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Notation |

Let p be a prime number, Q, be the p-adic number field and Z,
be the p-adic integers.

Namely:

For ¢ € Q we define |q|p = p™ ™, ordp(q) := m, where ¢ = pr and
r Is relatively prime to p.

We define the distance of q1,g0 € Q by |q1 — g2]p. Qp is the
completion of Q associated with the distance.

Zp = {x € Qpllzlp < 1}.

For a = X ,czenp™ € Qp\{0} (cn € {0,1,...,p — 1}) we define
wp(a) i==cg and |a]p = > neZooCnp"



p-adic continued fraction algorithml

Schneider [1968] introduced the following p-adic continued frac-

tion algorithm. Let §; = £ € pZp. We define & € pZyp fOor n € Z>-
recursively by

pordp(fn— 1)

fn — é. 1 — an—1,
—
where an € {1,...,p — 1}. Then, we have
po'r'dp(fl)
61 B pordp(§2)
1 + pordp(f?;)

a> +



Ordinary continued fraction algorithml

Lagrange’'s Theorem|[1770]
a IS a real quadratic number if and only if « has an eventually
periodic continued fraction expansion.




p-adic continued fraction algorithml

Weger [1988] showed that some quadratic elements are not
eventually periodic by Schneider’s continued fraction algorithm.
Ruban [1970] also gave a different p-adic continued fraction algo-

rithm. Ooto [2014] found a similar result related to the algorithm
given by Ruban.



New p-adic continued fraction algorithmsl

We proposed a new p-adic continued fraction algorithm denoted
by STY algorithm.

Saito, Tamura, Y[2016,preprint]
a € Qp is a quadratic element over Q if and only if « has an
eventually periodic STY continued fraction expansion.

Bekki [2017] has also shown p-adic version of Lagrange's the-
orem for imaginary irrationals in Qp on his continued fraction
algorithm.



Multidimensional continued fraction algorithmsl

There are many (ordinary) multidimensional continued fraction
algorithms:for example

1. Jacobi-Perron algorithm and its modifications(Brun, Selmer,...)
2. Klein polyhedra ([Karpenkov],[Bruno],...)
3. Dynamical LLL algorithm([Peth&, Pohst, Bertk],[Bosma,Smeets]).

But we can not find a multidimensional p-adic continued fraction
algorithm which has been studied besides Tamura’'s work [2012].



Tamura’s workl

By disclosing a link between the hermitian canonical forms of cer-

tain integral matrices and p-adic numbers, he has shown that a
multidimensional p-adic continued fraction converges to (z, z2,..., 2" 1)
in the p-adic sense without considering algorithms of continued
fraction expansion, where x is the root of some polynomial of
degree n.



Multidimensional p-adic continued fraction algorithmsl

The main topic of this talk is to propose some definite multidi-
mensional p-adic continued fraction algorithms.



Overview of our talkl

(1)We introduce a class of p-adic continued fraction algorithms
via c-maps.

(2)We propose some continued fraction algorithms (®g, ®1, Po, P3)
in the class.

(3)We give some theorems and numerical experiments related to
these algorithms.

(4)We give affine c-map which is extension of c-map.
(5)We propose a new algorithm &34 via affine c-map.

(6)We give numerical experiments and a conjecture related to
these algorithms.



c-map

Let K C Qp be a finite extension of Q of degree d. We define
sec/Z bys:=d—1ford>2and s:=1 ford= 1. Ind denotes
the set {1,2,...,s}. D denotes K® and E denotes (pZp)® N K?.

We consider a map ® : D — Ind x L(D) x GL(s,Zp N Q): for
a = (a1,...,as) € D, d(a) = (¢(a), Fg,Agzg), where L(D) is
the set of linear fractional transformations and Fg = (f1,..., fs)
satisfies that:



If ayw) 70, for 1 <i<s and (z1,...,25) € D

if i« = ¢(a), for some u;,v; € VNQ

10T dp()
fi(xla'”axs): i — Vg,
Ly
if i = ¢(a), for somew; € VpNQ, v; € ZpNQ
k
w;ptx;
fi(xlwﬂaxS): : Z_/Uia
To(a)

where k = max{ordp(ayg)) — ordp(a;),0},
and

fi(@) € pZyp.
If Agp(a) = O, F is the identity map.

We call this map c-map.



ExampIeI

Let s = 2.

