Random differences of arithmetic progressions in the primes

Tsz Ho Chan, Máté Wierdl (Both from University of Memphis) Sunny morning in Marseille on May 24, 2017.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

<□ > < @ > < E > < E > E のQ @

Motivation, history

Baby result

- Motivation, history
- Baby result
- Proof of Baby result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Motivation, history
- Baby result
- Proof of Baby result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Grownup results

- Motivation, history
- Baby result
- Proof of Baby result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Grownup results
- Conjectures

- Motivation, history
- Baby result
- Proof of Baby result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Grownup results
- Conjectures
- Farewell

2006, Green and Tao:

2006, Green and Tao: the primes contain arbitrary long arithmetic progressions.

(ロ)、(型)、(E)、(E)、 E) の(の)

2006, Green and Tao: the primes contain arbitrary long arithmetic progressions.

Can the difference of these progressions be from a prescribed set?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2006, Green and Tao: the primes contain arbitrary long arithmetic progressions.

Can the difference of these progressions be from a prescribed set? 2008, Tao and Ziegler:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2006, Green and Tao: the primes contain arbitrary long arithmetic progressions.

Can the difference of these progressions be from a prescribed set? 2008, Tao and Ziegler: The primes contain arbitrarily long arithmetic progressions the difference of which is a square:

2006, Green and Tao: the primes contain arbitrary long arithmetic progressions.

Can the difference of these progressions be from a prescribed set? 2008, Tao and Ziegler: The primes contain arbitrarily long arithmetic progressions the difference of which is a square: for infinitely many primes p and positive integers d,

Can the difference of these progressions be from a prescribed set? 2008, Tao and Ziegler: The primes contain arbitrarily long arithmetic progressions the difference of which is a square: for infinitely many primes p and positive integers d, the numbers $p, p + d^2, p + 2d^2, \ldots, p + \ell \cdot d^2$ are all primes.

Can the difference of these progressions be from a prescribed set? 2008, Tao and Ziegler: The primes contain arbitrarily long arithmetic progressions the difference of which is a square: for infinitely many primes p and positive integers d, the numbers $p, p + d^2, p + 2d^2, \ldots, p + \ell \cdot d^2$ are all primes. This was *not* new for $\ell = 1$.

Can the difference of these progressions be from a prescribed set? 2008, Tao and Ziegler: The primes contain arbitrarily long arithmetic progressions the difference of which is a square: for infinitely many primes p and positive integers d, the numbers $p, p + d^2, p + 2d^2, \ldots, p + \ell \cdot d^2$ are all primes. This was *not* new for $\ell = 1$.

Squares can be replaced by kth powers,

Can the difference of these progressions be from a prescribed set? 2008, Tao and Ziegler: The primes contain arbitrarily long arithmetic progressions the difference of which is a square: for infinitely many primes p and positive integers d, the numbers $p, p + d^2, p + 2d^2, \ldots, p + \ell \cdot d^2$ are all primes. This was *not* new for $\ell = 1$.

Squares can be replaced by *k*th powers, so $p, p + d^k, p + 2d^k, \dots, p + \ell \cdot d^k$ are all primes.

Randomly generated sequences as differences.

(ロ)、(型)、(E)、(E)、 E) の(の)

Randomly generated sequences as differences. We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads. This random sequence would have density 1/2.

Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads. This random sequence would have density 1/2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We want to consider 0 density sequences as well.

Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads. This random sequence would have density 1/2.

We want to consider 0 density sequences as well. For example, if we choose the integer *d* into the random sequence with probability $\frac{1}{2\sqrt{d}}$,

Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads. This random sequence would have density 1/2.

We want to consider 0 density sequences as well. For example, if we choose the integer *d* into the random sequence with probability $\frac{1}{2\sqrt{d}}$, then the random sequence increases like the squares,

Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads. This random sequence would have density 1/2.

We want to consider 0 density sequences as well. For example, if we choose the integer d into the random sequence with probability $\frac{1}{2\sqrt{d}}$, then the random sequence increases like the squares, the counting function is $\sim \sqrt{x}$.

Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads. This random sequence would have density 1/2.

We want to consider 0 density sequences as well. For example, if we choose the integer d into the random sequence with probability $\frac{1}{2\sqrt{d}}$, then the random sequence increases like the squares, the counting function is $\sim \sqrt{x}$.

If we choose the integer d into the random sequence with probability $\frac{1}{d}$,

Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads. This random sequence would have density 1/2.

