On the largest prime factors of consecutive integers

Zhiwei WANG

Université de Lorraine France

Marseille, May 25, 2017

Zhiwei WANG On the largest prime factors of consecutive integers

Table of contents

Definitions and notations

Introduction

Two theorems of Bombieri-Vinogradov type

Proofs of our results

Zhiwei WANG On the largest prime factors of consecutive integers

Table of contents

Definitions and notations

Introduction

Two theorems of Bombieri-Vinogradov type

Proofs of our results

Table of contents

Definitions and notations

Introduction

3 Two theorems of Bombieri-Vinogradov type

Proofs of our results

Table of contents

Definitions and notations

Introduction

3 Two theorems of Bombieri-Vinogradov type

Proofs of our results

Zhiwei WANG On the largest prime factors of consecutive integers

Table of contents

Definitions and notations

2 Introduction

Two theorems of Bombieri-Vinogradov type

Proofs of our results

Definitions and notations

- p, p_1, p_2, p' : prime number
 - ε : any sufficiently small positive constant
 - x : tend to infinity
 - $\varphi(n)$: the Euler function
 - $P^+(n)$: the largest prime factor of nwith the convention $P^+(1) = 1$
 - $P^{-}(n)$: the smallest prime factor of n

with the convention $P^-(1)=+\infty$

 $P_y^+(n)$: the largest prime factor $p(\leqslant y)$ of n

with the convention $P_y^+(n) = 1$ if $P^-(n) > y_{\text{true}}$

Definition and notation

 $\rho(u)$: the Dickman function defined as the unique continuous solution to the differential-difference equation

$$\begin{cases} \rho(u) = 1 & \text{if } 0 \leq u \leq 1, \\ u\rho'(u) = -\rho(u-1) & \text{if } u > 1. \end{cases}$$

 $\omega(u)$: the Buchstab function defined as the unique continuous solution to the differential-difference equation

$$\begin{cases} u\omega(u) = 1 & \text{if } 1 \leq u \leq 2, \\ \left\{ u\omega(u) \right\}' = \omega(u-1) & \text{if } u > 2. \end{cases}$$

Table of contents

Definitions and notations

Introduction

Two theorems of Bombieri-Vinogradov type

Proofs of our results



Zhiwei WANG On the largest prime factors of consecutive integers

Introduction

Two fundamental structures : additive, multiplicative Two typical examples of shifted number : Fermat number : $2^{2^k} + 1$, Twin prime numbers : p, p + 2

Conjecture (De Koninck & Doyon hypothesis, 2011)

For any fixed integer $k \ge 2$ and n, let a_1, a_2, \ldots, a_k be any permutation of the numbers $0, 1, \ldots, k - 1$. Then

$$Prob[P^+(n + a_1) < P^+(n + a_2) < \dots < P^+(n + a_k)] = \frac{1}{k!}$$

i.e., $\frac{1}{x} |\{n \leq x : P^+(n+a_1) < \cdots < P^+(n+a_k)\}| \rightarrow \frac{1}{k!}.$

The simplest case $(k = 2, a_1 = 0, a_2 = 1)$:

$$\left|\left\{n\leqslant x: P^+(n) < P^+(n+1)\right\}\right| \sim \frac{1}{2}x.$$

Three consecutive integers

Erdős & Pomerance(1978) :

(i). $P^+(n-1) > P^+(n) < P^+(n+1)$ for infinitely many *n*. (ii). $P^+(n-1) < P^+(n) > P^+(n+1)$ for infinitely many *n*. (iii). $P^+(n-1) < P^+(n) < P^+(n+1)$ for infinitely many *n*. $(n = p^{2^{k_0}}, \quad k_0 = \inf\{k : P^+(p^{2^k} + 1) > p\})$

Balog(2001) :

(iv).
$$|\{n \leq x : P^+(n-1) > P^+(n) > P^+(n+1)\}| \gg x^{1/2}$$
.

(Conjecture :
$$\sim \frac{1}{6}x$$
)

Three consecutive integers

Theorem 1.

