Schrödinger Operator with Non-Zero Accumulation Points of Complex Eigenvalues

Sabine Bögli (LMU Munich)

CIRM, 5 June 2017

Motivation 1: Pavlov (1960s)

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V \text{ in } L^2(0,\infty) \text{ with BC } f'(0) = hf(0) \text{ for some } h \in \mathbb{C} \cup \{\infty\}.$$

Assume $V \in L^{\infty}(0,\infty)$, decaying at $\infty \rightsquigarrow \sigma(H) = [0,\infty) \dot{\cup} \sigma_{\mathrm{dis}}(H).$

Motivation 1: Pavlov (1960s)

$$\begin{split} H &= -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V \text{ in } L^2(0,\infty) \text{ with BC } f'(0) = hf(0) \text{ for some } h \in \mathbb{C} \cup \{\infty\}.\\ \text{Assume } V \in L^\infty(0,\infty) \text{, decaying at } \infty \rightsquigarrow \sigma(H) = [0,\infty) \, \dot{\cup} \, \sigma_{\mathrm{dis}}(H). \end{split}$$

▶ If $\exists \, \varepsilon > 0: \quad \sup_{x > 0} |V(x)| \mathrm{e}^{\varepsilon x^{1/2}} < \infty,$ then $\# \sigma_{\mathrm{dis}}(H) < \infty.$

Motivation 1: Pavlov (1960s)

$$\begin{split} H &= -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V \text{ in } L^2(0,\infty) \text{ with BC } f'(0) = hf(0) \text{ for some } h \in \mathbb{C} \cup \{\infty\}.\\ \text{Assume } V \in L^\infty(0,\infty) \text{, decaying at } \infty \rightsquigarrow \sigma(H) = [0,\infty) \, \dot{\cup} \, \sigma_{\mathrm{dis}}(H). \end{split}$$

► If

$$\exists \varepsilon > 0: \quad \sup_{x>0} |V(x)| e^{\varepsilon x^{1/2}} < \infty,$$

then $\#\sigma_{dis}(H) < \infty$.

► Exponent 1/2 sharp: $\forall \lambda \in (0, \infty)$, $\forall \beta \in (0, 1/2) \exists \varepsilon > 0$ and $\exists h \in \mathbb{C} \setminus \mathbb{R}, \exists V \in L^{\infty}(0, \infty)$ real-valued such that

$$\sup_{x>0}|V(x)|\mathrm{e}^{\varepsilon x^{\beta}}<\infty$$

and $\exists (\lambda_n)_{n \in \mathbb{N}} \subset \sigma_{\mathrm{dis}}(H)$ with $\lim_{n \to \infty} \lambda_n = \lambda$.

Motivation1: Pavlov's work Motivation 2: Lieb-Thirring inequalities

Motivation 1: Pavlov (1960s)

Question: Does there exist $V \in L^{\infty}(0,\infty)$ complex-valued and $h \in \mathbb{R} \cup \{\infty\}$ such that $\exists (\lambda_n)_{n \in \mathbb{N}} \subset \sigma_{\mathrm{dis}}(H)$ with $\lim_{n \to \infty} \lambda_n = \lambda \in (0,\infty)$?

Motivation1: Pavlov's work Motivation 2: Lieb-Thirring inequalities

Motivation 1: Pavlov (1960s)

Question: Does there exist $V \in L^{\infty}(0,\infty)$ complex-valued and $h \in \mathbb{R} \cup \{\infty\}$ such that $\exists (\lambda_n)_{n \in \mathbb{N}} \subset \sigma_{\mathrm{dis}}(H)$ with $\lim_{n \to \infty} \lambda_n = \lambda \in (0,\infty)$?

Remark: For h = 0 (Neumann) and $h = \infty$ (Dirichlet), one could then extend V and eigenfunction to $\mathbb{R} \rightsquigarrow -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V$ in $L^2(\mathbb{R})$ has $(\lambda_n)_{n \in \mathbb{N}} \subset \sigma_{\mathrm{dis}}(H)$ with $\lim_{n \to \infty} \lambda_n = \lambda \in (0, \infty)$.