For (a1,an) € D we put ¢(a1,ao) := 1 and in the case of a1 0O
we set

dp(aq) ordp(aq) k k
— (poPi p? PRI\ pFao prap
F(alyaz)(xl’xz) a ( 7 P aq vz PP\ Tag '

where k = max{ordy(a1) — ordp(as), 0},
and in the case of a3 = 0 we set F(,,. ,.)(z1,22) 1= (z1,z2).

01
We put Ay, .a,) = (1 O> :
We define

CD(Oé]_,OéQ) — (¢(a17a2)7F(a17a2)7A(o¢17042))'
Then & is a ec-map.




p-adic continued fraction via c—mapI

Let (@) = (¢(@), Fy, Az) for a = (aq,...,as)L € D be a e-map.
Let @ = (aq,...,as)T € D. We set al0) :=a. a1 . al@ ... are
defined inductively as follows: We suppose that al™ for n € Z>0
is defined. We set a(?*t1) := A_F_(a(™).

We say that @ has & continued fraction expansion {®(a(®), d(all)),.. .},

aln) = (ag”) a'{™) is referred to the n-th remainder of @.

g o o oy



Convergence of the algorithml

For an integer n > 0 we define the n-th convergent n(@;n) as

—. — p—1 4—1 —1 —1

Theorem 1 Let @ e D. Let ¢(a(™) be not equal to 0O for every

n € Z>qo. Then, nl|_>moo7r(a; n) = a.

We remark that we do not have any result about quality of
convergence at present.



Condition (H) I

Q denotes all algebraic elements over Q in Qp.

Let n be a positive integer. For 8 € (Q\Q)NpZy, if 3 has a minimal
polynomial 2" 4+ a12” "1 4+ ... + an over Q such that a; € Z, for
1 <i<n, ordp(ap—1) = 0 and ordy(an) > 0, then we say that S
satisfies the condition (H).

We remark that for a polynomial p(z) = 2" +a12™ 1 +...+an €
Q[x] with a; € Zp for 1 < i <mn, ordp(a,_1) =0 and ordy(an) > O,
Hensel's lemma says that there exists a € Q) such that p(a) =0
and ordp(a) = ordp(an).



Main Lemmal

Lemma 2 Let K C Qp be a finite extension of Q. Then, there
exists a € K which satisfies the condition (H) and K = Q(«).

Sketch of the proof. Let « satisfy that K = Q(«a). We define
a transformation Tg., on Qp as follows: for a € Qp with o # 0O,

ordp(a) ordp(a)
Toen(e) = —— — wp (p ) ,

« «

Then, we can show that for some n > 0 Tg,,(«) satisfies the
condition (H).



c-map CD%E] I

For o = (al, . T we deflne linear fractional transfor-
mations Go‘e] _( O‘e] (9) @)y on D for e € {~1,1} and

17 =1,. sby
for T = (wl,...,af;s)TED if a; # 0, then we set

if 1 =3,
. ordp(a;) ordp(ay;)
D@y =Ty, <€p p ) 7

Lq Ly

if © £ 7,
@d;(G) P T ep® o
JTAD gy = P, ,
z; aj

where k = max{ordp(a;) — ordp(c;),0}.




S € GL(s,Zp N Q) denotes the matrix

5= (1) 1= {(5@“)]-) for 1<i<s—1,1<j<s
(615) fori=13s5,1<j<s,
where ¢;; = 1 and o;; := 0 for ¢« = j for 4,5 € Ind. Let us
define the c-maps CD([)G]. We define CD([DG](-) = (1,G[1"€],S). We
remark that for s = 1,2 CD([)l] continued fraction coincides with
Schneider’'s continued fraction.



c-map CD[f’Z] I

We assume that K #= Q. Let z € K satisfy the condition (H) and

K = Q(z). We define linear fractional transformations Hj[a’e’z] =

(h[la’e’z];(j),...,hLa’e’Z];(j)) on D for @ = (aq,...,as)T € D and
jg=1,...,s as follows: |

g (@) is written uniquely ¢! >4V (@) = ag+ a1z + ... + asz®
where a; € Q for 0 < 4,57 <s. Let a’ > 0 be the greatest common
factor of the denominators of q;(1 <17 < s) which is not divided

by p. We define hl®*0(z) for j=1,... s by

[@,€,2];(5) (=
]
p

hE&,E,Z],(])(f) r— g’L /
a a a

We define &'4() := (1, b7 9).



c-map CD[QE’Z]’(”) I

For a € K « is written uniquely a = ag + a1z + ... + asz® where
a; € Q for 0 <i <s, and we define denom,(«) for a € K by

denomz(a) ;= min{|d| |d € Z,d(ag + a1z + ... + asz®) € Z[x]},
and we define denom. (@) a = (aq,...,as)T € K3 by

denom, (@) := max{denom.(a;)|1 <1 < s}.

