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Definitions and notations

p, P1, P2, P : prime number
¢ : any sufficiently small positive constant

x : tend to infinity

©(n) : the Euler function

~— ~—

. the largest prime factor of n
with the convention P (1) =1
P~(n) : the smallest prime factor of n
with the convention P~(1) = +o0
P} (n) : the largest prime factor p(< y) of n
with the convention P (n) =1 if P~(n) > g?ﬂmm
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Definition and notation

p(u) : the Dickman function defined as the unique continuous
solution to the differential-difference equation
p(u) =1 if 0<u<l,
up'(u) = —p(u—1) if u>1
w(u) : the Buchstab function defined as the unique continuous

solution to the differential-difference equation

{uw(u)zl if 1<u<2,
{uw(u)},:w(u—l) if u>2.
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Proofs of our results

Introduction

Two fundamental structures : additive, multiplicative
Two typical examples of shifted number :
Fermat number : 22° + 1, Twin prime numbers : p, p + 2

Conjecture (De Koninck & Doyon hypothesis, 2011)

For any fixed integer k > 2 and n, let a1, ap, ..., ax be any

permutation of the numbers 0,1,...,k — 1. Then
1
Prob[P*(n+a1) < P¥(n+a) <+ < P*(n+a)] =
i.e., . . '
;‘{ngx: PT(n+a1) <--- < PH(n+ay) }}—>k|

The simplest case (k =2,a;1 =0,a0 = 1) :

{n<x: PHo) <PHo+ Dl ~gx R
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Proofs of our results

Three consecutive integers

Erdés & Pomerance(1978) :

(i). PT(n—1)> P"(n) < P*(n+1) for infinitely many n.
(ii)). P*(n—1) < P*(n) > P"(n+1) for infinitely many n.
(iii). PT(n—1) < PT(n) < PT(n+1) for infinitely many n.
n=p>", ko =inf{k: PT(p* +1)> p})

T

Balog(2001) :

. {n<x: P*n—1)>P+()>P+(n—|—1)}‘>>x1/2

f?ﬂ( ARTAN
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Three consecutive integers

(i) {n<x: PT(n—1) > PT(n) < PT(n+1)}| > 1.06 x 10~ "x,

(ii). [{n < x: PT(n—1) < PT(n) > PT(n+1)}| > 8.84 x 10~*x.

CARTAN
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Two theorems of Bombieri-Vinogradov type
Proofs of our results

Three consecutive integers

(i) {n<x: PT(n—1) > PT(n) < PT(n+1)}| > 1.06 x 10~ "x,

(ii). [{n < x: PT(n—1) < PT(n) > PT(n+1)}| > 8.84 x 10~*x.

Corollary 1. (Upper bounds of four patterns)

[{n<x: Pt(n—1)> P*(n) < PT(n+1)}| <2x/3,
[{n<x: PH(n—1) < P*(n) > PH(n+1)}| <2x/3,
[{n<x: PT(n—1) < P"(n) < P*(n+1)}| <0.8636x,
+(n _ 4+ +
[{n<x: PH(n—1)> P*(n) > P*(n+1)}| <0.8636x. o
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Two consecutive integers

Conjecture 1. (Erdés-Pomerance, 1978) »retum

[{n<x: P*(n) <P (n+1) }‘N—x
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Two consecutive integers

Conjecture 1. (Erdés-Pomerance, 1978) »retum

[{n<x: P*(n) <P (n+1) }‘N—x

Erdés & Pomerance (1978) ;
[{n<x: P"(n)<P*(n+1)}| > 0.0099x.

f?ﬂcmm
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Two consecutive integers

La Breteche, Pomerance & Tenenbaum (2005) :
[{n<x: P"(n) < P*(n+1)}| > 0.05544x.

(Fouvry, 0.05544 — 0.05866)

Wang (2016) :
[{n<x: P"(n) < P"(n+1)}| > 0.1063x.
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“(n) : max{pln: p < y}

Rivat (Theorem 2, 2001) : For 3 < y < exp (100%%)'

—log X —10
’ f,(n)| < xexp < x(log x)
1;){ (10|ogy>
where
() = 1 if Pj(n+1)>Pj(n),
AV 21 i P+ 1) < P(n).
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Proofs of our results

“(n) : max{pln: p < y}

Rivat (Theorem 2, 2001) : For 3 < y < exp (&)

100 loglog x /!

( _ Iogx> < x(log x)™*°

1<n<x 10|Ogy
where
() {1 if Pj(n+1)>Pj(n),
n) = :
Y —1 if P;“(n +1) < Py*(n).

