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Notation

Let p be a prime number, Qp be the p-adic number field and Zp

be the p-adic integers.

Namely:

For q ∈ Q we define |q|p = p−m, ordp(q) := m, where q = pmr and

r is relatively prime to p.

We define the distance of q1, q2 ∈ Q by |q1 − q2|p. Qp is the

completion of Q associated with the distance.

Zp = {x ∈ Qp||x|p ≤ 1}.
For α =

∑
n∈Z cnpn ∈ Qp\{0} (cn ∈ {0,1, . . . , p − 1}) we define

ωp(α) := c0 and ⌊α⌋p := Σn∈Z≤0
cnpn.



p-adic continued fraction algorithm

Schneider [1968] introduced the following p-adic continued frac-

tion algorithm. Let ξ1 = ξ ∈ pZp. We define ξn ∈ pZp for n ∈ Z≥2

recursively by

ξn =
pordp(ξn−1)

ξn−1
− an−1,

where an ∈ {1, . . . , p− 1}. Then, we have

ξ1 =
pordp(ξ1)

a1 +
pordp(ξ2)

a2 +
pordp(ξ3)

. . .

.



Ordinary continued fraction algorithm

Lagrange’s Theorem[1770]� �
α is a real quadratic number if and only if α has an eventually

periodic continued fraction expansion.� �



p-adic continued fraction algorithm

Weger [1988] showed that some quadratic elements are not

eventually periodic by Schneider’s continued fraction algorithm.

Ruban [1970] also gave a different p-adic continued fraction algo-

rithm. Ooto [2014] found a similar result related to the algorithm

given by Ruban.



New p-adic continued fraction algorithms

We proposed a new p-adic continued fraction algorithm denoted

by STY algorithm.

Saito, Tamura, Y[2016,preprint]� �
α ∈ Qp is a quadratic element over Q if and only if α has an

eventually periodic STY continued fraction expansion.� �

Bekki [2017] has also shown p-adic version of Lagrange’s the-

orem for imaginary irrationals in Qp on his continued fraction

algorithm.



Multidimensional continued fraction algorithms

There are many (ordinary) multidimensional continued fraction
algorithms:for example

1. Jacobi-Perron algorithm and its modifications(Brun, Selmer,...)

2. Klein polyhedra ([Karpenkov],[Bruno],...)

3. Dynamical LLL algorithm([Pethő, Pohst, Bertḱ],[Bosma,Smeets]).

But we can not find a multidimensional p-adic continued fraction
algorithm which has been studied besides Tamura’s work [2012].



Tamura’s work

By disclosing a link between the hermitian canonical forms of cer-

tain integral matrices and p-adic numbers, he has shown that a

multidimensional p-adic continued fraction converges to (x, x2, . . . , xn−1)

in the p-adic sense without considering algorithms of continued

fraction expansion, where x is the root of some polynomial of

degree n.



Multidimensional p-adic continued fraction algorithms

The main topic of this talk is to propose some definite multidi-

mensional p-adic continued fraction algorithms.



Overview of our talk

(1)We introduce a class of p-adic continued fraction algorithms
via c-maps.

(2)We propose some continued fraction algorithms (Φ0,Φ1,Φ2,Φ3)
in the class.

(3)We give some theorems and numerical experiments related to
these algorithms.

(4)We give affine c-map which is extension of c-map.

(5)We propose a new algorithm Φ3A via affine c-map.

(6)We give numerical experiments and a conjecture related to
these algorithms.



c-map

Let K ⊂ Qp be a finite extension of Q of degree d. We define

s ∈ Z by s := d − 1 for d ≥ 2 and s := 1 for d = 1. Ind denotes

the set {1,2, . . . , s}. D denotes Ks and E denotes (pZp)s ∩Ks.

We consider a map Φ : D → Ind × L(D) × GL(s,Zp ∩ Q): for

α = (α1, . . . , αs) ∈ D, Φ(α) := (ϕ(α), Fα, Aα), where L(D) is

the set of linear fractional transformations and Fα = (f1, . . . , fs)

satisfies that:



If αϕ(α) ̸= 0, for 1 ≤ i ≤ s and (x1, . . . , xs) ∈ D

if i = ϕ(α), for some ui, vi ∈ Vp ∩ Q

fi(x1, . . . , xs) =
uip

ordp(αi)

xi
− vi,

if i ̸= ϕ(α), for some ui ∈ Vp ∩ Q, vi ∈ Zp ∩ Q

fi(x1, . . . , xs) =
uip

kxi
xϕ(α)

− vi,

where k = max{ordp(αϕ(α))− ordp(αi),0},
and

fi(α) ∈ pZp.