Motivation 2: Lieb-Thirring inequalities (1970s+)

Now arbitrary dimension $d \in \mathbb{N}$. Let $V \in L^p(\mathbb{R}^d)$ be real-valued with

$$\begin{cases} p \ge \frac{d}{2}, & \text{if } d \ge 3, \\ p > 1, & \text{if } d = 2, \\ p \ge 1, & \text{if } d = 1. \end{cases}$$

 $H = -\Delta + V$ in $L^2(\mathbb{R}^d)$ is selfadjoint $\rightsquigarrow \sigma_{dis}(H) \subset (-\infty, 0)$, and only possible accumulation point is 0.

Motivation 2: Lieb-Thirring inequalities (1970s+)

Now arbitrary dimension $d \in \mathbb{N}$. Let $V \in L^p(\mathbb{R}^d)$ be real-valued with

$$\begin{cases} p \geq \frac{d}{2}, & \text{if } d \geq 3, \\ p > 1, & \text{if } d = 2, \\ p \geq 1, & \text{if } d = 1. \end{cases}$$

 $H = -\Delta + V$ in $L^2(\mathbb{R}^d)$ is selfadjoint $\rightsquigarrow \sigma_{dis}(H) \subset (-\infty, 0)$, and only possible accumulation point is 0.

Lieb-Thirring inequalities:

$$\exists C_{d,p} > 0: \quad \sum_{\lambda \in \sigma_{\mathrm{dis}}(H)} |\lambda|^{p-\frac{d}{2}} \le C_{d,p} \|V\|_p^p. \tag{(*)}$$

Motivation 2: Lieb-Thirring inequalities (1970s+)

Now arbitrary dimension $d \in \mathbb{N}$. Let $V \in L^p(\mathbb{R}^d)$ be real-valued with

 $\begin{cases} p \geq \frac{d}{2}, & \text{if } d \geq 3, \\ p > 1, & \text{if } d = 2, \\ p \geq 1, & \text{if } d = 1. \end{cases}$

 $H = -\Delta + V$ in $L^2(\mathbb{R}^d)$ is selfadjoint $\rightsquigarrow \sigma_{dis}(H) \subset (-\infty, 0)$, and only possible accumulation point is 0.

Lieb-Thirring inequalities:

$$\exists C_{d,p} > 0: \quad \sum_{\lambda \in \sigma_{\mathrm{dis}}(H)} |\lambda|^{p-\frac{d}{2}} \le C_{d,p} \|V\|_p^p. \tag{(*)}$$

Question: Does there exist $V \in L^p(\mathbb{R}^d)$ such that $\exists (\lambda_n)_{n \in \mathbb{N}} \subset \sigma_{dis}(H)$ with $\lim_{n \to \infty} \lambda_n = \lambda \in (0, \infty)$?

Motivation 2: Lieb-Thirring inequalities (1970s+)

Now arbitrary dimension $d \in \mathbb{N}$. Let $V \in L^p(\mathbb{R}^d)$ be real-valued with

 $\begin{cases} p \ge \frac{d}{2}, & \text{if } d \ge 3, \\ p > 1, & \text{if } d = 2, \\ p \ge 1, & \text{if } d = 1. \end{cases}$

 $H = -\Delta + V$ in $L^2(\mathbb{R}^d)$ is selfadjoint $\rightsquigarrow \sigma_{dis}(H) \subset (-\infty, 0)$, and only possible accumulation point is 0.

Lieb-Thirring inequalities:

$$\exists C_{d,p} > 0: \quad \sum_{\lambda \in \sigma_{\mathrm{dis}}(H)} |\lambda|^{p-\frac{d}{2}} \le C_{d,p} \|V\|_p^p. \tag{(*)}$$

Question: Does there exist $V \in L^p(\mathbb{R}^d)$ such that $\exists (\lambda_n)_{n \in \mathbb{N}} \subset \sigma_{dis}(H)$ with $\lim_{n \to \infty} \lambda_n = \lambda \in (0, \infty)$?

Remark: Then LHS of (*) is ∞ while RHS is $< \infty$.