:>H X : P+(n—|—1)>Pj(n)H~%x.

(y = x = Conjecture of Erdds & Pomerance) %?ﬂ(\m\r\
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Proofs of our results

, (n) : max{p|n: p <y}

For y = x%, 0 < a < 1, we have
{n<x: Pf(n+1)>Pf(n)}]| > Cla)x
where C(«) is a positive constant.

(C(«) has an explicit but complicated definition).

Three examples of values of C(«) :

C(l) > 0.0506, C<1> > 0.0014, C(g> > 0.0048.
3 2 3 EE@C\RT.\N
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,(n) : max{p|n: p <y}

In particular, C(1) > 0.1356 by taking a = 1. So we have

Corollary 2.

{n<x: P*(n+1) > P*(n)}| > 0.1356x.

So we have improved the previous constant 0.1063.

Remark : Under the Elliott-Halberstam conjecture and the
Elliott-Halberstam conjecture for friable integers :

0.1356 — 0.411
7
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Several consecutive integers

Similar to the proofs of Theorem 1, we have

For any fixed integer J > 3 and jo € {0,...,J — 1}, we have

[{n<x: PH(n+jo) = min P*(n+))}| > G(U)x +o(x)

where
1

G(J) = 0<arr;ax p(é) (a log m>J_l > 0.

2(J—1)

v
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Several consecutive integers

Theorem 4.

For any fixed J > 3 and jo € {0,...,J — 1}, with "min”
replaced by “max" we have

{n<x:PH(n+jo) = max Pt(n+j)}| = G(J)x + o(x)

0g<J—-1
where
Ca(J) (ﬁl 7)Hl Lo
= max og — og — > U.
* Hei<a<t. 5 ®a

1-agf<y<; ( )
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Proofs of our results

Tools for the proofs

e Theorems 1, 3 and 4

(i). a well adapted system of weights

(ii). the Bombieri-Vinogradov theorem and the
Bombieri-Vinogradov theorem for friable integers

o Theorem 2

(i). two theorems of Bombieri-Vinogradov type
(ii). a well adapted system of weights
(iii). the Rosser-lwaniec linear sieve
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Proofs of our results

Theorem of Bombieri-Vinogradov type for
5(x; y,2)

For any A > 0, we have

1 X
max max Z 1— — Z 1‘ < .
g< L2, oo neS(t;y,z) #(q) n€S(t; y,z) (logx)
(log x)B n=a(mod q) (n, q)=1

uniformly for

2<z<y<x and exp{(logx)**"} <y < x,

where B and the implied constant depend on A, ¢ alone and

S(xiy,z):={n<x: pln=p¢ (z,y]}. ARTAN

) Nancy
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Proofs of our results

Motohashi's works

Let f be a complex valued arithmetic function, and let
introduce the following properties.

(A) : f(n) < 7(n)€, where 7(n) is the divisor function, C is a
fixed constant.

(B) : If the conductor of a non-principal character x is
O((log x)P), then

Z f(n)x(n) < x(log x)~3P

n<x

where D is an arbitrarily large constant.

f?ﬂ( ARTAN
Nancy
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Motohashi's works

(C) : Let
1
Er(y: q,a):= > f(n)— 2(q) > f(n),
n<y wq n<y
n=a(mod q) (n,q)=1

then for any A > 0, there exists B = B(A) > 0 such that

Z max max ‘Ef v: q,a |<< A
g<xt/2/(log e * S 9 (logx)

The constants A, B = B(A), C, D depend only on f.

E?ﬁ(v\m AN
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Motohashi's works

Lemma 1. (Motohashi, 1976)

Let £ and g have the properties (A), (B) and (C). Then the
multiplicative convolution f % g does so.

E?ﬂ(v\mw
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Proofs of our results

Proof of Proposition 1

Let A be the indicator function of the set S(x; y,z) and v;, u,
be two arithmetic functions defined by

|1 si PH(n) <z,
el { 0 sinon,

and

1 si P~(n) >y,
uy(n) := { 0 sinon.