If αϕ(α) = 0, F is the identity map.

We call this map c-map.



Example

Let s = 2.

For (α1, α2) ∈ D we put ϕ(α1, α2) := 1 and in the case of α1 ̸= 0

we set

F(α1,α2)
(x1, x2) :=

(
pordp(α1)

x1
− ωp

(
pordp(α1)

α1

)
, p

kx2
x1

− ωp

(
pkα2
α1

))
,

where k = max{ordp(α1)− ordp(α2),0},
and in the case of α1 = 0 we set F(α1,α2)

(x1, x2) := (x1, x2).

We put A(α1,α2)
:=

(
0 1
1 0

)
.

We define

Φ(α1, α2) = (ϕ(α1, α2), F(α1,α2)
, A(α1,α2)

).

Then Φ is a c-map.



p-adic continued fraction via c-map

Let Φ(α) = (ϕ(α), Fα, Aα) for α = (α1, . . . , αs)T ∈ D be a c-map.

Let α = (α1, . . . , αs)T ∈ D. We set α(0) := α. α(1), α(2), . . . are

defined inductively as follows: We suppose that α(n) for n ∈ Z≥0

is defined. We set α(n+1) := AαFα(α
(n)).

We say that α has Φ continued fraction expansion {Φ(α(0)),Φ(α(1)), . . .}.
α(n) = (α(n)

1 , . . . , α
(n)
s ) is referred to the n-th remainder of α.



Convergence of the algorithm

For an integer n ≥ 0 we define the n-th convergent π(α;n) as

π(α;n) := F−1
α(0)A

−1
α(0) · · ·F

−1
α(n−1)A

−1
α(n−1)(0).

Theorem 1 Let α ∈ D. Let ϕ(α(n)) be not equal to 0 for every

n ∈ Z≥0. Then, lim
n→∞π(α;n) = α.

We remark that we do not have any result about quality of

convergence at present.



Condition (H)

Q denotes all algebraic elements over Q in Qp.

Let n be a positive integer. For β ∈ (Q\Q)∩pZp, if β has a minimal

polynomial xn + a1x
n−1 + . . . + an over Q such that ai ∈ Zp for

1 ≤ i ≤ n, ordp(an−1) = 0 and ordp(an) > 0, then we say that β

satisfies the condition (H).

We remark that for a polynomial p(x) = xn+ a1x
n−1+ . . .+ an ∈

Q[x] with ai ∈ Zp for 1 ≤ i ≤ n, ordp(an−1) = 0 and ordp(an) > 0,

Hensel’s lemma says that there exists α ∈ Qp such that p(α) = 0

and ordp(α) = ordp(an).



Main Lemma

Lemma 2 Let K ⊂ Qp be a finite extension of Q. Then, there

exists α ∈ K which satisfies the condition (H) and K = Q(α).

Sketch of the proof. Let α satisfy that K = Q(α). We define

a transformation TSch on Qp as follows: for α ∈ Qp with α ̸= 0,

TSch(α) :=
pordp(α)

α
− ωp

pordp(α)

α

 ,

Then, we can show that for some n ≥ 0 Tn
Sch(α) satisfies the

condition (H).



c-map Φ[ϵ]
0

For α = (α1, . . . , αs)T ∈ D we define linear fractional transfor-
mations G

[α,ϵ]
j = (g[α,ϵ];(j)1 , . . . , g

[α,ϵ];(j)
s ) on D for ϵ ∈ {−1,1} and

j = 1, . . . , s by
for x = (x1, . . . , xs)

T ∈ D if αj ̸= 0, then we set

if i = j,

g
[α,ϵ];(j)
i (x) =

ϵpordp(αi)

xi
− ωp

ϵpordp(αi)

xi

 ,

if i ̸= j,

g
[α,ϵ];(j)
i (x) =

ϵpkxi
xj

− ωp

(
ϵpkαi

αj

)
,

where k = max{ordp(αj)− ordp(αi),0}.