Main results

Theorem 1: Let p > d and $\varepsilon > 0$. Then $\exists V \in L^{\infty}(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ with $\max\{\|V\|_{\infty}, \|V\|_p\} < \varepsilon$ and decaying at ∞ such that $H = -\Delta + V$ in $L^2(\mathbb{R}^d)$ has $(\lambda_n)_{n \in \mathbb{N}} \subset \sigma_{\mathrm{dis}}(H)$ with $\mathrm{Im} \lambda_n < 0$ and accumulating at every point of $[0, \infty)$.

Main results

Theorem 1: Let p > d and $\varepsilon > 0$. Then $\exists V \in L^{\infty}(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ with $\max\{\|V\|_{\infty}, \|V\|_p\} < \varepsilon$ and decaying at ∞ such that $H = -\Delta + V$ in $L^2(\mathbb{R}^d)$ has $(\lambda_n)_{n \in \mathbb{N}} \subset \sigma_{\mathrm{dis}}(H)$ with $\mathrm{Im} \lambda_n < 0$ and accumulating at every point of $[0, \infty)$.

Theorem 2: In $\mathbb{R}^d_+ := \{x = (x_1, \dots, x_d) \in \mathbb{R}^d : x_d > 0\}.$ Let p > d and $\varepsilon > 0$ and $h \in \mathbb{R} \cup \{\infty\}$. Then $\exists V \in L^{\infty}(\mathbb{R}^d_+) \cap L^p(\mathbb{R}^d_+)$ with $\max\{\|V\|_{\infty}, \|V\|_p\} < \varepsilon$ and decaying at ∞ such that $H = -\Delta + V$ in $L^2(\mathbb{R}^d_+)$ with BC $\partial_{x_d} f = hf$ on $\partial \mathbb{R}^d_+$ has $(\lambda_n)_{n \in \mathbb{N}} \subset \sigma_{\mathrm{dis}}(H)$ with $\mathrm{Im} \ \lambda_n < 0$ and accumulating at every point of $[0, \infty)$.

Proof idea part 1: Construction of a basic potential

For $c \in \mathbb{C}$, $t \in \mathbb{R}$ and a > 0 define

$$U_{c,t,a}(x) := \begin{cases} c, & |x - te_d| < a, \\ -\frac{(d-3)(d-1)}{4|x - te_d|^2}, & |x - te_d| \ge a. \end{cases}$$

Note: For d = 1 and d = 3: $U_{c,t,a}$ is c or 0.

Proof idea part 1: Construction of a basic potential

For $c \in \mathbb{C}$, $t \in \mathbb{R}$ and a > 0 define

$$U_{c,t,a}(x) := \begin{cases} c, & |x - te_d| < a, \\ -\frac{(d-3)(d-1)}{4|x - te_d|^2}, & |x - te_d| \ge a. \end{cases}$$

Note: For d = 1 and d = 3: $U_{c,t,a}$ is c or 0.

Lemma 1: Let $\lambda \in (0, \infty)$ and p > d. For any $\varepsilon, \delta, r > 0$, there exist $a > 0, c \in \mathbb{C}$ and $\mu \in \mathbb{C}$ with $\operatorname{Im} \mu < 0$, $|\lambda - \mu| < r$ such that

 $\forall t \in \mathbb{R}: \quad \|U_{c,t,a}\|_p < \varepsilon, \quad \|U_{c,t,a}\|_{\infty} < \delta, \quad \mu \in \sigma_{\mathrm{dis}}(-\Delta + U_{c,t,a}).$

Proof idea part 1: Construction of a basic potential

For $c \in \mathbb{C}$, $t \in \mathbb{R}$ and a > 0 define

$$U_{c,t,a}(x) := \begin{cases} c, & |x - te_d| < a, \\ -\frac{(d-3)(d-1)}{4|x - te_d|^2}, & |x - te_d| \ge a. \end{cases}$$

Note: For d = 1 and d = 3: $U_{c,t,a}$ is c or 0.