We want to consider 0 density sequences as well. For example, if we choose the integer d into the random sequence with probability $\frac{1}{2\sqrt{d}}$, then the random sequence increases like the squares, the counting function is $\sim \sqrt{x}$.

If we choose the integer d into the random sequence with probability $\frac{1}{d}$, then the random sequence increases like a lacunary sequence

Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads. This random sequence would have density 1/2.

We want to consider 0 density sequences as well. For example, if we choose the integer d into the random sequence with probability $\frac{1}{2\sqrt{d}}$, then the random sequence increases like the squares, the counting function is $\sim \sqrt{x}$.

If we choose the integer d into the random sequence with probability $\frac{1}{d}$, then the random sequence increases like a lacunary sequence (like 2^d),

Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the random sequence if we have heads. This random sequence would have density 1/2.

We want to consider 0 density sequences as well. For example, if we choose the integer *d* into the random sequence with probability $\frac{1}{2\sqrt{d}}$, then the random sequence increases like the squares, the counting function is $\sim \sqrt{x}$.

If we choose the integer d into the random sequence with probability $\frac{1}{d}$, then the random sequence increases like a lacunary sequence (like 2^d), the counting function is $\sim \log x$.

くしゃ (雪) (雪) (雪) (雪) (雪) (

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \geq \ldots$ be a *decreasing* sequence of probabilities.

Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \geq \ldots$ be a *decreasing* sequence of probabilities. The σ_d is the probability with which we take d into the random sequence.

Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \geq \ldots$ be a *decreasing* sequence of probabilities. The σ_d is the probability with which we take d into the random sequence. Let $X_1, X_2, \ldots, X_d, \ldots$ be an independent sequence
Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \geq \ldots$ be a *decreasing* sequence of probabilities. The σ_d is the probability with which we take d into the random sequence. Let $X_1, X_2, \ldots, X_d, \ldots$ be an independent sequence of 0-1 valued random variables on a probability space (Ω, P) with

$$P(X_d = 1) = \sigma_d$$
$$P(X_d = 0) = 1 - \sigma_d$$

Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \geq \ldots$ be a *decreasing* sequence of probabilities. The σ_d is the probability with which we take d into the random sequence. Let $X_1, X_2, \ldots, X_d, \ldots$ be an independent sequence of 0-1 valued random variables on a probability space (Ω, P) with

$$P(X_d = 1) = \sigma_d$$

$$P(X_d = 0) = 1 - \sigma_d.$$

We think of the sequence $X_1(\omega), X_2(\omega), \ldots$ as the indicator of the set R^{ω}

Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \geq \ldots$ be a *decreasing* sequence of probabilities. The σ_d is the probability with which we take d into the random sequence. Let $X_1, X_2, \ldots, X_d, \ldots$ be an independent sequence of 0-1 valued random variables on a probability space (Ω, P) with

$$P(X_d = 1) = \sigma_d$$

$$P(X_d = 0) = 1 - \sigma_d.$$

We think of the sequence $X_1(\omega), X_2(\omega), \ldots$ as the indicator of the set R^{ω} defined by

$$R^{\omega} = \{d \mid X_d(\omega) = 1\}.$$

Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \geq \ldots$ be a *decreasing* sequence of probabilities. The σ_d is the probability with which we take d into the random sequence. Let $X_1, X_2, \ldots, X_d, \ldots$ be an independent sequence of 0-1 valued random variables on a probability space (Ω, P) with

$$P(X_d = 1) = \sigma_d$$

$$P(X_d = 0) = 1 - \sigma_d.$$

We think of the sequence $X_1(\omega), X_2(\omega), \ldots$ as the indicator of the set R^{ω} defined by

$$R^{\omega} = \{ d \mid X_d(\omega) = 1 \}.$$

We say that the random sequence has some given property

Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \geq \ldots$ be a *decreasing* sequence of probabilities. The σ_d is the probability with which we take d into the random sequence. Let $X_1, X_2, \ldots, X_d, \ldots$ be an independent sequence of 0-1 valued random variables on a probability space (Ω, P) with

$$P(X_d = 1) = \sigma_d$$

$$P(X_d = 0) = 1 - \sigma_d.$$

We think of the sequence $X_1(\omega), X_2(\omega), \ldots$ as the indicator of the set R^{ω} defined by

$$R^{\omega} = \{ d \mid X_d(\omega) = 1 \}.$$

We say that the random sequence has some given property if there is a set $\Omega' \subset \Omega$ with $P(\Omega') = 1$

Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \geq \ldots$ be a *decreasing* sequence of probabilities. The σ_d is the probability with which we take d into the random sequence. Let $X_1, X_2, \ldots, X_d, \ldots$ be an independent sequence of 0-1 valued random variables on a probability space (Ω, P) with

$$P(X_d = 1) = \sigma_d$$

$$P(X_d = 0) = 1 - \sigma_d.$$

We think of the sequence $X_1(\omega), X_2(\omega), \ldots$ as the indicator of the set R^{ω} defined by

$$R^{\omega} = \{ d \mid X_d(\omega) = 1 \}.$$

We say that the random sequence has some given property if there is a set $\Omega' \subset \Omega$ with $P(\Omega') = 1$ so that R^{ω} has the property for all $\omega \in \Omega'$.