S ∈ GL(s,Zp ∩ Q) denotes the matrix

S = (sij) :=

(δ(i+1)j) for 1 ≤ i ≤ s− 1, 1 ≤ j ≤ s,

(δ1j) for i = s, 1 ≤ j ≤ s,

where δii := 1 and δij := 0 for i ̸= j for i, j ∈ Ind. Let us

define the c-maps Φ[ϵ]
0 . We define Φ[ϵ]

0 (·) := (1, G[·,ϵ]
1 , S). We

remark that for s = 1,2 Φ[1]
0 continued fraction coincides with

Schneider’s continued fraction.



c-map Φ[ϵ,z]
1

We assume that K ̸= Q. Let z ∈ K satisfy the condition (H) and

K = Q(z). We define linear fractional transformations H
[α,ϵ,z]
j =

(h[α,ϵ,z];(j)1 , . . . , h
[α,ϵ,z];(j)
s ) on D for α = (α1, . . . , αs)T ∈ D and

j = 1, . . . , s as follows:

g
[α,ϵ];(j)
i (α) is written uniquely g

[α,ϵ];(j)
i (α) = a0+ a1z+ . . .+ aszs

where ai ∈ Q for 0 ≤ i, j ≤ s. Let a′ > 0 be the greatest common

factor of the denominators of ai(1 ≤ i ≤ s) which is not divided

by p. We define h
[α,ϵ,z];(j)
i (x) for j = 1, . . . , s by

h
[α,ϵ,z];(j)
i (x) :=

g
[α,ϵ,z];(j)
i (x)

a′
−

a0
a′

+
⌊
a0
a′

⌋
p
.

We define Φ[ϵ,z]
1 (·) := (1, H[·,ϵ,z]

1 , S).



c-map Φ[ϵ,z],(n)
2

For α ∈ K α is written uniquely α = a0 + a1z + . . .+ aszs where
ai ∈ Q for 0 ≤ i ≤ s, and we define denomz(α) for α ∈ K by

denomz(α) := min{|d| |d ∈ Z, d(a0 + a1x+ . . .+ asx
s) ∈ Z[x]},

and we define denomz(α) α = (α1, . . . , αs)T ∈ Ks by

denomz(α) := max{denomz(αi)|1 ≤ i ≤ s}.

We define v
(1)
[ϵ,z] : D → Z by for α = (α1, . . . , αs)T ∈ D

v
(1)
[ϵ,z](α) := min{denomz(H

[α,ϵ,z]
i (α))|1 ≤ i ≤ s}.

We define v
(n)
[ϵ,z] : D → Z for n = 2,3, . . . recursively by

v
(n)
[ϵ,z](α) := min{denomz(H

[α,ϵ,z]
i (α))v(n−1)

[ϵ,z] (H[α,ϵ,z]
i (α))|1 ≤ i ≤ s}.



We define ϕ
(n)
[ϵ,z] : D → Ind for n ∈ Z≥1 by for α = (α1, . . . , αs)T ∈

D

ϕ
(n)
[ϵ,z](α) :=

min{i ∈ Ind|v(n+1)
[ϵ,z] (α) = denomz(H

[α,ϵ,z]
i (α))v(n)[ϵ,z](H

[α,ϵ,z]
i (α))}.

We define Φ[ϵ,z],(n)
2 for n ∈ Z≥1 by for α ∈ D

Φ[ϵ,z],(n)
2 (α) := (ϕ(n)[ϵ,z](α), H

[α,ϵ,z]

ϕ
(n)
[ϵ,z]

(α)
, id),

where id is the identity map.



p-reduced matrix

Mn(Qp) denotes all n × n Qp matrices for n ∈ Z≥1. Let n be a

positive integer for a while.

For α = Σn∈Zcnp
n ∈ Qp and m ∈ Z We define ⌊α : m⌋p and

⟨α : m⟩p by

⌊α : m⌋p := Σn≤m,n∈Zcnp
n,

⟨α : m⟩p := Σn>m,n∈Zcnp
n.

