathcal P}$ stands for parity and ${\mathcal T}$ for time reversal:

$$\mathcal{P}u(x,y) = u(-x,y)$$
 and $\mathcal{T}u(x,y) = \overline{u(x,y)}$

\mathcal{PT} -symmetry of $A_{\tilde{\alpha}}$

If the obstacle is symmetric i.e. $\rho(-x, y) = \rho(x, y)$, then the operator $A_{\tilde{\alpha}}$ is \mathcal{PT} -symmetric:

 $\mathcal{PT}A_{\tilde{\alpha}}\mathcal{PT} = A_{\tilde{\alpha}}$

As a consequence $\sigma(A_{\tilde{\alpha}}) = \overline{\sigma(A_{\tilde{\alpha}})}$.

In particular:

 $A_{\tilde{\alpha}}u = \lambda u \iff A_{\tilde{\alpha}}\tilde{u} = \overline{\lambda}\tilde{u}$ with $\tilde{u}(x,y) = \overline{u(-x,y)}$

(ロ) (部) (注) (注) (注) (20
)

FOR A RECTANGULAR SYMMETRIC CAVITY

The spectrum is symmetric w.r.t. the real axis (*PT*-symmetry).
There are much more real eigenvalues than for trapped modes.

FOR A RECTANGULAR SYMMETRIC CAVITY

This is a representation of the computed modes for the 10 first real eigenvalues and in the whole computational domain (including PMLs).

FOR A RECTANGULAR SYMMETRIC CAVITY

Let us focus on the eigenmodes such that $0 < k < \pi$:

First no-reflection mode: $k = 1.4513 \cdots$

Second no-reflection mode: $k = 2.8896 \cdots$

FOR A RECTANGULAR SYMMETRIC CAVITY

To validate this result, we compute the amplitude of the reflected plane wave for $0 < k < \pi$:

First no-reflection mode:

k = 1.4513...

Second no-reflection mode: $k = 2.8896 \cdots$

There is a perfect agreement!

IN A NON \mathcal{PT} -symmetric case

Here the scatterer is a not symetric in x, and neither in y:

We expect:

- No trapped modes
- No invariance of the spectrum by complex conjugation

IN A NON \mathcal{PT} -symmetric case

The spectrum is no longer symmetric w.r.t. the real axis.
There are several eigenvalues near the real axis.

IN A NON \mathcal{PT} -symmetric case

Again results can be validated by computing R(k) for $0 < k < \pi$:

Complex eigenvalues also contain useful information about almost no-reflection.

NUMERICAL ILLUSTRATION OF COALESCENCE

 ${\mathscr T}$ spectrum in Red, ${\mathscr K}$ spectrum in blue

Two series of computations: one with classical PMLs, one with conjugate PMLs. We compute the spectra for a range of L.

NUMERICAL ILLUSTRATION OF COALESCENCE

 ${\mathscr T}$ spectrum in Red, ${\mathscr K}$ spectrum in Blue

SUMMARY AND FUTURE WORKS

There is still a lot of work to do !

- Prove the conjecture concerning the discrete spectrum of $A_{\tilde{\alpha}}$.
- Prove the existence of real eigenvalues, at least in *PT*-symmetric cases (⇔ *K* ≠ Ø).
- Combine this approach with our method for building invisible obstacles.