(i).
$$\left|\left\{n \leq x : P^+(n-1) > P^+(n) < P^+(n+1)\right\}\right| > 1.06 \times 10^{-7} x,$$

(ii). $\left|\left\{n \leq x : P^+(n-1) < P^+(n) > P^+(n+1)\right\}\right| > 8.84 \times 10^{-4} x.$

Corollary 1. (Upper bounds of four patterns)

$$|\{n \le x : P^+(n-1) > P^+(n) < P^+(n+1)\}| < 2x/3,$$

$$|\{n \le x : P^+(n-1) < P^+(n) > P^+(n+1)\}| < 2x/3,$$

$$|\{n \le x : P^+(n-1) < P^+(n) < P^+(n+1)\}| < 0.8636x,$$

$$|\{n \le x : P^+(n-1) > P^+(n) > P^+(n+1)\}| < 0.8636x.$$

(ロ)

Nancy

Three consecutive integers

Theorem 1.

(i).
$$\left|\left\{n \leq x : P^+(n-1) > P^+(n) < P^+(n+1)\right\}\right| > 1.06 \times 10^{-7} x,$$

(ii). $\left|\left\{n \leq x : P^+(n-1) < P^+(n) > P^+(n+1)\right\}\right| > 8.84 \times 10^{-4} x.$

Corollary 1. (Upper bounds of four patterns)

$$\begin{aligned} &|\{n \leq x : P^+(n-1) > P^+(n) < P^+(n+1)\}| < 2x/3, \\ &|\{n \leq x : P^+(n-1) < P^+(n) > P^+(n+1)\}| < 2x/3, \\ &|\{n \leq x : P^+(n-1) < P^+(n) < P^+(n+1)\}| < 0.8636x, \\ &|\{n \leq x : P^+(n-1) > P^+(n) > P^+(n+1)\}| < 0.8636x. \end{aligned}$$

Two consecutive integers

Conjecture 1. (Erdős-Pomerance, 1978) 🕩 return

$$\left|\left\{n \leq x : P^+(n) < P^+(n+1)\right\}\right| \sim \frac{1}{2}x.$$

Erdős & Pomerance (1978)

 $|\{n \leq x : P^+(n) < P^+(n+1)\}| > 0.0099x$

1

Two consecutive integers

Conjecture 1. (Erdős-Pomerance, 1978) 🕩 return

$$\left|\left\{n \leqslant x : P^+(n) < P^+(n+1)\right\}\right| \sim \frac{1}{2}x.$$

Erdős & Pomerance (1978) : $|\{n \leq x : P^+(n) < P^+(n+1)\}| > 0.0099x.$

-1

Two consecutive integers

La Bretèche, Pomerance & Tenenbaum (2005) : $|\{n \le x : P^+(n) < P^+(n+1)\}| > 0.05544x.$ (Fouvry, 0.05544 \rightarrow 0.05866)

Wang (2016) : $|\{n \leq x : P^+(n) < P^+(n+1)\}| > 0.1063x.$

$$P_{y}^{+}(n): \max\{p|n: p \leqslant y\}$$

Rivat (Theorem 2, 2001) : For $3 \leq y \leq \exp\left(\frac{\log x}{100 \log \log x}\right)$,

$$\left|\sum_{1 \leqslant n \leqslant x} f_y(n)\right| \ll x \exp\left(\frac{-\log x}{10\log y}\right) \ll x(\log x)^{-10}$$

where

$$f_y(n) := \left\{ egin{array}{ccc} 1 & ext{if} & P_y^+(n+1) > P_y^+(n), \ -1 & ext{if} & P_y^+(n+1) < P_y^+(n). \end{array}
ight.$$

Zhiwei WANG On the largest prime factors of consecutive integers

$$P_y^+(n): \max\{p|n: p \leqslant y\}$$

Rivat (Theorem 2, 2001) : For $3 \leq y \leq \exp\left(\frac{\log x}{100 \log \log x}\right)$,

$$\left|\sum_{1 \leqslant n \leqslant x} f_y(n)\right| \ll x \exp\left(\frac{-\log x}{10\log y}\right) \ll x(\log x)^{-10}$$

where

$$f_{y}(n) := \begin{cases} 1 & \text{if } P_{y}^{+}(n+1) > P_{y}^{+}(n), \\ -1 & \text{if } P_{y}^{+}(n+1) < P_{y}^{+}(n). \end{cases}$$
$$\Rightarrow \left| \left\{ n \leq x : P_{y}^{+}(n+1) > P_{y}^{+}(n) \right\} \right| \sim \frac{1}{2}x.$$
$$(y = x \Rightarrow \text{ Conjecture of Erdős & Pomerance})$$

Zhiwei WANG On the largest prime factors of consecutive integers

$$P_{y}^{+}(n)$$
: max $\{p|n: p \leq y\}$

Theorem 2.