Mn(Q) denotes all n× n Q matrices for n ∈ Z≥1. We define that

M = (mij) ∈ Mn(Q) is p-reduced, if M satisfies that for every

integer i with 1 ≤ i ≤ n there exist uniquely an integer j(:= u(i))

with 0 ≤ j ≤ n such that



(1) for every integer k with 1 ≤ k ≤ u(i) mik = 0,

(2) if u(i) ̸= n, then mi u(i)+1 ∈ {pl|l ∈ Z},
and for every integer k with i < k ≤ n mk u(i)+1 = 0

(3) if i > 1, u(i) ≥ u(i− 1),

and

(4) if u(i) ̸= n, then for every integer j with 1 ≤ j < i

⟨mj u(i)+1 : ordp(mi u(i)+1)− 1⟩p = 0.

Example. 
p2 p+ p2 1

p3

0 p3 1
p2

0 0 1
p





A matrix of Mn(Q) is uniquely converted to a p-reduced matrix

by using the following row operations:

(a) Switch two rows,

(b) Multiply a row by an element of Vp ∩ Q,

(c) Add a row to another one by multiplied by an element of

Zp ∩ Q.

When M ∈ GL(n,Q) is converted by the p-reduced algorithm to

M ′ ∈ GL(n,Q), there exists N ∈ GL(n,Zp∩Q) such that M ′ = NM

and we denote by pr(M) N .



Example

p = 2

(
4 16
2 4

)
→

(
2 4
4 16

)
→

(
2 4
0 8

)

(
10 3/2
−5 7

)
→

(
1 0
0 1/2

)



c-map Φ[ϵ,z]
3

We recall that z ∈ K satisfy the condition (H) and K = Q(z).

For α = (α1, . . . , αs)T ∈ D the Mα = (mij) ∈ Ms×(s+1)(Q) is

defined by α = Mα(z, z
2, . . . , zs,1)T and M ′

α ∈ Ms(Q) defines

M ′
α := (mij)1≤i≤s,1≤j≤s.

We define the map τz : D → Ms(Zp ∩ Q) by for α ∈ D

τz(α) := pr(M ′
α).

We define Φ[ϵ,z]
3 by for α ∈ D

Φ[ϵ,z]
3 (α) := (1, H[α,ϵ,z]

1 , τz(H
[α,ϵ,z]
1 )).



Periodic points

For Φ[1]
0 continued fraction algorithm about Q, which coincides

with Schneider’s continued fraction Bundschuh [1977] gave re-

sults, in which every rational number has an infinite periodic

expansion or a finite expansion.

Proposition 1

Let K be Q. Then, for every rational number α α has a finite

Φ[−1]
0 continued fraction expansion.



Φ[−1]
0 continued fraction for quadratic cases

Next, we consider quadratic cases. Weger [1988] showed that

some quadratic elements have a non periodic Schneider’s contin-

ued fraction expansion. For Φ[−1]
0 continued fraction we can not

expect that every quadratic element have a periodic continued

fraction expansion from the numerical experiments (later we will

show those), but we can not give the proof.



Φ[ϵ,z]
1 continued fraction expansion for quadratic cases

Theorem 2

Let K be a quadratic field over Q. Let z ∈ K satisfy the condition

(H) and K = Q(z). Then, for every rational number α α has a

finite Φ[ϵ,z]
1 continued fraction expansion. For every α ∈ K with

α /∈ Q, α has a periodic Φ[ϵ,z]
1 continued fraction expansion.



Φ[ϵ,z]
3 continued fraction for quadratic cases

Theorem 3

Let K be a quadratic field over Q. Then, for every rational

number α α has a finite Φ[ϵ,z]
3 continued fraction expansion. For

every α ∈ K with α /∈ Q, α has a periodic Φ[ϵ,z]
3 continued fraction

expansion.



Cubic cases

Dubois, Paysant-Le Roux[1975] showed that for every real cubic

number field there is a pair of numbers which has a periodic

Jacobi-Perron expansion.

Let K ⊂ Qp be a cubic field over Q. Let z ∈ K satisfy the

condition (H) and K = Q(z). For an integer m which is relatively

prime to p mz satisfies above condition. We suppose that z is

integral over Q. Let

x3 + a1x
2 + a2x+ a3p

k (1)

be the minimal polynomial of z, where ai ∈ Z for 1 ≤ i ≤ 3 ,

ordp(a2) = ordp(a3) = 0.