We define 'U[( ;] D —7Z by fora=(aq,...,as)l € D
v[e ) ) (@) 1= min{denom.(H'>“*(@))|1 <i < s}.
We define v[(?;] . D — 7 for n=2,3,... recursively by

o, (@) := min{denom.(H,"“? @))o{" 7V (" @)1 <i < s},



We define qbgg] : D — Ind for n € Z>41 by for a = (al,...,aS)T S
D

b1 (@) =

[e,2]
min{i Ind\v[(f;]L V(@) = denom,(H™% (a))v[(j;](H}a’e’Z] (@)}
We define CD[QE”Z]’(”) for n € Z>1 by for @ € D

le.z](n) N . — (s (n) =y plaez]
(DQ (Ck) T (¢[€,Z](a)’ qufzz](ayZd))

where id is the identity map.



p-reduced matrix I

Mn(Qp) denotes all n x n Qp matrices for n € Z>;. Let n be a
positive integer for a while.

For a« = X, czenp™ € Qp and m € Z We define |a : m]p and
(a:m)p by

latm]p = anm,nezcnpn,

(o im)p 1= Zn>m,n€ZC’rLPn-

Myn(Q) denotes all n x n Q matrices for n € Z>;. We define that
M = (m;;) € Mn(Q) is p-reduced, if M satisfies that for every
integer 7 with 1 <4 <n there exist uniquely an integer j(:= u(2))
with 0 < 5 < n such that



(1) for every integer k with 1 < k < wu(i) m;, = 0O,

(2) if u(i) # n, then m; ;41 € {p'|l € Z},

and for every integer k with ¢ <k <n my ;)41 =0
(3) ifi>1, u(@) >u(i—1),

and

(4) if u(i) #= n, then for every integer 5 with 1 < j <1

(M u(iy+1 * ordp(m; y(i)41) — 1)p = 0.

Example.
p° p+ p? 2%
1
1
0 0 >



A matrix of M,(Q) is uniquely converted to a p-reduced matrix
by using the following row operations:

(a) Switch two rows,

(b) Multiply a row by an element of V;, N Q,

(c) Add a row to another one by multiplied by an element of

Zp N Q.

When M € GL(n,Q) is converted by the p-reduced algorithm to
M’ € GL(n,Q), there exists N € GL(n,ZpNQ) such that M/ = NM
and we denote by pr(M) N.



ExampIeI



c-map CDEof’Z] I

We recall that z € K satisfy the condition (H) and K = Q(z).
For @ = (ai,...,as)! € D the Mg = (my;) € M,y (,41)(Q) is
defined by a@ = Mg(z,22,...,25,1)1 and ML € Ms(Q) defines
ML = (my;)1<i<s,1<j<s-

We define the map 7> : D — Ms(Z, N Q) by for @ € D

(@) = pr(Mg).

We define CDEof’Z] by for @ € D

o @) = (1, gl®eA o alFedy).



Periodic points I

For CD([)” continued fraction algorithm about Q, which coincides
with Schneider’'s continued fraction Bundschuh [1977] gave re-
sults, in which every rational number has an infinite periodic
expansion or a finite expansion.

Proposition 1

Let K be Q. Then, for every rational number o« o has a finite
CDE)_” continued fraction expansion.



CD([)_” continued fraction for quadratic cases

Next, we consider quadratic cases. Weger [1988] showed that
some guadratic elements have a non periodic Schneider's contin-
ued fraction expansion. For CDE)_” continued fraction we can not
expect that every quadratic element have a periodic continued
fraction expansion from the numerical experiments (later we will
show those), but we can not give the proof.



CD[f’Z] continued fraction expansion for quadratic cases

Theorem 2

Let K be a quadratic field over Q. Let z € K satisfy the condition
(H) and K = Q(z). Then, for every rational number a « has a
finite CD[f’Z] continued fraction expansion. For every a € K with

a ¢ Q, a has a periodic CD[f’Z] continued fraction expansion.