Lemma 1: Let $\lambda \in (0, \infty)$ and p > d. For any $\varepsilon, \delta, r > 0$, there exist $a > 0, c \in \mathbb{C}$ and $\mu \in \mathbb{C}$ with $\operatorname{Im} \mu < 0$, $|\lambda - \mu| < r$ such that

 $\forall t \in \mathbb{R}: \quad \|U_{c,t,a}\|_p < \varepsilon, \quad \|U_{c,t,a}\|_{\infty} < \delta, \quad \mu \in \sigma_{\mathrm{dis}}(-\Delta + U_{c,t,a}).$

Proof for t = 0:

Proof idea part 1: Construction of a basic potential

For $c \in \mathbb{C}$, $t \in \mathbb{R}$ and a > 0 define

$$U_{c,t,a}(x) := \begin{cases} c, & |x - te_d| < a, \\ -\frac{(d-3)(d-1)}{4|x - te_d|^2}, & |x - te_d| \ge a. \end{cases}$$

Note: For d = 1 and d = 3: $U_{c,t,a}$ is c or 0.

Lemma 1: Let $\lambda \in (0, \infty)$ and p > d. For any $\varepsilon, \delta, r > 0$, there exist $a > 0, c \in \mathbb{C}$ and $\mu \in \mathbb{C}$ with $\operatorname{Im} \mu < 0$, $|\lambda - \mu| < r$ such that

 $\forall t \in \mathbb{R}: \quad \|U_{c,t,a}\|_p < \varepsilon, \quad \|U_{c,t,a}\|_{\infty} < \delta, \quad \mu \in \sigma_{\mathrm{dis}}(-\Delta + U_{c,t,a}).$

Proof for t = 0: For $\tau \in \mathbb{C}$ and a > 0 define

$$f(x) := \begin{cases} \frac{\mathrm{e}^{\mathrm{i}ka}}{\sqrt{a}J_{\frac{d}{2}-1}(\tau a)} \frac{J_{\frac{d}{2}-1}(\tau |x|)}{|x|^{\frac{d}{2}-1}}, & 0 < |x| \le a, \\ \frac{\mathrm{e}^{\mathrm{i}k|x|}}{|x|^{\frac{d-1}{2}}}, & |x| > a, \end{cases} \quad k := -\mathrm{i}\frac{J_{\frac{d}{2}-2}(\tau a)}{J_{\frac{d}{2}-1}(\tau a)}\tau + \frac{\mathrm{i}(d-3)}{2a}.$$

Then $-\Delta f + U_{c,0,a}f = \mu f$ with $c := k^2 - \tau^2$, $\mu := k^2$.

Proof idea part 1: Construction of a basic potential

Lemma 1: Let $\lambda \in (0,\infty)$ and p > d. For any $\varepsilon, \delta, r > 0$, there exist

 $a>0, c\in \mathbb{C}$ and $\mu\in \mathbb{C}$ with $\mathrm{Im}\,\mu<0,\, |\pmb{\lambda}-\mu|< r$ such that

 $\forall t \in \mathbb{R}: \quad \|U_{c,t,a}\|_p < \varepsilon, \quad \|U_{c,t,a}\|_{\infty} < \delta, \quad \mu \in \sigma_{\mathrm{dis}}(-\Delta + U_{c,t,a}).$

Remark: On the sharpness of p > d:

Proof idea part 1: Construction of a basic potential

Lemma 1: Let $\lambda \in (0,\infty)$ and p > d. For any $\varepsilon, \delta, r > 0$, there exist

 $a>0, c\in \mathbb{C}$ and $\mu\in \mathbb{C}$ with $\mathrm{Im}\,\mu<0,\, |\pmb{\lambda}-\mu|< r$ such that

 $\forall t \in \mathbb{R}: \quad \|U_{c,t,a}\|_p < \varepsilon, \quad \|U_{c,t,a}\|_{\infty} < \delta, \quad \mu \in \sigma_{\mathrm{dis}}(-\Delta + U_{c,t,a}).$

Remark: On the sharpness of p > d:

• d = 1: Abramov et al. (2001): If $V \in L^1(\mathbb{R})$, then

$$\forall \mu \in \sigma_{\text{dis}} \left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V \right) : \quad |\mu|^{\frac{1}{2}} \le \frac{1}{2} \|V\|_1.$$