<ロ>

Random squares property:

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \dots, r_d, \dots\}$ almost surely satisfies $r_d \sim d^2$.

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \dots, r_d, \dots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d$

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \dots, r_d, \dots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d$

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \dots, r_d, \dots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \sigma_d$

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \dots, r_d, \dots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$.

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \ldots, r_d, \ldots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$. Which suggests to take $\sigma_d = \frac{1}{2}d^{-1/2}$.

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \ldots, r_d, \ldots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$. Which suggests to take $\sigma_d = \frac{1}{2}d^{-1/2}$.

For random kth powers,

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \ldots, r_d, \ldots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$. Which suggests to take $\sigma_d = \frac{1}{2}d^{-1/2}$.

For random kth powers, $R^{\omega}(x) \sim x^{1/k}$,

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \ldots, r_d, \ldots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$. Which suggests to take $\sigma_d = \frac{1}{2}d^{-1/2}$.

For random kth powers, $R^{\omega}(x) \sim x^{1/k}$, so $\sigma_d = \frac{1}{k} \cdot d^{-1+1/k}$.

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \dots, r_d, \dots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$. Which suggests to take $\sigma_d = \frac{1}{2}d^{-1/2}$.

For random *k*th powers, $R^{\omega}(x) \sim x^{1/k}$, so $\sigma_d = \frac{1}{k} \cdot d^{-1+1/k}$. In general,

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \ldots, r_d, \ldots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$. Which suggests to take $\sigma_d = \frac{1}{2}d^{-1/2}$.

For random *k*th powers, $R^{\omega}(x) \sim x^{1/k}$, so $\sigma_d = \frac{1}{k} \cdot d^{-1+1/k}$. In general, by the strong law of large numbers,

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \ldots, r_d, \ldots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$. Which suggests to take $\sigma_d = \frac{1}{2}d^{-1/2}$.

For random kth powers, $R^{\omega}(x) \sim x^{1/k}$, so $\sigma_d = \frac{1}{k} \cdot d^{-1+1/k}$. In general, by the strong law of large numbers, R^{ω} is an infinite set iff

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \ldots, r_d, \ldots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$. Which suggests to take $\sigma_d = \frac{1}{2}d^{-1/2}$.

For random kth powers, $R^{\omega}(x) \sim x^{1/k}$, so $\sigma_d = \frac{1}{k} \cdot d^{-1+1/k}$. In general, by the strong law of large numbers, R^{ω} is an infinite set iff $\sum_d \sigma_d = \infty$,

Random squares property: We require that the random sequence $R^{\omega} = \{r_1, r_2, \ldots, r_d, \ldots\}$ almost surely satisfies $r_d \sim d^2$. The expected counting function should be $\mathbb{E} \sum_{d \leq x} X_d = \sum_{d \leq x} \mathbb{E} X_d = \sum_{d \leq x} \sigma_d = x^{1/2}$. Which suggests to take $\sigma_d = \frac{1}{2}d^{-1/2}$.

For random *k*th powers, $R^{\omega}(x) \sim x^{1/k}$, so $\sigma_d = \frac{1}{k} \cdot d^{-1+1/k}$. In general, by the strong law of large numbers, R^{ω} is an infinite set iff $\sum_d \sigma_d = \infty$, and then $R^{\omega}(x) \sim \sum_{d \leq x} \sigma_d$.

Proposition: Random square is ℓ -intersector for the primes

Proposition: Random square is $\ell\text{-intersector}$ for the primes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume $\sigma_d = d^{-1/2}$.

Proposition: Random square is $\ell\text{-intersector}$ for the primes

Assume $\sigma_d = d^{-1/2}$.