CDgf’Z] continued fraction for quadratic cases I

Theorem 3
Let K be a quadratic field over Q. Then, for every rational
number o a has a finite <b[3€’z] continued fraction expansion. For

every a € K with a ¢ Q, a has a periodic CDE{’Z] continued fraction
expansion.



Cubic casesl

Dubois, Paysant-Le Roux[1975] showed that for every real cubic
number field there is a pair of humbers which has a periodic
Jacobi-Perron expansion.

Let K C Qp be a cubic field over Q. Let z € K satisfy the
condition (H) and K = Q(z). For an integer m which is relatively
prime to p mz satisfies above condition. We suppose that z is
integral over Q. Let

23 + a12? + arz + a3pk (1)

be the minimal polynomial of z, where a; € Z for 1 <: < 3 ,
ordp(ap) = ordp(az) = 0.



Theorem 4
Let @ := (z,22)L. Then, a has a periodic CD[f’Z] continued fraction
expansion.

Proof.




Theorem 5

Let K C Qp be a cubic field over Q. There exists z € K which
satisfies the condition (H) and K = Q(z) such that (z,22)% has
a periodic <l>[2_1’z]’(1> continued fraction expansion.



Multidimensional casesl

Theorem 6

Let K C Qp be a finite extension of Q. Let z € K satisfy the
condition (H) and K = Q(z). Let uy 1=z and u; := Y ;< < ai;2’
for 2 < i < s, where aq;; € QNZp for 1 < < 5,2 <5 < s and
ordp(ay;) = 0 for 1 < i < s. Then, @ := (uy,...,us)! has a
periodic CDE;’Z] continued fraction expansion.



Numerical Experimentsl

In Table 1 for the prime numbers p with 2 < p < 100 and
{z € Qp|z? + az + bp is the minimal polynomial of z,a,b € Z, 0 <
a < 10,—-10 < b < 10,0rdp(a) = 0} and 100 elements in D we
observe periodicity by the CDE)_LZ] continued fraction algorithm.
The elements in D denoted by D’ are generated by using pseudo-

random number generation algorithm given by Saito, Yamaguchi
[2016].

1* is the number of the periodic points in D’. 2* is the number
of the points in D’ such that the height of a remainder exceeds
10390 and we terminated the iteration.



Table 1 o5 7

224 az+bp=0, a1 € D

prime number | 1* 2% prime number | 1* 2%
2 0| 7800 43 O | 20000
3 0| 11700 47 O | 20000
5 1| 14399 53 O | 20000
7 2 | 16598 59 O | 20000

11 O | 19000 61 O | 20000
13 0| 19200 67 O | 20000
17 O | 19600 71 O | 20000
19 O | 19800 73 O | 20000
23 O | 20000 79 O | 20000
29 O | 20000 83 O | 20000
31 O | 20000 89 O | 20000
37 O | 20000 o7 O | 20000
41 O | 20000




In Table 2 for the prime numbers p with 2 < p < 100 and {z €
Qp|z3 4+ ax + bp is the minimal polynomial of z,a,b € Z, 0 < a <
10,—10 < b < 10,0rdp(a) = 0} and 100 elements in D denoted
by D’ we observe periodicity by the <D[1_1’Z] continued fraction
algorithm. 1* is the number of the periodic points in D/. 2%
is the number of the points in D’ such that the height of a
remainder exceeds 10399 and we terminated the iteration.



Table 2 L™ 23 4 a2 4 bp =0, (a1, a0) € D/

prime number 1* 2% prime number 1* 2%
2| 7290 | 1110 43 | 18487 | 1313
3|1 10585 | 2015 47 | 19536 | 464
5112489 | 2311 53119298 | 502
7 | 14510 | 2690 59 | 19779 21

11 | 16908 | 2292 61 | 19319 | 681
13| 17739 | 1461 67 | 19563 | 237
17 | 18021 | 1379 71 | 19407 | 393
19 | 17680 | 1920 73 | 19514 | 286
23 118629 | 1171 79 | 19979 21
29 | 18254 | 1546 83 | 19197 | 603
31 | 18463 | 1337 80 | 19171 629
37 | 19156 | 644 o7 | 19351 649
41 | 19314 | 486




Table 3 oL M) 234 024 bp =0, (a1,00) € D/

prime number 1* 2% prime number 1* 2%
2| 8104 | 296 43 | 19721 79
3| 12157 | 443 47 | 19995 5
5114353 | 447 53 | 19766 34
7 | 16933 | 267 59 | 19749 51