Proof idea part 1: Construction of a basic potential

Lemma 1: Let $\lambda \in (0,\infty)$ and p > d. For any $\varepsilon, \delta, r > 0$, there exist

 $a>0, c\in \mathbb{C}$ and $\mu\in \mathbb{C}$ with $\mathrm{Im}\,\mu<0,\, |\pmb{\lambda}-\mu|< r$ such that

 $\forall t \in \mathbb{R}: \quad \|U_{c,t,a}\|_p < \varepsilon, \quad \|U_{c,t,a}\|_{\infty} < \delta, \quad \mu \in \sigma_{\mathrm{dis}}(-\Delta + U_{c,t,a}).$

Remark: On the sharpness of p > d:

• d = 1: Abramov et al. (2001): If $V \in L^1(\mathbb{R})$, then

$$\forall \mu \in \sigma_{\mathrm{dis}} \left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V \right) : \quad |\mu|^{\frac{1}{2}} \leq \frac{1}{2} \|V\|_1.$$

▶ $d \ge 2$: Conjecture Laptev-Safronov (2009): For $p \in \left(\frac{d}{2}, d\right]$ there exists $C_{d,p} > 0$ such that if $V \in L^p(\mathbb{R}^d)$, then

$$\forall \mu \in \sigma_{\mathrm{dis}} \left(-\Delta + V \right) : \quad |\mu|^{p - \frac{d}{2}} \le C_{d,p} \|V\|_p^p.$$

Proof idea part 1: Construction of a basic potential

Lemma 1: Let $\lambda \in (0,\infty)$ and p > d. For any $\varepsilon, \delta, r > 0$, there exist

 $a>0, c\in \mathbb{C}$ and $\mu\in \mathbb{C}$ with $\mathrm{Im}\,\mu<0,\, |\pmb{\lambda}-\mu|< r$ such that

 $\forall t \in \mathbb{R}: \quad \|U_{c,t,a}\|_p < \varepsilon, \quad \|U_{c,t,a}\|_{\infty} < \delta, \quad \mu \in \sigma_{\mathrm{dis}}(-\Delta + U_{c,t,a}).$

Remark: On the sharpness of p > d:

• d = 1: Abramov et al. (2001): If $V \in L^1(\mathbb{R})$, then

$$\forall \mu \in \sigma_{\mathrm{dis}} \left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V \right) : \quad |\mu|^{\frac{1}{2}} \leq \frac{1}{2} \|V\|_1.$$

▶ $d \ge 2$: Conjecture Laptev-Safronov (2009): For $p \in \left(\frac{d}{2}, d\right]$ there exists $C_{d,p} > 0$ such that if $V \in L^p(\mathbb{R}^d)$, then

$$\forall \mu \in \sigma_{\mathrm{dis}} \left(-\Delta + V \right) : \quad |\mu|^{p - \frac{d}{2}} \le C_{d,p} \|V\|_p^p.$$

Proved for radial potentials (Frank-Simon, 2016) and for general L^p(ℝ^d) potentials if p ∈ (^d/₂, ^{d+1}/₂] (Frank, 2011).
Open for (^{d+1}/₂, d].

Proof idea part 2: Adding another potential

Lemma 2: Let $V_1, V_2 \in L^{\infty}(\mathbb{R}^d)$ be decaying at ∞ and let $\mu \in \sigma(-\Delta + V_2) \setminus \sigma(-\Delta + V_1)$. Then there exist

 $\mu_t \in \sigma(-\Delta + V_1 + V_2(\cdot - te_d)), \quad t > 0,$

with $\lim_{t\to\infty} \mu_t = \mu$.

Proof idea part 2: Adding another potential

Lemma 2: Let $V_1, V_2 \in L^{\infty}(\mathbb{R}^d)$ be decaying at ∞ and let $\mu \in \sigma(-\Delta + V_2) \setminus \sigma(-\Delta + V_1)$. Then there exist

 $\mu_t \in \sigma(-\Delta + V_1 + V_2(\cdot - te_d)), \quad t > 0,$

with $\lim_{t\to\infty} \mu_t = \mu$.

