Random differences of arithmetic progressions in the primes

Tsz Ho Chan, M&té Wierdl (Both from University of Memphis)
Sunny morning in Marseille on May 24, 2017.
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2006, Green and Tao: the primes contain arbitrary long arithmetic
progressions.

Can the difference of these progressions be from a prescribed set?

2008, Tao and Ziegler: The primes contain arbitrarily long
arithmetic progressions the difference of which is a square: for
infinitely many primes p and positive integers d, the numbers
p,p+d? p+2d? ...,p+L-d? are all primes. This was not new
for £ =1.

Squares can be replaced by kth powers, so
p,p+d< p+2d*, ... .p+¢-d¥ are all primes.
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Randomly generated sequences as differences.

We repeatedly flip a coin, and we take the integer d into the
random sequence if we have heads. This random sequence would
have density 1/2.

We want to consider 0 density sequences as well. For example, if
we choose the integer d into the random sequence with probability
2f then the random sequence increases like the squares, the
counting function is ~ /x.

If we choose the integer d into the random sequence with
probability %, then the random sequence increases like a lacunary
sequence ( like 29), the counting function is ~ log x.
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Definition: Property of the random sequence

Let 01 > 09 > --- > 04 > ... be a decreasing sequence of
probabilities. The o4 is the probability with which we take
d into the random sequence. Let X, X5,...,Xy,... be an

independent sequence of 0 — 1 valued random variables on a
probability space (€2, P) with

P(Xd = 1) = 0d

P(Xd = O) =1 — 0.

We think of the sequence Xi(w), X2(w), ... as the indicator
of the set R“ defined by

R® = {d | Xy(w) = 1}.

We say that the random sequence has some given property
if there is a set Q' C Q with P(Q') = 1 so that R¥ has the
property for all w € Q'.
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Model for random squares

Random squares property. We require that the random sequence
R“ ={r,rm,...,rq,...} almost surely satisfies ry ~ d?.

The expected counting function should be

E Zd§X Xd = Zd§X EXd = ngx 0d = Xl/z'

Which suggests to take o4 = %d‘1/2.

For random kth powers, R¥(x) ~ xVk so g = % . d Lk
In general, by the strong law of large numbers, R“ is an infinite set
iff >y 0a = o0, and then R¥(x) ~ > ., 04.



Baby result



Baby result

Proposition: Random square is ¢-intersector for the primes




Baby result

Proposition: Random square is ¢-intersector for the primes

Assume o4 = d-1/2




Baby result

Proposition: Random square is ¢-intersector for the primes

Assume o4 = d-1/2

Then for every positive ¢, the random set R“ is an (-
intersector set for the primes:




Baby result

Proposition: Random square is ¢-intersector for the primes

Assume o4 = d-1/2

Then for every positive ¢, the random set R“ is an (-
intersector set for the primes: there are infinitely many primes
pand r € R¥




Baby result

Proposition: Random square is /-intersector for the primes

Assume o4 = d-1/2

Then for every positive ¢, the random set R“ is an (-
intersector set for the primes: there are infinitely many primes
p and r € R¥ for which the £+ 1 numbers p,p+r,...,p+4r
are primes.




Baby result

Proposition: Random square is /-intersector for the primes

Assume o4 = d-1/2

Then for every positive ¢, the random set R“ is an (-
intersector set for the primes: there are infinitely many primes
p and r € R¥ for which the £+ 1 numbers p,p+r,...,p+4r
are primes.

Setting og = d~/2 is not the best we can do. In fact, the best
possible can be achieved:



Baby result

Proposition: Random square is /-intersector for the primes

Assume o4 = d—1/2.

Then for every positive ¢, the random set R“ is an (-
intersector set for the primes: there are infinitely many primes
p and r € R¥ for which the £+ 1 numbers p,p+r,...,p+4r
are primes.

Setting og = d~/2 is not the best we can do. In fact, the best
possible can be achieved: we just have to make sure that R“ is an
infinite set,



Baby result

Proposition: Random square is /-intersector for the primes

Assume o4 = d—1/2.

Then for every positive ¢, the random set R“ is an (-
intersector set for the primes: there are infinitely many primes
p and r € R¥ for which the £+ 1 numbers p,p+r,...,p+4r
are primes.

Setting og = d~/2 is not the best we can do. In fact, the best
possible can be achieved: we just have to make sure that R“ is an

infinite set, that is
ZO’d = Q.
d
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—_ Xd(w) - Ax,g > c with probability 1.
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Take “expectation”: replace Xy by g4. We claim
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This is because o4 = d~/2 ~ x=1/2 for x/2<d<x,so
D ox/2<d<x Td ™ x'/2 | so the left hand side is a constant multiple
of %Zx/nggx Ax.d which, by Green-Tao > c.
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