11 | 18915 | 285 61 | 19979 21
13 | 18978 | 222 67 | 19795 5
17 | 19278 | 122 71 | 19793 7
19 | 19495 | 105 73 | 19785 15
23 | 19741 59 79 | 19998 2
29 | 19756 44 83 | 19793 7
31 | 19788 12 89 | 19791 )
37 | 19724 76 o7 | 19962 38
41 | 19737 63




Table 4 <l>[2_1’z]’(2), B4 az+bp=0, (a1,a0) € D

prime number 1* 2% prime number 1* 2%
2| 8391 O] 43 | 19800 0
3| 12599 1 47 | 20000 0
5114792 8 53 | 19800 0
7 | 17200 1 59 | 19800 0

11 | 19200 1 61 | 20000 0
13 | 19199 1 67 | 19800 0
17 | 19400 0 71 | 19800 0
19 | 19600 0 73 | 19800 0
23 | 19800 0 79 | 20000 0
29 | 19800 0 83 | 19800 0
31 | 19800 0 89 | 19800 0
37 | 19800 0 97 | 20000 0
41 | 19800 0




Table 5 oL 17

234+ az+bp=0, (a1,ap) € D’

prime number 1* 2% prime number 1* 2%
2| 8398 2 43 | 19800 0
3| 12600 0 47 | 20000 0
51 14800 0 53 | 19800 0
7 | 17200 0 59 | 19800 0

11 | 19200 0 61 | 20000 0
13 | 19200 0 67 | 19800 0
17 | 19400 0 71 | 19800 0
19 | 19600 0 73 | 19800 0
23 | 19800 0 79 | 20000 0
29 | 19800 0 83 | 19800 0
31 | 19800 0 89 | 19800 0
37 | 19800 0 97 | 20000 0
41 | 19800 0




Table 6 oL 17

2+ az+bp=0, (a1,a0,a3) € D’

prime number 1* 2% prime number 1* 2%
2| 8099 1 43 | 20000 0
3| 12897 3 47 | 20000 0
51| 15200 0 53 | 20000 0
7 | 17400 0 59 | 19800 0

11 | 19600 0 61 | 19800 0
13 | 19800 0 67 | 19800 0
17 | 19700 0 71 | 19900 0
19 | 19900 0 73 | 19900 0
23 | 19900 0 79 | 20000 0
29 | 19800 0 83 | 20000 0
31 | 19800 0 89 | 20000 0
37 | 19800 0 97 | 20000 0
41 | 20000 0




'Tabm37<bg_LZ]

224+ az+bp=0, (a1,00,a3,a4) € D’

prime number 1* 2% prime number 1* 2%
2| 8798 2 43 | 19800 0
3]113199 1 47 | 20000 0
5115199 1 53 | 20000 0
7 | 17600 0 59 | 20000 0

11 | 19600 0 61 | 20000 0
13 | 19800 0 67 | 20000 0
17 | 19800 0 71 | 20000 0
19 | 19800 0 73 | 19999 1
23 | 19800 0 79 | 20000 0
29 | 19800 0 83 | 19800 0
31 | 20000 0 89 | 19800 0
37 | 20000 0 97 | 20000 0
41 | 19800 0




Table 8 oL 7

, 2% +az+bp =0, (a1,a2,a3,0a4,0a5) € D/

prime number 1* 2% prime number 1* 2%
2| 9000 0 43 | 20000 0
3| 13400 0 47 | 20000 0
51| 15499 1 53 | 20000 0
7 | 17600 0 59 | 20000 0

11 | 19600 0 61 | 20000 0
13 | 19800 0 67 | 20000 0
17 | 19900 0 71 | 20000 0
19 | 19900 0 73 | 20000 0
23 | 19900 0 79 | 19900 0
29 | 19900 0 83 | 19900 0
31 | 19900 0 89 | 20000 0
37 | 19900 0 97 | 20000 0
41 | 19900 0




Impression I

We has not got an algorithm from c-map for which we can ex-
pect that Lagrange Theorem holds. In contrast we have some
multidimensional continued fraction algorithm(in C™) for which
LLagrange Theorem holds or we can expect that Lagrange The-
orem holds.

For example, Peth®, Pohst, Bertk[2017], Tamura,Yasutomi[2009].

We will extend c-map.