Then for every positive ℓ , the random set R^{ω} is an ℓ -intersector set for the primes:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition: Random square is ℓ -intersector for the primes

Assume $\sigma_d = d^{-1/2}$. Then for every positive ℓ , the random set R^{ω} is an ℓ -intersector set for the primes: there are infinitely many primes p and $r \in R^{\omega}$

Proposition: Random square is ℓ -intersector for the primes Assume $\sigma_d = d^{-1/2}$. Then for every positive ℓ , the random set R^{ω} is an ℓ intersector set for the primes: there are infinitely many primes p and $r \in R^{\omega}$ for which the $\ell+1$ numbers $p, p+r, \ldots, p+\ell r$ are primes.

Proposition: Random square is ℓ -intersector for the primes Assume $\sigma_d = d^{-1/2}$. Then for every positive ℓ , the random set R^{ω} is an ℓ intersector set for the primes: there are infinitely many primes p and $r \in R^{\omega}$ for which the $\ell+1$ numbers $p, p+r, \ldots, p+\ell r$ are primes.

Setting $\sigma_d = d^{-1/2}$ is not the best we can do. In fact, the best possible can be achieved:

Assume $\sigma_d = d^{-1/2}$. Then for every positive ℓ , the random set R^{ω} is an ℓ -intersector set for the primes: there are infinitely many primes p and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p+r, \ldots, p+\ell r$ are primes.

Proposition: Random square is ℓ -intersector for the primes

Setting $\sigma_d = d^{-1/2}$ is not the best we can do. In fact, the best possible can be achieved: we just have to make sure that R^{ω} is an infinite set,

Assume $\sigma_d = d^{-1/2}$. Then for every positive ℓ , the random set R^{ω} is an ℓ -intersector set for the primes: there are infinitely many primes p and $r \in R^{\omega}$ for which the $\ell+1$ numbers $p, p+r, \ldots, p+\ell r$ are primes.

Proposition: Random square is ℓ -intersector for the primes

Setting $\sigma_d = d^{-1/2}$ is not the best we can do. In fact, the best possible can be achieved: we just have to make sure that R^{ω} is an infinite set, that is

$$\sum_{d} \sigma_{d} = \infty.$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 ∽��?

 $\ell = 2$ is general enough.

 $\ell=2$ is general enough. Black-box: Green and Tao

 $\ell=2$ is general enough. Black-box: Green and Tao (actually, in this case, van der Corput).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\ell=2$ is general enough. Black-box: Green and Tao (actually, in this case, van der Corput).

Let f be the indicator of the set of primes \mathcal{P} .
$\ell=2$ is general enough. Black-box: Green and Tao (actually, in this case, van der Corput).

Let f be the indicator of the set of primes \mathcal{P} . Green and Tao proved

$$\frac{1}{x}\sum_{x/2\leq d\leq x}\frac{1}{x/\log^3 x}\sum_{n\leq x}f(n)\cdot f(n+d)\cdot f(n+2d)>c>0, \text{ for large } x.$$

 $\ell=2$ is general enough. Black-box: Green and Tao (actually, in this case, van der Corput).

Let f be the indicator of the set of primes \mathcal{P} . Green and Tao proved

$$\frac{1}{x}\sum_{x/2\leq d\leq x}\frac{1}{x/\log^3 x}\sum_{n\leq x}f(n)\cdot f(n+d)\cdot f(n+2d)>c>0, \text{ for large } x.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We randomize the differences d, and we prove that

 $\ell=2$ is general enough. Black-box: Green and Tao (actually, in this case, van der Corput).

Let f be the indicator of the set of primes \mathcal{P} . Green and Tao proved

$$\frac{1}{x}\sum_{x/2\leq d\leq x}\frac{1}{x/\log^3 x}\sum_{n\leq x}f(n)\cdot f(n+d)\cdot f(n+2d)>c>0, \text{ for large } x.$$

We randomize the differences d, and we prove that

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le d \le x} X_d(\omega) \cdot \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \gg c,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\ell=2$ is general enough. Black-box: Green and Tao (actually, in this case, van der Corput).

Let f be the indicator of the set of primes \mathcal{P} . Green and Tao proved

$$\frac{1}{x}\sum_{x/2\leq d\leq x}\frac{1}{x/\log^3 x}\sum_{n\leq x}f(n)\cdot f(n+d)\cdot f(n+2d)>c>0, \text{ for large } x.$$

We randomize the differences d, and we prove that

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le d \le x} X_d(\omega) \cdot \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \gg c,$$

or, with $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \leq x} f(n) \cdot f(n+d) \cdot f(n+2d)$,

 $\ell=2$ is general enough. Black-box: Green and Tao (actually, in this case, van der Corput).

