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Motivation, history

2006, Green and Tao: the primes contain arbitrary long arithmetic
progressions.

Can the difference of these progressions be from a prescribed set?

2008, Tao and Ziegler: The primes contain arbitrarily long
arithmetic progressions the difference of which is a square: for
infinitely many primes p and positive integers d , the numbers
p, p + d2, p + 2d2, . . . , p + ` · d2 are all primes. This was not new
for ` = 1.

Squares can be replaced by kth powers, so
p, p + dk , p + 2dk , . . . , p + ` · dk are all primes.
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(Motivation, history cont’d)

Randomly generated sequences as differences.
We repeatedly flip a coin, and we take the integer d into the
random sequence if we have heads. This random sequence would
have density 1/2.

We want to consider 0 density sequences as well. For example, if
we choose the integer d into the random sequence with probability
1

2
√
d

, then the random sequence increases like the squares, the

counting function is ∼
√
x .

If we choose the integer d into the random sequence with
probability 1

d , then the random sequence increases like a lacunary
sequence ( like 2d), the counting function is ∼ log x .
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Definition: Property of the random sequence

Let σ1 ≥ σ2 ≥ · · · ≥ σd ≥ . . . be a decreasing sequence of
probabilities. The σd is the probability with which we take
d into the random sequence. Let X1,X2, . . . ,Xd , . . . be an
independent sequence of 0− 1 valued random variables on a
probability space (Ω,P) with

P(Xd = 1) = σd

P(Xd = 0) = 1− σd .

We think of the sequence X1(ω),X2(ω), . . . as the indicator
of the set Rω defined by

Rω = {d | Xd(ω) = 1}.

We say that the random sequence has some given property
if there is a set Ω′ ⊂ Ω with P(Ω′) = 1 so that Rω has the
property for all ω ∈ Ω′.
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Model for random squares

Random squares property: We require that the random sequence
Rω = {r1, r2, . . . , rd , . . .} almost surely satisfies rd ∼ d2.
The expected counting function should be
E
∑

d≤x Xd =
∑

d≤x EXd =
∑

d≤x σd = x1/2.

Which suggests to take σd = 1
2d
−1/2.

For random kth powers, Rω(x) ∼ x1/k , so σd = 1
k · d

−1+1/k .
In general, by the strong law of large numbers, Rω is an infinite set
iff
∑

d σd =∞, and then Rω(x) ∼
∑

d≤x σd .
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For random kth powers, Rω(x) ∼ x1/k , so σd = 1
k · d

−1+1/k .
In general, by the strong law of large numbers, Rω is an infinite set
iff
∑

d σd =∞, and then Rω(x) ∼
∑

d≤x σd .
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Baby result

Proposition: Random square is `-intersector for the primes

Assume σd = d−1/2.
Then for every positive `, the random set Rω is an `-
intersector set for the primes: there are infinitely many primes
p and r ∈ Rω for which the `+1 numbers p, p+ r , . . . , p+`r
are primes.

Setting σd = d−1/2 is not the best we can do. In fact, the best
possible can be achieved: we just have to make sure that Rω is an
infinite set, that is ∑

d

σd =∞.
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Proof of Baby result

` = 2 is general enough. Black-box: Green and Tao (actually, in
this case, van der Corput).
Let f be the indicator of the set of primes P. Green and Tao
proved

1

x

∑
x/2≤d≤x

1

x/ log3 x

∑
n≤x

f (n)·f (n+d)·f (n+2d) > c > 0, for large x .

We randomize the differences d , and we prove that

1∑
x/2≤d≤x σd

∑
x/2≤d≤x

Xd(ω)· 1

x/ log3 x

∑
n≤x

f (n)·f (n+d)·f (n+2d)� c ,

or, with Ax ,d = 1
x/ log3 x

∑
n≤x f (n) · f (n + d) · f (n + 2d),

1∑
x/2≤d≤x σd

∑
n≤x

Xd(ω) · Ax ,d � c with probability 1.
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(Proof of Baby result cont’d)

So we want

1∑
x/2≤d≤x σd

∑
x/2≤n≤x

Xd(ω) · Ax ,d � c with probability 1.

Take “expectation”: replace Xd by σd . We claim

1∑
x/2≤d≤x σd

∑
x/2≤n≤x

σd · Ax ,d � c .

This is because σd = d−1/2 ∼ x−1/2 for x/2 ≤ d ≤ x , so∑
x/2≤d≤x σd ∼ x1/2 , so the left hand side is a constant multiple

of 1
x

∑
x/2≤d≤x Ax ,d which, by Green-Tao > c .
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Grownup results
What made the proof simple?

The averages
Ax ,d = 1

x/ log3 x

∑
n≤x f (n) · f (n + d) · f (n + 2d) formed a single

sequence, since f , the indicator of the primes, was fixed so Ax ,d

could be incorporated into the random variable Xd . We want the
randomly selected set of differences work simultaneously for all
positive density subsequences of the primes like primes in a fixed
arithmetic progression, and primes of the form p = [nα] for a fixed
irrational α.

Theorem: Random `-intersector set

Let ` be a positive integer, and let the probabilities σd satisfy,

for some ε > 0, lim inf
x→∞

∑
d≤x σd

x1−1/(`+1)+ε
> 0.

Then the random sequence Rω is an `-intersector set: for any
positive density subset A of the primes, there are infinitely
many p ∈ A and r ∈ Rω for which the `+ 1 numbers p, p +
r , . . . , p + `r are all in A.
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Conjectures

The theorem’s assumption is lim infx→∞

∑
d≤x σd

x1−1/(`+1)+ε > 0.

Conjecture: Size of random `-intersector set

Let ` be a positive integer, and let the probabilities σd satisfy,

for some ε > 0, lim inf
x→∞

∑
d≤x σd

(log x)2`+1+ε
> 0.

Then the random sequence Rω is an `-intersector set: for any
positive density subset A of the primes, there are infinitely
many p ∈ A and r ∈ Rω for which the `+ 1 numbers p, p +
r , . . . , p + `r are all in A.

Conjecture: Sharpness for ` = 1

If sup
x

∑
d≤x σd

(log x)3
< ∞ then the random set Rω is not inter-

sective: there is an irrational α = α(ω) so that for any two
primes p1 < p2 of the form pi = [niα], p2 − p1 /∈ Rω.
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