Proof: Note that

$$\sigma(-\Delta + V_1 + V_2(\cdot - te_d)) = \sigma(-\Delta + V_1(\cdot + te_d) + V_2)$$

and, in the limit $t \to \infty$, $-\Delta + V_1(\cdot + te_d) + V_2$ converges to $-\Delta + V_2$ in strong resolvent sense. Now use spectral convergence result (SB, 2016).

Proof idea part 2: Adding another potential

Lemma 2: Let $V_1, V_2 \in L^{\infty}(\mathbb{R}^d)$ be decaying at ∞ and let $\mu \in \sigma(-\Delta + V_2) \setminus \sigma(-\Delta + V_1)$. Then there exist

 $\mu_t \in \sigma(-\Delta + V_1 + V_2(\cdot - te_d)), \quad t > 0,$

with $\lim_{t\to\infty} \mu_t = \mu$.

Proof: Note that

$$\sigma(-\Delta + V_1 + V_2(\cdot - te_d)) = \sigma(-\Delta + V_1(\cdot + te_d) + V_2)$$

and, in the limit $t \to \infty$, $-\Delta + V_1(\cdot + te_d) + V_2$ converges to $-\Delta + V_2$ in strong resolvent sense. Now use spectral convergence result (SB, 2016).

Remark (Kato): Let $\Lambda \subset \sigma_{dis}(-\Delta + V_1)$ be a finite set and r > 0. Then there exists $\gamma_{V_1,\Lambda,r} > 0$ such that if $\|V_2\|_{\infty} < \gamma_{V_1,\Lambda,r}$, then

$$\forall t > 0: \quad \sup_{\lambda \in \Lambda} \operatorname{dist}(\lambda, \sigma(-\Delta + V_1 + V_2(\cdot - te_d)) < r.$$

Proof idea part 3: Construction of V satisfying the claims of Theorem 1

There exists a bijective map that send $n \in \mathbb{N}$ to $(q_n, m_n) \in (\mathbb{Q} \cap (0, \infty)) \times \mathbb{N}$ (is countable!).

Now construct V with $(\lambda_n)_{n\in\mathbb{N}}\subset\sigma_{\mathrm{dis}}(-\Delta+V)$ with

Im
$$\lambda_n < 0$$
, $|\lambda_n - q_n| < \frac{1}{m_n}$, $n \in \mathbb{N}$.

Then $\{\lambda_n : n \in \mathbb{N}\}\$ accumulate at $\overline{\mathbb{Q} \cap (0, \infty)} = [0, \infty)$.

Proof idea part 3: Construction of V satisfying the claims of Theorem 1

There exists a bijective map that send $n \in \mathbb{N}$ to $(q_n, m_n) \in (\mathbb{Q} \cap (0, \infty)) \times \mathbb{N}$ (is countable!).

Now construct V with $(\lambda_n)_{n\in\mathbb{N}}\subset\sigma_{\mathrm{dis}}(-\Delta+V)$ with

Im
$$\lambda_n < 0$$
, $|\lambda_n - q_n| < \frac{1}{m_n}$, $n \in \mathbb{N}$.

Then $\{\lambda_n : n \in \mathbb{N}\}$ accumulate at $\overline{\mathbb{Q} \cap (0, \infty)} = [0, \infty)$.

The potential V is constructed inductively, as the limit $n \to \infty$ of

$$V_n := \sum_{j=1}^n U_{c_j, t_j, a_j},$$

where in each step we use Lemmas 1 and 2 to add another eigenvalue.

Main results	Adding another potential
Proof idea	Construction of potential V

References

 S. Bögli. Schrödinger Operator with Non-Zero Accumulation Points of Complex Eigenvalues.

Communications in Mathematical Physics 352 (2017), no. 2, 629–639. arXiv:1605.09356

 S. Bögli. Local Convergence of Spectra and Pseudospectra. Accepted for publication in *Journal of Spectral Theory* (2016). arXiv:1605.01041

Thank you for your attention!