Let f be the indicator of the set of primes \mathcal{P} . Green and Tao proved

$$\frac{1}{x}\sum_{x/2\leq d\leq x}\frac{1}{x/\log^3 x}\sum_{n\leq x}f(n)\cdot f(n+d)\cdot f(n+2d)>c>0, \text{ for large } x.$$

We randomize the differences d, and we prove that

$$\frac{1}{\sum_{x/2 \leq d \leq x} \sigma_d} \sum_{x/2 \leq d \leq x} X_d(\omega) \cdot \frac{1}{x/\log^3 x} \sum_{n \leq x} f(n) \cdot f(n+d) \cdot f(n+2d) \gg c,$$

or, with
$$A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \leq x} f(n) \cdot f(n+d) \cdot f(n+2d)$$
,

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

So we want

 $\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So we want

 $\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$

Take "expectation":

So we want

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Take "expectation": replace X_d by σ_d .

So we want

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Take "expectation": replace X_d by σ_d . We claim

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} \sigma_d \cdot A_{x,d}$$

So we want

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

Take "expectation": replace X_d by σ_d . We claim

$$\frac{1}{\sum_{x/2 \leq d \leq x} \sigma_d} \sum_{x/2 \leq n \leq x} \sigma_d \cdot A_{x,d} \gg c.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

So we want

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

Take "expectation": replace X_d by σ_d . We claim

$$\frac{1}{\sum_{x/2 \leq d \leq x} \sigma_d} \sum_{x/2 \leq n \leq x} \sigma_d \cdot A_{x,d} \gg c.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

This is because $\sigma_d = d^{-1/2}$

So we want

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

Take "expectation": replace X_d by σ_d . We claim

$$\frac{1}{\sum_{x/2 \leq d \leq x} \sigma_d} \sum_{x/2 \leq n \leq x} \sigma_d \cdot A_{x,d} \gg c.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

This is because $\sigma_d = d^{-1/2} \sim x^{-1/2}$

So we want

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

Take "expectation": replace X_d by σ_d . We claim

$$\frac{1}{\sum_{x/2 \leq d \leq x} \sigma_d} \sum_{x/2 \leq n \leq x} \sigma_d \cdot A_{x,d} \gg c.$$

This is because $\sigma_d = d^{-1/2} \sim x^{-1/2}$ for $x/2 \le d \le x$,

So we want

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

Take "expectation": replace X_d by σ_d . We claim

$$\frac{1}{\sum_{x/2 \leq d \leq x} \sigma_d} \sum_{x/2 \leq n \leq x} \sigma_d \cdot A_{x,d} \gg c.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This is because $\sigma_d = d^{-1/2} \sim x^{-1/2}$ for $x/2 \le d \le x$, so $\sum_{x/2 \le d \le x} \sigma_d \sim x^{1/2}$

So we want

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

Take "expectation": replace X_d by σ_d . We claim

$$\frac{1}{\sum_{x/2 \leq d \leq x} \sigma_d} \sum_{x/2 \leq n \leq x} \sigma_d \cdot A_{x,d} \gg c.$$

This is because $\sigma_d = d^{-1/2} \sim x^{-1/2}$ for $x/2 \le d \le x$, so $\sum_{x/2 \le d \le x} \sigma_d \sim x^{1/2}$, so the left hand side is a constant multiple of $\frac{1}{x} \sum_{x/2 \le d \le x} A_{x,d}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

So we want

$$\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} X_d(\omega) \cdot A_{x,d} \gg c \text{ with probability 1.}$$

Take "expectation": replace X_d by σ_d . We claim

$$\frac{1}{\sum_{x/2 \leq d \leq x} \sigma_d} \sum_{x/2 \leq n \leq x} \sigma_d \cdot A_{x,d} \gg c.$$

This is because $\sigma_d = d^{-1/2} \sim x^{-1/2}$ for $x/2 \le d \le x$, so $\sum_{x/2 \le d \le x} \sigma_d \sim x^{1/2}$, so the left hand side is a constant multiple of $\frac{1}{x} \sum_{x/2 \le d \le x} A_{x,d}$ which, by Green-Tao > c.

・ロト・西ト・ヨト・ヨー シック

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\epsilon_x \to 0$ slowly.