Then it suffices to prove that v,, u, have the properties (A),
(B) and (C), considering A\ = v, * u,.
g?ﬂ(’r\@'\f\'

Zhiwei WANG On the largest prime factors of consecutive integers



Definitions and notations

Introduction
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Proofs of our results

Proof of Proposition 1

v, . (A) — trivial
(B) — Théoreme 4, Fouvry & Tenenbaum, 1991
(€) — Théoreme 6, Fouvry & Tenenbaum, 1991

and
uy : (A) = trivial
(B) — Theorem 1, Xuan, 2000
(€) — Theorem(Satz), Wolke, 1973

= Proposition 1 is proved. %ﬂmw

Nancy
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Theorem of Bombieri-Vinogradov type with
well factorable function

An arithmetic fonction )\ is called to be of level @ and of finite
order k if

Mg)=0 (¢>Q) et [Mqg)l<7(q) (¢<Q)

A is called well factorable of level @ if for any @y, @ > 1,
QR = Q1 Q», there exist two functions Ay, A\, of levels Q;, @
and orders k respectively such that

)\:)\1*)\2.

In addition, we define

w(x; ¢, a,q) = E 1.
Up<x o]
¢p=a(mod q) é?ﬂcm AN
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Theorem of Bombieri-Vinogradov type with
well factorable function

Let a € Z* and A > 0, then for any well factorable function
A(q) of level Q, we have

_ li(x/¢) X
> Ma) 35 (rla tiaq) - #(q) )< (log x)*

(a,q)=1 Li<t<Lo
(¢, 9)=1

for
Q=x""7% 1<l <L, <xte,

The implied constant depend only on a, A and .

L; = L, =1 = Theorem of Bombieri-Friedlander-lwaniec. %EM@\RW
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Ideas of Theorem 1

o Theorem 1 (i) : P*(n—1)> P*(n) < PT(n+1)
Let y =x%, a >0
n - P'(n)<y

n—1n+1 — PHn-1)>y P (n+1)>y

o Theorem 1 (ii) : PT(n—1) < P™(n) > PT(n+1)

n — n= mp, p is sufficiently large
n—1n+1 — n—1=pn, n+1=pony,

X/p < p1,p2<p %?ﬂcmw

Nancy
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Introduction

Two theorems of Bombieri-Vinogradov type
Proofs of our results

Theorem 1 (i) : PT(n—1) > P*(n) < P*(n+1)

nesS(x,y) neS(x,y)
n=a(mod q) (n,q)=1
Then we have
> 1 ¥ 1
n<x neS(x,y)
Pt (n—1)>P"(n)<PT(n+1) (n£1, P(x,y))>1

E?ﬁ(v\m AN
Nancy

Zhiwei WANG On the largest prime factors of consecutive integers



Definitions and notations

Introduction

Two theorems of Bombieri-Vinogradov type
Proofs of our results

Theorem 1 (i) : PT(n—1) > P*(n) < P*(n+1)

In order to detect the condition (n+ 1, P(x,y)) > 1, we
introduce a well adapted system of weights :

log x
wlniy,2)i= 3 1< 22 (n<x, 2 <)
z</‘3<y g€
p|n

which implies

IOgX ! < 1 if (n7 P(Zay)) > 17
(%) s 1.9 _
log z =0 otherwise.

E?ﬂ(v\mw
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Proofs of our results

Theorem 1 (i) : PT(n—1) > P*(n) < P*(n+1)

The inequality of weights :

3 1> 3 W(n(_lo:;)x’y)’W(n(—To:;;’y)

n<x neS(x,y) log y log y

P*(n—1)>P*(n)<PT(n+1)
@ >, 2. > !

y<pi<x y<p2<x  neS(x,y)

pLpa<x'/?/(log x)B N=1 (mod p1)
pL#p2 n=—1(mod py)

for y = x* a < 1/4. By Chinese remainder theorem, there
exists a < pypo such that

n= a(mod p1p>). .
f?ﬂ(\m\r\

Nancy
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Proofs of our results

Theorem 1 (i) : PT(n—1) > P*(n) < P*(n+1)

So we have
> ey ¥ Y o
n<x y<p1<x y<pa<x neS(x,y)
Pt(n—1)>P*(n)<P*(n+1) p1pa<x/2/(log x)B n=a(mod p1p)
p1#p2
= a2(81 I 82),
where

ss= Y Y Yiip (%, ¥)
y<pi1sx y<p2sx @(P1P2)
PLP2<xV/2(l0g X)B, p1p2

Voips (X, ¥)
e Y Y (Voo aee) - el
y<pisx y<pasx PLP1P2 5 )
p1p2a<x'/2/(log x)B, p1#p> 7§ME\RN\
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Two theorems of Bombieri-Vinogradov type
Proofs of our results

Theorem 1 (i) : PT(n—1) > P*(n) < P*(n+1)

For the error term 8, and any A > 0, by the following lemma
2 of Wolke or Fouvry & Tenenbaum for the friable integers,
combined with the Cauchy-Schwarz inequality

Lemma 2.
Forx>y>2

o Ya(z:y)
Wiz y: 2,q) v(q) ‘<A (log x)*

maXx max
Z < =
g2 logrys DT

we have

8y < x(log x)™".
EFﬂ(V\RT.\N
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Proofs of our results

Theorem 1 (i) : PT(n—1) > P*(n) < P*(n+1)

For the principal term 81, by a result of Hildebrand for the
friable integers we obtain

1 21 logt
Sl:xﬂ<&>a/1 - S tdt+o(x) (a < 1/4).