For $y = x^{\alpha}$, $0 < \alpha \leqslant 1$, we have

$$\left|\left\{n\leqslant x: \ P_{y}^{+}(n+1)>P_{y}^{+}(n)\right\}\right|\geqslant C(\alpha)x$$

where $C(\alpha)$ is a positive constant.

 $(C(\alpha)$ has an explicit but complicated definition).

Three examples of values of $C(\alpha)$:

$$C\left(rac{1}{3}
ight) > 0.0506, \quad C\left(rac{1}{2}
ight) > 0.0914, \quad C\left(rac{2}{3}
ight) > 0.0948.$$

$$P_{y}^{+}(n): \max\{p|n: p \leqslant y\}$$

In particular, C(1) > 0.1356 by taking $\alpha = 1$. So we have

Corollary 2.

$$|\{n \leq x: P^+(n+1) > P^+(n)\}| > 0.1356x.$$

So we have improved the previous constant 0.1063.

Remark : Under the Elliott-Halberstam conjecture and the Elliott-Halberstam conjecture for friable integers :

 $0.1356 \rightarrow 0.411$

Several consecutive integers

Similar to the proofs of Theorem 1, we have

Theorem 3.

For any fixed integer $J \ge 3$ and $j_0 \in \{0, \ldots, J-1\}$, we have

$$\left|\left\{n\leqslant x:P^+(n+j_0)=\min_{0\leqslant j\leqslant J-1}P^+(n+j)\right\}\right|\geqslant C_3(J)x+o(x)$$

where

$$\mathcal{C}_3(J):=\max_{00.$$

Several consecutive integers

Theorem 4.

For any fixed $J \ge 3$ and $j_0 \in \{0, \ldots, J-1\}$, with "min" replaced by "max" we have

$$\left|\left\{n\leqslant x:P^+(n+j_0)=\max_{0\leqslant j\leqslant J-1}P^+(n+j)\right\}\right|\geqslant C_4(J)x+o(x)$$

where

$$C_4(J) := \max_{\substack{\frac{2J-2}{2J-1} < \alpha < 1\\ 1-\alpha \leqslant \beta < \gamma < \frac{\alpha}{2(J-1)}}} \left(\beta \log \frac{\gamma}{\beta}\right)^{J-1} \log \frac{1}{\alpha} > 0.$$

Tools for the proofs

- Theorems 1, 3 and 4
 - (i). a well adapted system of weights
 - (ii). the Bombieri-Vinogradov theorem and the Bombieri-Vinogradov theorem for friable integers
- Theorem 2
 - (i). two theorems of Bombieri-Vinogradov type
 - (ii). a well adapted system of weights
 - (iii). the Rosser-Iwaniec linear sieve

Table of contents

Definitions and notations

2 Introduction

3 Two theorems of Bombieri-Vinogradov type

Proofs of our results

Theorem of Bombieri-Vinogradov type for S(x; y, z)

Proposition 1.

For any A > 0, we have

$$\sum_{q \leq \frac{x^{1/2}}{(\log x)^{\mathcal{B}}}} \max_{t \leq x} \max_{(a,q)=1} \left| \sum_{\substack{n \in S(t; y, z) \\ n \equiv a \pmod{q}}} 1 - \frac{1}{\varphi(q)} \sum_{\substack{n \in S(t; y, z) \\ (n,q)=1}} 1 \right| \ll \frac{x}{(\log x)^{\mathcal{A}}}$$

uniformly for

 $2 \leqslant z \leqslant y \leqslant x$ and $\exp\{(\log x)^{2/5+\varepsilon}\} \leqslant y \leqslant x$,

where B and the implied constant depend on A, ε alone and

$$S(x; y, z) := \{n \leq x : p | n \Rightarrow p \notin (z, y]\}.$$

CARTAN

Motohashi's works

Let f be a complex valued arithmetic function, and let introduce the following properties.

 (\mathcal{A}) : $f(n) \ll \tau(n)^{C}$, where $\tau(n)$ is the divisor function, C is a fixed constant.

 (\mathcal{B}) : If the conductor of a non-principal character χ is $O((\log x)^D)$, then

$$\sum_{n \leq x} f(n)\chi(n) \ll x(\log x)^{-3D}$$

where D is an arbitrarily large constant.