Theorem 4

Let α := (z, z2)T . Then, α has a periodic Φ[ϵ,z]
1 continued fraction

expansion.

Proof.

α1 =

(
ϵz,

−ϵz2

a3
+

−ϵa1z

a3

)T
,

α2 = SH
[ϵ,z]
1 (α1) =

(
−ϵz

a3
,
−z2

a3
+

−a1z

a3

)T
,

α3 = SH
[ϵ,z]
1 (α2) =

(
z, z2 + a1z

)T
,

α4 = SH
[ϵ,z]
1 (α3) =

(
ϵz,

−ϵz2

a3
+

−ϵa1z

a3

)T
.



Theorem 5

Let K ⊂ Qp be a cubic field over Q. There exists z ∈ K which

satisfies the condition (H) and K = Q(z) such that (z, z2)T has

a periodic Φ[−1,z],(1)
2 continued fraction expansion.



Multidimensional cases

Theorem 6

Let K ⊂ Qp be a finite extension of Q. Let z ∈ K satisfy the

condition (H) and K = Q(z). Let u1 := z and ui :=
∑

i≤j≤s aijz
j

for 2 ≤ i ≤ s, where aij ∈ Q ∩ Zp for 1 ≤ i ≤ s, i ≤ j ≤ s and

ordp(aii) = 0 for 1 ≤ i ≤ s. Then, α := (u1, . . . , us)
T has a

periodic Φ[ϵ,z]
3 continued fraction expansion.



Numerical Experiments

In Table 1 for the prime numbers p with 2 ≤ p ≤ 100 and

{z ∈ Qp|x2 + ax+ bp is the minimal polynomial of z, a, b ∈ Z, 0 <

a ≦ 10,−10 ≤ b ≤ 10, ordp(a) = 0} and 100 elements in D we

observe periodicity by the Φ[−1,z]
0 continued fraction algorithm.

The elements in D denoted by D′ are generated by using pseudo-

random number generation algorithm given by Saito, Yamaguchi

[2016].

1∗ is the number of the periodic points in D′. 2∗ is the number

of the points in D′ such that the height of a remainder exceeds

10300 and we terminated the iteration.



Table 1 Φ[−1,z]
0 , z2 + az + bp = 0, α1 ∈ D′

prime number 1∗ 2∗

2 0 7800
3 0 11700
5 1 14399
7 2 16598

11 0 19000
13 0 19200
17 0 19600
19 0 19800
23 0 20000
29 0 20000
31 0 20000
37 0 20000
41 0 20000

prime number 1∗ 2∗

43 0 20000
47 0 20000
53 0 20000
59 0 20000
61 0 20000
67 0 20000
71 0 20000
73 0 20000
79 0 20000
83 0 20000
89 0 20000
97 0 20000



In Table 2 for the prime numbers p with 2 ≤ p ≤ 100 and {z ∈
Qp|x3 + ax + bp is the minimal polynomial of z, a, b ∈ Z, 0 < a ≦
10,−10 ≤ b ≤ 10, ordp(a) = 0} and 100 elements in D denoted

by D′ we observe periodicity by the Φ[−1,z]
1 continued fraction

algorithm. 1∗ is the number of the periodic points in D′. 2∗

is the number of the points in D′ such that the height of a

remainder exceeds 10300 and we terminated the iteration.



Table 2 Φ[−1,z]
1 , z3 + az + bp = 0, (α1, α2) ∈ D′

prime number 1∗ 2∗

2 7290 1110
3 10585 2015
5 12489 2311
7 14510 2690

11 16908 2292
13 17739 1461
17 18021 1379
19 17680 1920
23 18629 1171
29 18254 1546
31 18463 1337
37 19156 644
41 19314 486

prime number 1∗ 2∗

43 18487 1313
47 19536 464
53 19298 502
59 19779 21
61 19319 681
67 19563 237
71 19407 393
73 19514 286
79 19979 21
83 19197 603
89 19171 629
97 19351 649



Table 3 Φ[−1,z],(1)
2 , z3 + az + bp = 0, (α1, α2) ∈ D′

prime number 1∗ 2∗

2 8104 296
3 12157 443
5 14353 447
7 16933 267

11 18915 285
13 18978 222
17 19278 122
19 19495 105
23 19741 59
29 19756 44
31 19788 12
37 19724 76
41 19737 63

prime number 1∗ 2∗

43 19721 79
47 19995 5
53 19766 34
59 19749 51
61 19979 21
67 19795 5
71 19793 7
73 19785 15
79 19998 2
83 19793 7
89 19791 9
97 19962 38