3?@(”@ AN
Nancy
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Proofs of our results

Pt(n—1)> P"(n) < PT(n+1)

For the principal term 81, by a result of Hildebrand for the
friable integers we obtain

1
1 22t logt
S]_:Xﬂ(a)ﬂ{/ log dt+
1

T o o(x) (a < 1/4).

So Theorem 1 (i) is proved :

1 1 Jogt
I =
n<x 1

— dt +
: O(X)
P*(n=1)>P*(n)<P*(n+1)

Theorem 1 (i) :

1
2

> 1.063 x 10~ "x
by taking o ~ L

26> With the help of Mathematica 9.0.

E ?ﬂ(v\m AN
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Proofs of our results

Theorem 1 (ii) : P*(n—1) < P*(n) > P"(n+1)

Let o, 3,7 be three parameters with
4/5<a<l, l-a<f<y<a/b
Given an integer m and p; # p, satisfying
1<m< X X' <p, pp <X,
we consider the congruence system :
mp—1=0(modp;), mp+1=0(modpy).
Chinese remainder theorem implies that p = b(mod p1p,).

Then for these m and p > x“, we have

Pt(mp —1) < P*(mp) > P*(mp +1). M
j? CARTAN

Nancy
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Theorem 1 (ii) : P*(n—1) < P*(n) > P"(n+1)

So we also get an inequality of weights

> o1y dmesd)
on
n<x m<x1 a xegp<E j={1,—-1} (Ioggxﬂ)
P*(n)>P*t(n—1) m

P*(n)>P*(n+1)

x*<PT(n)<x

2. 2> > !

m<xI= xB<py, pp<x? x¥<p<E
pi#pP2  p=b(mod p1p>)

= ﬁz(Sl aF 82),

Institut

FM( ARTAN
Nanc
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Proofs of our results

Theorem 1 (ii) : P*(n—1) < P*(n) > P"(n+1)

where

Z Z Z m(x/m) — m(x%)

PLP1P2
m<x1= xB<py, pp<xY, p1#£p2 ( )

and

- Y XX {at/mibpen - T

e e = o(p1p2)

P17pP2 o
— (W(Xa; b, p1p2) — () )}

©(p1p2)

E?ﬁ(v\m AN
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Two theorems of Bombieri-Vinogradov type
Proofs of our results

Theorem 1 (ii) : P*(n—1) < P*(n) > P"(n+1)

where

Z Z Z m(x/m) — m(x%)

PLP1P2
m<x1= xB<py, pp<xY, p1#£p2 ( )

and

- Y XX {at/mibpen - T

e xm e o(p1p2)

P17pP2 o
— (W(Xa; b, p1p2) — () )}

©(p1p2)

For Sy, by the theorem of Bombieri-Vinogradov we have

Sz < x(log X)_A (v < a/4). %?ﬂ(v\mw

Nancy
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Two theorems of Bombieri-Vinogradov type
Proofs of our results

Theorem 1 (ii) : P*(n—1) < P*(n) > P"(n+1)

For S;, we can calculate that
S = x(ﬁ log 1>2 log 1 + o(x)
15} «
> 7 x 107%x

with
a~0.895 [~0.105 v~ 0.22375.