Extension of c-map I

Let ®(a) = (¢(a), Fy, Az) for @ = (aq,...,as)L € D be a c-
map and v : D — pZp, N Q be a map. We propose a p-adic
continued fraction via & and ~ as follows: Leta = (aq,... cas)! €
D. We set a0 = @ a1 al?) .. are defined inductively as
follows: We suppose that aln) for n ¢ Z>qp is defined. We set
a(ntl) = A_F_(a(™) 4+ v(@). We say that @ has the affine c-
map continued fraction expansion {®’(a(0)), &/(a(1)), ...}, where
d'(B) = (¢p(B), F A— ~v(B)) for B € D. We can easily see that
Theorem 1 holds for an affine c-map.



Affine c-map I

For the c-map CD[’E’Z] = (1,H [’E’Z], Z(H[’E’Z])) we will define an
affine c-map. Leta = (aq,.. aS)T € Dandlet 8= (81,...,8s)L =
Z(H[E Z]( )). Then, there exists a unique M = (m;;) € M, (54.1)(Q)
such that 8 = M(z,22,...,2% 1)L. We define v/(a) € E by

N T
'7/(04) -— (_<m18—|—1>p7 SR _<m38—|—1>p) :
We define the affine c-map <l>[e e (1,H][_.’G’Z],TZ(H:[l.’E’Z]),’}//C)).



_172]

Table 9 oL 23 4 az+bp =0, (a1,02) € D/
prime number 1* 2% prime number 1* 2%
2 | 8400 0 43 | 19800 0
3| 12600 0 47 | 20000 0
51 14800 0 53 | 19800 0
7 | 17200 0 59 | 19800 0
11 | 19200 0 61 | 20000 0
13 | 19200 0 67 | 19800 0
17 | 19400 0 71 | 19800 0
19 | 19600 0 73 | 19800 0
23 | 19800 0 79 | 20000 0
29 | 19800 0 83 | 19800 0
31 | 19800 0 89 | 19800 0
37 | 19800 0 97 | 20000 0
41 | 19800 0




Table 10 5 17

2+ az4+bp =0, (a1,a0,a3) € D

prime number 1* 2% prime number 1* 2%
2| 8100 0 43 | 20000 0
3| 12900 0 47 | 20000 0
51| 15200 0 53 | 20000 0
7 | 17400 0 59 | 19800 0

11 | 19600 0 61 | 19800 0
13 | 19800 0 67 | 19800 0
17 | 19700 0 71 | 19900 0
19 | 19900 0 73 | 19900 0
23 | 19900 0 79 | 20000 0
29 | 19800 0 83 | 20000 0
31 | 19800 0 89 | 20000 0
37 | 19800 0 97 | 20000 0
41 | 20000 0




Table 11 &L 17

224 az4+bp=0, (a,ar,a3,a4) € D’

prime number 1* 2% prime number 1* 2%
2 | 8800 0 43 | 19800 0
3| 13200 0 47 | 20000 0
51| 15200 0 53 | 20000 0
7 | 17600 0 59 | 20000 0

11 | 19600 0 61 | 20000 0
13 | 19800 0 67 | 20000 0
17 | 19800 0 71 | 20000 0
19 | 19800 0 73 | 20000 0
23 | 19800 0 79 | 20000 0
29 | 19800 0 83 | 19800 0
31 | 20000 0 89 | 19800 0
37 | 20000 0 97 | 20000 0
41 | 19800 0




[—1,2]
Table 12 &3,

, 254+ az4+bp =0, (a1,a0,a3,a4,0a5) € D’

prime number 1* 2% prime number 1* 2%
2| 9000 0 43 | 20000 0
3| 13400 0 47 | 20000 0
51 15500 0 53 | 20000 0
7 | 17600 0 59 | 20000 0

11 | 19600 0 61 | 20000 0
13 | 19800 0 67 | 20000 0
17 | 19900 0 71 | 20000 0
19 | 19900 0 73 | 20000 0
23 | 19900 0 79 | 19900 0
29 | 19900 0 83 | 19900 0
31 | 19900 0 89 | 20000 0
37 | 19900 0 97 | 20000 0
41 | 19900 0




Conjecturel

Let p be any prime number and K be any finite extension of
Q with K C Qp. Let s+ 1 be its degree over Q and z € K be
any element with the condition (H) and K = Q(z). For every
a = (a1,...,as) € D which satisfies that 1,aq,...,as is linearly
independent over Q @ has a periodic d>g6f] continued fraction
expansion, where e € {—1,1}.

Remark. The conjecture holds for s = 1.



Conjecture of Conjecturel

The proof of Conjecture is not so difficult.



Thank you very much!