Table 4 Φ[−1,z],(2)
2 , z3 + az + bp = 0, (α1, α2) ∈ D′

prime number 1∗ 2∗

2 8391 9
3 12599 1
5 14792 8
7 17200 1

11 19200 1
13 19199 1
17 19400 0
19 19600 0
23 19800 0
29 19800 0
31 19800 0
37 19800 0
41 19800 0

prime number 1∗ 2∗

43 19800 0
47 20000 0
53 19800 0
59 19800 0
61 20000 0
67 19800 0
71 19800 0
73 19800 0
79 20000 0
83 19800 0
89 19800 0
97 20000 0



Table 5 Φ[−1,z]
3 , z3 + az + bp = 0, (α1, α2) ∈ D′

prime number 1∗ 2∗

2 8398 2
3 12600 0
5 14800 0
7 17200 0

11 19200 0
13 19200 0
17 19400 0
19 19600 0
23 19800 0
29 19800 0
31 19800 0
37 19800 0
41 19800 0

prime number 1∗ 2∗

43 19800 0
47 20000 0
53 19800 0
59 19800 0
61 20000 0
67 19800 0
71 19800 0
73 19800 0
79 20000 0
83 19800 0
89 19800 0
97 20000 0



Table 6 Φ[−1,z]
3 , z4 + az + bp = 0, (α1, α2, α3) ∈ D′

prime number 1∗ 2∗

2 8099 1
3 12897 3
5 15200 0
7 17400 0

11 19600 0
13 19800 0
17 19700 0
19 19900 0
23 19900 0
29 19800 0
31 19800 0
37 19800 0
41 20000 0

prime number 1∗ 2∗

43 20000 0
47 20000 0
53 20000 0
59 19800 0
61 19800 0
67 19800 0
71 19900 0
73 19900 0
79 20000 0
83 20000 0
89 20000 0
97 20000 0



Table 7 Φ[−1,z]
3 , z5 + az + bp = 0, (α1, α2, α3, α4) ∈ D′

prime number 1∗ 2∗

2 8798 2
3 13199 1
5 15199 1
7 17600 0

11 19600 0
13 19800 0
17 19800 0
19 19800 0
23 19800 0
29 19800 0
31 20000 0
37 20000 0
41 19800 0

prime number 1∗ 2∗

43 19800 0
47 20000 0
53 20000 0
59 20000 0
61 20000 0
67 20000 0
71 20000 0
73 19999 1
79 20000 0
83 19800 0
89 19800 0
97 20000 0



Table 8 Φ[−1,z]
3 , z6 + az + bp = 0, (α1, α2, α3, α4, α5) ∈ D′

prime number 1∗ 2∗

2 9000 0
3 13400 0
5 15499 1
7 17600 0

11 19600 0
13 19800 0
17 19900 0
19 19900 0
23 19900 0
29 19900 0
31 19900 0
37 19900 0
41 19900 0

prime number 1∗ 2∗

43 20000 0
47 20000 0
53 20000 0
59 20000 0
61 20000 0
67 20000 0
71 20000 0
73 20000 0
79 19900 0
83 19900 0
89 20000 0
97 20000 0



Impression

We has not got an algorithm from c-map for which we can ex-

pect that Lagrange Theorem holds. In contrast we have some

multidimensional continued fraction algorithm(in Cn) for which

Lagrange Theorem holds or we can expect that Lagrange The-

orem holds.

For example, Pethő, Pohst, Bertḱ[2017], Tamura,Yasutomi[2009].

We will extend c-map.



Extension of c-map

Let Φ(α) = (ϕ(α), Fα, Aα) for α = (α1, . . . , αs)T ∈ D be a c-

map and γ : D → pZp ∩ Q be a map. We propose a p-adic

continued fraction via Φ and γ as follows: Let α = (α1, . . . , αs)T ∈
D. We set α(0) := α. α(1), α(2), . . . are defined inductively as

follows: We suppose that α(n) for n ∈ Z≥0 is defined. We set

α(n+1) := AαFα(α
(n)) + γ(α). We say that α has the affine c-

map continued fraction expansion {Φ′(α(0)),Φ′(α(1)), . . .}, where

Φ′(β) = (ϕ(β), Fβ, Aβ, γ(β)) for β ∈ D. We can easily see that

Theorem 1 holds for an affine c-map.