Want then

$$\lim_{x \to \infty} \frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{n \le x} (X_d(\omega) - \sigma_d) \cdot A_{x,d} = 0 \text{ with probability 1.}$$

Let $\epsilon_x \to 0$ slowly. Since $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

Let $\epsilon_x \to 0$ slowly. Since $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \le (\log x)^2$,

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

Let $\epsilon_x \to 0$ slowly. Since $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \le (\log x)^2$, the rvs $Y_{x,d} = (X_d(\omega) - \sigma_d) \cdot A_{x,d}$ are

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

Let $\epsilon_x \to 0$ slowly. Since $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \le (\log x)^2$, the rvs $Y_{x,d} = (X_d(\omega) - \sigma_d) \cdot A_{x,d}$ are orthogonal,

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

Let
$$\epsilon_x \to 0$$
 slowly. Since
 $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \le (\log x)^2$, the rvs
 $Y_{x,d} = (X_d(\omega) - \sigma_d) \cdot A_{x,d}$ are orthogonal, and
 $EY_{x,d}^2 \le \sigma_d \cdot (\log x)^4$,

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

Let
$$\epsilon_x \to 0$$
 slowly. Since
 $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \le (\log x)^2$, the rvs
 $Y_{x,d} = (X_d(\omega) - \sigma_d) \cdot A_{x,d}$ are orthogonal, and
 $EY_{x,d}^2 \le \sigma_d \cdot (\log x)^4$, Chebishev gives

$$\begin{split} P\left(\left|\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} (X_d(\omega) - \sigma_d) \cdot A_{x,d}\right| > \epsilon_x\right) \\ \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{\cdot \sum_{x/2 \le d \le x} \sigma_d} \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{x^{1/2}}. \end{split}$$

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

Let
$$\epsilon_x \to 0$$
 slowly. Since
 $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \le (\log x)^2$, the rvs
 $Y_{x,d} = (X_d(\omega) - \sigma_d) \cdot A_{x,d}$ are orthogonal, and
 $EY_{x,d}^2 \le \sigma_d \cdot (\log x)^4$, Chebishev gives

$$\begin{split} P\left(\left|\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} (X_d(\omega) - \sigma_d) \cdot A_{x,d}\right| > \epsilon_x\right) \\ \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{\cdot \sum_{x/2 \le d \le x} \sigma_d} \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{x^{1/2}}. \end{split}$$

Want to use Borel-Cantelli,

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

Let
$$\epsilon_x \to 0$$
 slowly. Since
 $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \le (\log x)^2$, the rvs
 $Y_{x,d} = (X_d(\omega) - \sigma_d) \cdot A_{x,d}$ are orthogonal, and
 $EY_{x,d}^2 \le \sigma_d \cdot (\log x)^4$, Chebishev gives

$$\begin{split} P\left(\left|\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} (X_d(\omega) - \sigma_d) \cdot A_{x,d}\right| > \epsilon_x\right) \\ \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{\cdot \sum_{x/2 \le d \le x} \sigma_d} \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{x^{1/2}}. \end{split}$$

Want to use Borel-Cantelli, but the right hand side is summable along only a subsequence of x,

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

Let
$$\epsilon_x \to 0$$
 slowly. Since
 $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \le (\log x)^2$, the rvs
 $Y_{x,d} = (X_d(\omega) - \sigma_d) \cdot A_{x,d}$ are orthogonal, and
 $EY_{x,d}^2 \le \sigma_d \cdot (\log x)^4$, Chebishev gives

$$\begin{split} P\left(\left|\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} (X_d(\omega) - \sigma_d) \cdot A_{x,d}\right| > \epsilon_x\right) \\ & \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{\cdot \sum_{x/2 \le d \le x} \sigma_d} \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{x^{1/2}}. \end{split}$$

Want to use Borel-Cantelli, but the right hand side is summable along only a subsequence of x, but that's enough. A = A = A = A = A

Want then

$$\lim_{x\to\infty}\frac{1}{\sum_{x/2\leq d\leq x}\sigma_d}\sum_{n\leq x}(X_d(\omega)-\sigma_d)\cdot A_{x,d}=0 \text{ with probability 1.}$$

Let
$$\epsilon_x \to 0$$
 slowly. Since
 $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d) \le (\log x)^2$, the rvs
 $Y_{x,d} = (X_d(\omega) - \sigma_d) \cdot A_{x,d}$ are orthogonal, and
 $EY_{x,d}^2 \le \sigma_d \cdot (\log x)^4$, Chebishev gives

$$\begin{split} P\left(\left|\frac{1}{\sum_{x/2 \le d \le x} \sigma_d} \sum_{x/2 \le n \le x} (X_d(\omega) - \sigma_d) \cdot A_{x,d}\right| > \epsilon_x\right) \\ & \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{\cdot \sum_{x/2 \le d \le x} \sigma_d} \le \frac{1}{\epsilon_x^2} \cdot \frac{(\log x)^4}{x^{1/2}}. \end{split}$$

Want to use Borel-Cantelli, but the right hand side is summable along only a subsequence of x, but that's enough.