Motohashi's works

$$\mathcal{C}): \text{Let} \\ E_f(y; q, a) := \sum_{\substack{n \leq y \\ n \equiv a \pmod{q}}} f(n) - \frac{1}{\varphi(q)} \sum_{\substack{n \leq y \\ (n,q) = 1}} f(n),$$

then for any A > 0, there exists B = B(A) > 0 such that

$$\sum_{q \leqslant x^{1/2}/(\log x)^B} \max_{y \leqslant x} \max_{(a,q)=1} \left| E_f(y; q, a) \right| \ll \frac{x}{(\log x)^A}.$$

The constants A, B = B(A), C, D depend only on f.

Motohashi's works

Lemma 1. (Motohashi, 1976)

Let f and g have the properties (\mathcal{A}) , (\mathcal{B}) and (\mathcal{C}) . Then the multiplicative convolution f * g does so.

Proof of Proposition 1

Let λ be the indicator function of the set S(x; y, z) and v_z , u_y be two arithmetic functions defined by

$$v_z(n) := \begin{cases} 1 & \text{si } P^+(n) \leqslant z, \\ 0 & \text{sinon}, \end{cases}$$

and

$$u_y(n) := \begin{cases} 1 & \text{si } P^-(n) > y, \\ 0 & \text{sinon.} \end{cases}$$

Then it suffices to prove that v_z , u_y have the properties (A), (B) and (C), considering $\lambda = v_z * u_y$.

Proof of Proposition 1

- $v_z:(\mathcal{A})
 ightarrow \mathsf{trivial}$
 - $(\mathcal{B}) \rightarrow$ Théorème 4, Fouvry & Tenenbaum, 1991
 - $(\mathfrak{C}) \rightarrow$ Théorème 6, Fouvry & Tenenbaum, 1991

and

- $egin{aligned} u_y:(\mathcal{A}) &
 ightarrow ext{trivial}\ (\mathcal{B}) &
 ightarrow ext{Theorem 1, Xuan, 2000}\ (\mathcal{C}) &
 ightarrow ext{Theorem(Satz), Wolke, 1973} \end{aligned}$
- \Rightarrow Proposition 1 is proved.

Theorem of Bombieri-Vinogradov type with *well factorable* function

An arithmetic fonction λ is called to be of level Q and of finite order k if

 $\lambda(q)=0 \quad (q>Q) \quad ext{et} \quad |\lambda(q)|\leqslant au_k(q) \quad (q\leqslant Q).$

 λ is called well factorable of level Q if for any $Q_1, Q_2 \ge 1$, $Q = Q_1 Q_2$, there exist two functions λ_1, λ_2 of levels Q_1, Q_2 and orders k respectively such that

$$\lambda = \lambda_1 * \lambda_2.$$

In addition, we define

$$\pi(x;\,\ell,\mathsf{a},q):=\sum_{\substack{\ell p\leqslant x \ \ell p\equiv \mathsf{a}(\mathsf{mod}\,q)}} 1.$$

Theorem of Bombieri-Vinogradov type with *well factorable* function

Proposition 2.

Let $a \in \mathbb{Z}^*$ and A > 0, then for any well factorable function $\lambda(q)$ of level Q, we have

$$\sum_{(a,q)=1} \lambda(q) \sum_{\substack{L_1 \leqslant \ell \leqslant L_2 \\ (\ell,q)=1}} \left(\pi(x; \ell, a, q) - \frac{\operatorname{li}(x/\ell)}{\varphi(q)} \right) \ll \frac{x}{(\log x)^A}$$

for

$$Q = x^{4/7-\varepsilon}, \quad 1 \leqslant L_1 \leqslant L_2 \leqslant x^{1-\varepsilon}.$$

The implied constant depend only on a, A and ε .

 $L_1 = L_2 = 1 \Rightarrow$ Theorem of Bombieri-Friedlander-Iwaniec.

Table of contents

Definitions and notations

2 Introduction

Two theorems of Bombieri-Vinogradov type

Proofs of our results

Zhiwei WANG On the largest prime factors of consecutive integers

Ideas of Theorem 1

• Theorem 1 (i) : $P^+(n-1) > P^+(n) < P^+(n+1)$ Let $y = x^{\alpha}$, $\alpha > 0$

$$egin{array}{cccc} n & o & P^+(n) \leqslant y \ n-1, n+1 & o & P^+(n-1) > y, \ P^+(n+1) > y \end{array}$$

• Theorem 1 (ii) : $P^+(n-1) < P^+(n) > P^+(n+1)$

 $egin{array}{rcl} n &
ightarrow & n=mp, \ p \ {
m is \ sufficiently \ large} \ n-1, n+1 &
ightarrow & n-1=p_1n_1, \ n+1=p_2n_2, \ & x/p < p_1, p_2 < p \end{array}$