So we have the following lower bound

Z 1>7x10%.

n<x
Pt (n—1)<P*(n)>P*(n+1)

XO‘SQS<P+(”)<X %?ﬂ(v\mw
Nancy
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Theorem 1 (ii) : P*(n—1) < P*(n) > P"(n+1)

With the same method we have
> 1> 1.84 x 107%x,

n<x
Pt (n—1)<P*(n)>P*(n+1)
x0-835 < Pt () <x0-895

and so Theorem 1 (ii) is proved

Z 1> 8.84 x 10™*x.

n<x
Pt (n—1)<P*(n)>PT(n+1)
x0-835 < p+(n)<x

E ?ﬂ(v\m AN
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Proofs of our results

Corollary 1 : Upper bounds of four patterns

We note for a;(x) + ax(x) + as(x) + as(x) = [x]
=[{n<x: Pt(n—1)> P*(n) < PT(n+1)}|,
32(X) =[{n<x: Pt (n—1) < P*(n)> PT(n+1)}|,
a(x) = [{n<x: PT(n—1) < P™(n) < PT(n+1)}|,
as(x) = [{n<x: PT(n—1)> P*(n) > PT(n+1)}|.

f?ﬂ( ARTAN
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Introduction

Two theorems of Bombieri-Vinogradov type
Proofs of our results

Corollary 1 : Upper bounds of four patterns

We note for a;(x) + ax(x) + as(x) + as(x) = [x]
=[{n<x: Pt(n—1)> P*(n) < PT(n+1)}|,
az(x) =[{n<x: P (n—1) < P*(n)> P (n+1)},
=[{n<x: Pt (n—1) < P*(n) < PT(n+1)}|,
=[{n<x: Pf(n—1)> Pt (n) > PT(n+1)}|.

CoroIIary 2 implies that
[x] — a2(x) — as(x) > 0.1356x, [x] — ax(x) — a4(x) > 0.1356x.

In view of the lower bound of a(x) in Theorem 1 (ii), we get

a3(x), aa(x) < (0.8644 — 8.84 x 10~*)x. %&M(m
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Corollary 1 : Upper bounds of four patterns

Lemma 3. (De Koninck & Doyon, 2011)

We have

> 6(n)™t > 2x/3+ o(x)

n<x
where

a(n) == m7ién |m— n|.

P*(m)<P*(n)
By Lemma 3,
—X<Z5 (x) + as(x )+a4(x)+aléx).
n<x 5

So we have a;(x) < 2x/3. EF@SWW
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Corollary 1 : Upper bounds of four patterns

Very similar to the proof of Lemma 3, we can deduce that

> 6.(n) > 2x/3 + o(x)

n<x
where
d«(n):=  min |m—n|.
m##n
P*(m)=P*(n)

Just like a;(x), we have

ax(x) < 2x/3.

E ?ﬂ(v\m AN
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Proofs of Theorems 3 and 4

The proof of Theorem 3, for the n such
+ . _ . + .
P™(n+jo) = o P™(n+j)
is similar to that of Theorem 1 (i).

The proof of Theorem 4, for the n such

+ . _ + -
P™(n+ jo) —Oggajx_lP (n+])

is similar to that of Theorem 1 (ii).
%?ﬂ(v\m\r\'
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Proof of Theorem 2 : Pf(n+ 1) > P (n)

o Theorem 2 : y = x* a € (0, 1/2]
(i). a well adapted system of weights
(ii). Proposition 1 for S(x; y, z)

o Theorem 2 : y = x* «a € (1/2, 1]
(i). a well adapted system of weights
(ii). Proposition 2 for well factorable function

(iii). the Rosser-lwaniec linear sieve

E?ﬁ(v\m AN
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Proof of Theorem 2 : « € (0, 1/2]

For w € (0, 1/2], the proof is very similar to that of Theorem
1 (i). The difference is the following error term :

=Y (% 1_% > o).

z<psy  neS(xy,2) neS(x;y,z)
n=—1(mod p) (n, p)=1

where
y=x% z=x" avec 0<f<a<1/2

By Proposition 1, the error term is admissible.

E?ﬁ(v\m AN
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Proof of Theorem 2 : av € (1/2, 1]

For o € (1/2, 1] and a parameter ¢ € [1 — «, 1], we have

>ooo1= > 1— > 1

n<x n<x n<x
Py (n)<Pf(n+1) y=Pt(n+1)>x1—¢ y=Pt(n)>Pt(nt+1)>x1—¢
+ > 1
n<x

Pt (n)<Pt(n+1)<x1—¢
= SN — S+ Sc.