Affine c-map

For the c-map Φ[·,ϵ,z]
3 := (1, H[·,ϵ,z]

1 , τz(H
[·,ϵ,z]
1 )) we will define an

affine c-map. Let α = (α1, . . . , αs)T ∈ D and let β = (β1, . . . , βs)
T :=

τz(H
[ϵ,z]
1 (α)). Then, there exists a unique M = (mij) ∈ Ms×(s+1)(Q)

such that β = M(z, z2, . . . , zs,1)T . We define γ′(α) ∈ E by

γ′(α) := (−⟨m1s+1⟩p, . . . ,−⟨mss+1⟩p)T .

We define the affine c-map Φ[ϵ,z]
3A := (1, H[·,ϵ,z]

1 , τz(H
[·,ϵ,z]
1 ), γ′(·)).



Table 9 Φ[−1,z]
3A , z3 + az + bp = 0, (α1, α2) ∈ D′

prime number 1∗ 2∗

2 8400 0
3 12600 0
5 14800 0
7 17200 0

11 19200 0
13 19200 0
17 19400 0
19 19600 0
23 19800 0
29 19800 0
31 19800 0
37 19800 0
41 19800 0

prime number 1∗ 2∗

43 19800 0
47 20000 0
53 19800 0
59 19800 0
61 20000 0
67 19800 0
71 19800 0
73 19800 0
79 20000 0
83 19800 0
89 19800 0
97 20000 0



Table 10 Φ[−1,z]
3 , z4 + az + bp = 0, (α1, α2, α3) ∈ D′

prime number 1∗ 2∗

2 8100 0
3 12900 0
5 15200 0
7 17400 0

11 19600 0
13 19800 0
17 19700 0
19 19900 0
23 19900 0
29 19800 0
31 19800 0
37 19800 0
41 20000 0

prime number 1∗ 2∗

43 20000 0
47 20000 0
53 20000 0
59 19800 0
61 19800 0
67 19800 0
71 19900 0
73 19900 0
79 20000 0
83 20000 0
89 20000 0
97 20000 0



Table 11 Φ[−1,z]
3 , z5 + az + bp = 0, (α1, α2, α3, α4) ∈ D′

prime number 1∗ 2∗

2 8800 0
3 13200 0
5 15200 0
7 17600 0

11 19600 0
13 19800 0
17 19800 0
19 19800 0
23 19800 0
29 19800 0
31 20000 0
37 20000 0
41 19800 0

prime number 1∗ 2∗

43 19800 0
47 20000 0
53 20000 0
59 20000 0
61 20000 0
67 20000 0
71 20000 0
73 20000 0
79 20000 0
83 19800 0
89 19800 0
97 20000 0



Table 12 Φ[−1,z]
3A , z6 + az + bp = 0, (α1, α2, α3, α4, α5) ∈ D′

prime number 1∗ 2∗

2 9000 0
3 13400 0
5 15500 0
7 17600 0

11 19600 0
13 19800 0
17 19900 0
19 19900 0
23 19900 0
29 19900 0
31 19900 0
37 19900 0
41 19900 0

prime number 1∗ 2∗

43 20000 0
47 20000 0
53 20000 0
59 20000 0
61 20000 0
67 20000 0
71 20000 0
73 20000 0
79 19900 0
83 19900 0
89 20000 0
97 20000 0



Conjecture

Let p be any prime number and K be any finite extension of

Q with K ⊂ Qp. Let s + 1 be its degree over Q and z ∈ K be

any element with the condition (H) and K = Q(z). For every

α = (α1, . . . , αs) ∈ D which satisfies that 1, α1, . . . , αs is linearly

independent over Q α has a periodic Φ[ϵ,z]
3A continued fraction

expansion, where ϵ ∈ {−1,1}.

Remark. The conjecture holds for s = 1.



Conjecture of Conjecture

The proof of Conjecture is not so difficult.



Thank you very much!