Theorem 1 (i) : $P^+(n-1) > P^+(n) < P^+(n+1)$

$$S(x,y) := \{n \leqslant x : P^+(n) \leqslant y\}, \quad P(y,z) := \prod_{z$$

and

$$\Psi(x, y; a, q) := \sum_{\substack{n \in S(x, y) \\ n \equiv a \pmod{q}}} 1, \qquad \Psi_q(x, y) := \sum_{\substack{n \in S(x, y) \\ (n, q) = 1}} 1.$$

Then we have

$$\sum_{\substack{n \leq x \\ P^+(n-1) > P^+(n) < P^+(n+1)}} 1 \ge \sum_{\substack{n \in S(x, y) \\ (n \pm 1, P(x, y)) > 1}} 1.$$

Theorem 1 (i) : $P^+(n-1) > P^+(n) < P^+(n+1)$

In order to detect the condition $(n \pm 1, P(x, y)) > 1$, we introduce a well adapted system of weights :

$$\omega(n; y, z) := \sum_{\substack{z$$

which implies

$$\left(rac{\log x}{\log z}
ight)^{-1}\omega(n;\,y,z) \left\{egin{array}{ll}\leqslant 1 & ext{ if } (n,\;P(z,y))>1,\ =0 & ext{ otherwise.} \end{array}
ight.$$

Theorem 1 (i) : $P^+(n-1) > P^+(n) < P^+(n+1)$

The inequality of weights :

$$\sum_{\substack{n \leq x \\ P^+(n-1) > P^+(n) < P^+(n+1)}} 1 \ge \sum_{n \in S(x,y)} \frac{\omega(n-1; x, y)}{\left(\frac{\log x}{\log y}\right)} \cdot \frac{\omega(n+1; x, y)}{\left(\frac{\log x}{\log y}\right)}$$
$$\ge \alpha^2 \sum_{\substack{y < p_1 \leq x \\ p_1 p_2 \leq x^{1/2}/(\log x)^B}} \sum_{\substack{n \in S(x,y) \\ n \equiv 1 \pmod{p_1} \\ p_1 \neq p_2}} 1$$

for $y = x^{\alpha}$, $\alpha < 1/4$. By Chinese remainder theorem, there exists $a < p_1p_2$ such that

$$n \equiv a \pmod{p_1 p_2}.$$

Theorem 1 (i) :
$$P^+(n-1) > P^+(n) < P^+(n+1)$$

So we have

$$\sum_{\substack{n \leq x \\ P^+(n-1) > P^+(n) < P^+(n+1)}} 1 \ge \alpha^2 \sum_{\substack{y < p_1 \leq x \\ p_1 p_2 \leq x^{1/2} / (\log x)^B \\ p_1 \neq p_2}} \sum_{\substack{n \in S(x, y) \\ n \equiv a \pmod{p_1 p_2}}} 1$$
$$= \alpha^2 (S_1 + S_2),$$

where

$$\begin{split} & S_{1} := \sum_{\substack{y < p_{1} \leqslant x \\ p_{1}p_{2} \leqslant x^{1/2}/(\log x)^{B}, \ p_{1} \neq p_{2}}} \sum_{\substack{y < p_{2} \leqslant x \\ p_{1}p_{2} \leqslant x^{1/2}/(\log x)^{B}, \ p_{1} \neq p_{2}}} \frac{\Psi_{p_{1}p_{2}}(x, y)}{\varphi(p_{1}p_{2})}, \\ & S_{2} := \sum_{\substack{y < p_{1} \leqslant x \\ p_{1}p_{2} \leqslant x^{1/2}/(\log x)^{B}, \ p_{1} \neq p_{2}}} \sum_{\substack{\psi(x, y; a, p_{1}p_{2}) - \frac{\Psi_{p_{1}p_{2}}(x, y)}{\varphi(p_{1}p_{2})}} (\Psi(x, y; a, p_{1}p_{2}) - \frac{\Psi_{p_{1}p_{2}}(x, y)}{\varphi(p_{1}p_{2})}). \end{split}$$

Theorem 1 (i) : $P^+(n-1) > P^+(n) < P^+(n+1)$

For the error term S_2 and any A > 0, by the following lemma 2 of Wolke or Fouvry & Tenenbaum for the friable integers, combined with the Cauchy-Schwarz inequality

Lemma 2.