Next we shall evaluate .#,, -5 and .7 separately.

titut

é?ﬂ(v\m AN
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Proof of Theorem 2 : estimation of .#,

By the following formula of Hildebrand
W(x,y) = Wi(x,y) = xp(u){1 + O (8 |

for
exp{(log, x)***} <y < x, u=logx/logy,
and
p(uy=1—logu (1< u<2),
we have

7a=x{o(icgy) = pliogeie) } + o0

— I L =
= xloe () +o00 7
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Proof of Theorem 2 : estimation of .¥5

For .#g, we use the Rosser-lwaniec sieve.
Sg < ‘{néx: n=ap=>bp —1, xl’o‘<a<béxc}‘

+ o(x)

< Z |{n€ «/(b): nis prime}| + o(x),

Xl—a<ngc

where
1
2 (b) == {apl;i— cap < x,x' " *<a< b, ap=—1(mod b)}
Then we shall sieve the sequence <7 (b).
Pl
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Proof of Theorem 2 : estimation of .¥5

Some definitions of Rosser-lwaniec sieve :

A : finite sequence of integers
P : set of primes
zZ:z2>=2
Ag:={acA:d]a}
Pp(z) := H p

p<z, peP

S(A;P,z):=|{ac A: (a, Py(z)) =1}

E?ﬁ(v\m AN
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Proof of Theorem 2 : estimation of .¥5

For d | P»(z), we suppose

Ag| = @X + r(A, d)

where X ~ |A| and w(d) is multiplicative verifying
O<w(p)<p (PE?)
-1 | K
11 <1_ W(p)> < ogV(H )
p log u log u

u<pv

In addition, we define

o w(p)
Viz) = [] (1—7”).

p<z, peP

E?ﬁ(v\m AN
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Proof of Theorem 2 : estimation of .¥5

Lemma 4. (Rosser-lwaniec sieve)

For DY/2 > 7z > 2, we have

S(A; P, 2) < XV(z){F(IIC;ggS> + E}

+ Y D) M(dr(Ad),

{<exp(8/e3) d|Pp(2)

Y
Fis)= 22 (0< s < 3), E=0(s+

e (log D)§>'

-8
A/ (d), the Rosser-lwaniec weights with [\ (d)| < 1, denote a
well factorable coefficient of level D and ordre 1.

CARTAN
> of Nancy
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Proof of Theorem 2 : estimation of .¥5

Take D = z2 = x*/7=¢ /b in Lemma 4, then we have

2X
log(x*/7=</ b)

+ D, D A(d)r(#(b).d),

l<exp(8/e3) d<D,d|P(z)

S(e7(b); P,z) < {1+ 0(1)}

and so that
Te< Y. (S((b);P,2)+ 2)

Xl—a<ngc

< {14 0(1)}F81 + Fr2 + O(x(log x) 1), N
£33 BBICARTAN
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Proof of Theorem 2 : estimation of .¥5

B 2X o [ losx
Sp1 = Z blog(x4/7‘5/b)| & (log(x/b))’

Xl_a<b§XC

T = Y > > A(d)r(«(b), d).

l<exp(8/e3) xl—a<b<xc d<D
(8/¢%) S50

E?ﬁ(v\m AN
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Proof of Theorem 2 : estimation of .¥5

To evaluate the error term .#,, we define A\, by

= > > 113/2,31(@ A (d),

B/2<b<B d<D,d|P(z
bd=q

where

1 if B/2<b< B,

Lyp2,(b) = { 0  otherwise.

47 if we

E?ﬁ(v\m AN
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Proof of Theorem 2 : estimation of .¥5

p> is admissible
B2 < x(log x)_B

for

D= W%, 0 < ¢ < 2 — ¢ (Proposition 2),

D= b(l%/i)B’ 2 — ¢ < ¢ < ; (Pan-Ding-Wang).

g1 : partial summation

Institut
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Proof of Theorem 2 : estimation of .¥5

Sofor y =x*1—c< a<l, .%gis majorized by

2x [ log (ﬁ)% +o(x) O0<c<2-—c¢
I8 <
2x [ log (%)1/‘;;—1—0(@ Z_e<c<i

E ?ﬂ(v\m AN
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Proof of Theorem 2 : estimation of .¥

For .7c, by the same method as Theorem 1 (i), we have
o 1
> x| — gl
e xio( 2, %) dlog o + ofx)

where § is a parameter with ¢ < § < 1/2.

E ?ﬁ( ARTAN
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Proof of Theorem 2:1/2 < a <1

So for y = x*, @ € (1/2, 1], combine .%4, %5, -#c and we
have

{n<x: Pf(n+1) > Pf(n)}| > G(a)x

where Gy(a) > 0 is a constant.

E?ﬁ(v\m AN
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Proof of Theorem 2

Finally, we get Theorem 2 :
{n<x: Pf(n+1) > Pf(n)}| = Cla)x
for y = x%, 0 < a <1, where

G(a) if 0<a<1/2,
C(a) = .
Ga) if 1/2<a< 1.

E?ﬁ(v\m AN
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Thank you!

Institut
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