What made the proof simple?

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d .

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes like primes in a fixed arithmetic progression,

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes like primes in a fixed arithmetic progression, and primes of the form $p = [n\alpha]$ for a fixed irrational α .
What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes like primes in a fixed arithmetic progression, and primes of the form $p = [n\alpha]$ for a fixed irrational α .

Theorem: Random *l*-intersector set

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes like primes in a fixed arithmetic progression, and primes of the form $p = [n\alpha]$ for a fixed irrational α .

Theorem: Random *l*-intersector set

```
Let \ell be a positive integer,
```

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes like primes in a fixed arithmetic progression, and primes of the form $p = [n\alpha]$ for a fixed irrational α .

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0.$

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes like primes in a fixed arithmetic progression, and primes of the form $p = [n\alpha]$ for a fixed irrational α .

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set:

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes like primes in a fixed arithmetic progression, and primes of the form $p = [n\alpha]$ for a fixed irrational α .

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{\chi^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes,

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes like primes in a fixed arithmetic progression, and primes of the form $p = [n\alpha]$ for a fixed irrational α .

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$

What made the proof simple? The averages $A_{x,d} = \frac{1}{x/\log^3 x} \sum_{n \le x} f(n) \cdot f(n+d) \cdot f(n+2d)$ formed a single sequence, since f, the indicator of the primes, was fixed so $A_{x,d}$ could be incorporated into the random variable X_d . We want the randomly selected set of differences work simultaneously for all positive density subsequences of the primes like primes in a fixed arithmetic progression, and primes of the form $p = [n\alpha]$ for a fixed irrational α .

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

This is not the best known for small ℓ .

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

This is not the best known for small ℓ . For $\ell = 1$, the theorem's assumption is that for some positive $\epsilon \liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1/2 + \epsilon}} > 0$,

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

This is not the best known for small ℓ . For $\ell = 1$, the theorem's assumption is that for some positive $\epsilon \liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1/2+\epsilon}} > 0$, so doesn't reach random squares,

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

This is not the best known for small ℓ . For $\ell = 1$, the theorem's assumption is that for some positive $\epsilon \liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1/2 + \epsilon}} > 0$, so doesn't reach random squares, while we have $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{(\log x)^{3 + \epsilon}} > 0.$

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

This is not the best known for small ℓ . For $\ell = 1$, the theorem's assumption is that for some positive $\epsilon \liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1/2+\epsilon}} > 0$, so doesn't reach random squares, while we have

$$\begin{split} & \liminf_{x\to\infty} \frac{\sum_{d\leq x}\sigma_d}{(\log x)^{3+\epsilon}} > 0. \ \text{For} \ \ell = 2 \text{, the theorem's assumption is} \\ & \liminf_{x\to\infty} \frac{\sum_{d\leq x}\sigma_d}{x^{2/3+\epsilon}} > 0 \text{,} \end{split}$$

(日) (同) (三) (三) (三) (○) (○)

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

This is not the best known for small ℓ . For $\ell = 1$, the theorem's assumption is that for some positive $\epsilon \liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1/2+\epsilon}} > 0$, so doesn't reach random squares, while we have

$$\begin{split} &\lim \inf_{x\to\infty} \frac{\sum_{d\leq x}\sigma_d}{(\log x)^{3+\epsilon}} > 0. \ \text{For } \ell = 2, \text{ the theorem's assumption is} \\ &\lim \inf_{x\to\infty} \frac{\sum_{d\leq x}\sigma_d}{x^{2/3+\epsilon}} > 0, \text{ but enough to assume} \\ &\lim \inf_{x\to\infty} \frac{\sum_{d\leq x}\sigma_d}{x^{1/2+\epsilon}} > 0. \end{split}$$

Theorem: Random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

This is not the best known for small ℓ . For $\ell = 1$, the theorem's assumption is that for some positive $\epsilon \liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{x^{1/2 + \epsilon}} > 0$, so doesn't reach random squares, while we have

$$\begin{split} &\lim \inf_{x \to \infty} \frac{\sum_{d \leq x} \sigma_d}{(\log x)^{3+\epsilon}} > 0. \ \text{For } \ell = 2, \ \text{the theorem's assumption is} \\ &\lim \inf_{x \to \infty} \frac{\sum_{d \leq x} \sigma_d}{x^{2/3+\epsilon}} > 0, \ \text{but enough to assume} \\ &\lim \inf_{x \to \infty} \frac{\sum_{d \leq x} \sigma_d}{x^{1/2+\epsilon}} > 0. \ \text{Is } \liminf_{x \to \infty} \frac{\sum_{d \leq x} \sigma_d}{x^{1/2}} > 0 \ \text{enough?} \end{split}$$

The theorem's assumption is $\liminf_{x\to\infty}\frac{\sum_{d\le x}\sigma_d}{x^{1-1/(\ell+1)+\epsilon}}>0.$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The theorem's assumption is $\liminf_{x\to\infty}\frac{\sum_{d\le x}\sigma_d}{x^{1-1/(\ell+1)+\epsilon}}>0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conjecture: Size of random *l*-intersector set

The theorem's assumption is $\liminf_{x\to\infty} \frac{\sum_{d\leq x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0.$

Conjecture: Size of random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{(\log x)^{2\ell+1+\epsilon}} > 0.$

The theorem's assumption is $\liminf_{x\to\infty}\frac{\sum_{d\le x}\sigma_d}{x^{1-1/(\ell+1)+\epsilon}}>0.$

Conjecture: Size of random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{(\log x)^{2\ell + 1 + \epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set:

The theorem's assumption is $\liminf_{x\to\infty}\frac{\sum_{d\le x}\sigma_d}{x^{1-1/(\ell+1)+\epsilon}}>0.$

Conjecture: Size of random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{(\log x)^{2\ell+1+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

The theorem's assumption is $\liminf_{x\to\infty} \frac{\sum_{d\leq x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0.$

Conjecture: Size of random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{(\log x)^{2\ell+1+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

Conjecture: Sharpness for $\ell = 1$

The theorem's assumption is $\liminf_{x\to\infty} \frac{\sum_{d\leq x} \sigma_d}{x^{1-1/(\ell+1)+\epsilon}} > 0.$

Conjecture: Size of random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{(\log x)^{2\ell+1+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

Conjecture: Sharpness for $\ell = 1$

If
$$\sup_{x} \frac{\sum_{d \leq x} \sigma_d}{(\log x)^3} < \infty$$
 then the random set R^{ω} is not intersective:

The theorem's assumption is $\liminf_{x\to\infty}\frac{\sum_{d\le x}\sigma_d}{x^{1-1/(\ell+1)+\epsilon}}>0.$

Conjecture: Size of random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{(\log x)^{2\ell+1+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

Conjecture: Sharpness for $\ell = 1$

If $\sup_{x} \frac{\sum_{d \leq x} \sigma_d}{(\log x)^3} < \infty$ then the random set R^{ω} is not intersective: there is an irrational $\alpha = \alpha(\omega)$ so that for any two primes $p_1 < p_2$ of the form $p_i = [n_i \alpha]$,

The theorem's assumption is $\liminf_{x\to\infty}\frac{\sum_{d\le x}\sigma_d}{x^{1-1/(\ell+1)+\epsilon}}>0.$

Conjecture: Size of random *l*-intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{(\log x)^{2\ell+1+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

Conjecture: Sharpness for $\ell = 1$

If $\sup_{x} \frac{\sum_{d \leq x} \sigma_d}{(\log x)^3} < \infty$ then the random set R^{ω} is not intersective: there is an irrational $\alpha = \alpha(\omega)$ so that for any two primes $p_1 < p_2$ of the form $p_i = [n_i \alpha], p_2 - p_1 \notin R^{\omega}$.

Farewell

Farewell

Thanks for listening.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Farewell

Thanks for listening.

Conjecture: Random ℓ -intersector set

Let ℓ be a positive integer, and let the probabilities σ_d satisfy, for some $\epsilon > 0$, $\liminf_{x \to \infty} \frac{\sum_{d \le x} \sigma_d}{(\log x)^{2\ell+1+\epsilon}} > 0$. Then the random sequence R^{ω} is an ℓ -intersector set: for any positive density subset A of the primes, there are infinitely many $p \in A$ and $r \in R^{\omega}$ for which the $\ell + 1$ numbers $p, p + r, \ldots, p + \ell r$ are all in A.

Conjecture: Sharpness for $\ell = 1$

If $\sup_{x} \frac{\sum_{d \leq x} \sigma_d}{(\log x)^3} < \infty$ then the random set R^{ω} is not intersective: there is an irrational $\alpha = \alpha(\omega)$ so that for any two primes $p_1 < p_2$ of the form $p_i = [n_i \alpha]$, $p_2 - p_1 \notin R^{\omega}$.