For
$$x \ge y \ge 2$$

$$\sum_{q \le x^{1/2}/(\log x)^B} \max_{z \le x} \max_{(a,q)=1} \left| \Psi(z,y;a,q) - \frac{\Psi_q(z,y)}{\varphi(q)} \right| \ll_A \frac{x}{(\log x)^A}$$

we have

$$\mathcal{S}_2 \ll x(\log x)^{-A}.$$

Theorem 1 (i) : $P^+(n-1) > P^+(n) < P^+(n+1)$

For the principal term $\ensuremath{\mathcal{S}}_1,$ by a result of Hildebrand for the friable integers we obtain

$$\mathcal{S}_1 = x
ho \Big(rac{1}{lpha} \Big) lpha \int_1^{rac{1}{2lpha} - 1} rac{\log t}{rac{1}{2} - lpha t} \, \mathrm{d}t + o(x) \qquad (lpha < 1/4).$$

by taking $lphapprox rac{1}{4.6},$ with the help of *Mathematica* 9.

Theorem 1 (i) : $P^+(n-1) > P^+(n) < P^+(n+1)$

For the principal term S_1 , by a result of Hildebrand for the friable integers we obtain

$$\mathbb{S}_1 = x
ho \Big(rac{1}{lpha} \Big) lpha \int_1^{rac{1}{2lpha} - 1} rac{\log t}{rac{1}{2} - lpha t} \, \mathrm{d}t + o(x) \qquad (lpha < 1/4).$$

So Theorem 1 (i) is proved :

$$\sum_{\substack{n \leq x \\ P^+(n-1) > P^+(n) < P^+(n+1)}} 1 \ge x \rho\left(\frac{1}{\alpha}\right) \alpha^3 \int_1^{\frac{1}{2\alpha} - 1} \frac{\log t}{\frac{1}{2} - \alpha t} \, \mathrm{d}t + o(x)$$
$$> 1.063 \times 10^{-7} x$$

by taking $\alpha \approx \frac{1}{4.6}$, with the help of *Mathematica 9.0*.

Theorem 1 (ii) : $P^+(n-1) < P^+(n) > P^+(n+1)$

Let α, β, γ be three parameters with

$$4/5 < \alpha \leq 1, \quad 1 - \alpha \leq \beta < \gamma < \alpha/4.$$

Given an integer m and $p_1 \neq p_2$ satisfying

$$1\leqslant m\leqslant x^{1-\alpha},\quad x^\beta< p_1,\ p_2\leqslant x^\gamma,$$

we consider the congruence system :

$$mp - 1 \equiv 0 \pmod{p_1}, \quad mp + 1 \equiv 0 \pmod{p_2}.$$

Chinese remainder theorem implies that $p \equiv b \pmod{p_1 p_2}$.

Then for these *m* and $p > x^{\alpha}$, we have

$$P^+(mp-1) < P^+(mp) > P^+(mp+1).$$

Theorem 1 (ii) : $P^+(n-1) < P^+(n) > P^+(n+1)$

So we also get an inequality of weights

$$\sum_{\substack{n \leq x \\ P^+(n) > P^+(n-1) \\ P^+(n) > P^+(n+1) \\ x^{\alpha} < P^+(n) \leq x}} 1 \geqslant \sum_{m \leq x^{1-\alpha}} \sum_{x^{\alpha} < p \leq \frac{x}{m}} \prod_{i=\{1,-1\}} \frac{\omega(mp+i; x^{\gamma}, x^{\beta})}{\binom{\log x}{\log x^{\beta}}}$$

$$= \beta^2 \sum_{m \leqslant x^{1-\alpha}} \sum_{\substack{x^{\beta} < p_1, \, p_2 \leqslant x^{\gamma} \\ p_1 \neq p_2}} \sum_{\substack{x^{\alpha} < p \leqslant \frac{x}{m} \\ p \equiv b \, (\text{mod } p_1 p_2)}} \sum_{\substack{x^{\alpha} < p \leqslant \frac{x}{m}}} 1$$

$$=\beta^2(\mathbb{S}_1+\mathbb{S}_2),$$

Theorem 1 (ii) : $P^+(n-1) < P^+(n) > P^+(n+1)$

where

$$\mathbb{S}_1 := \sum_{m \leqslant x^{1-\alpha}} \sum_{x^{\beta} < p_1, p_2 \leqslant x^{\gamma}, p_1 \neq p_2} \frac{\pi(x/m) - \pi(x^{\alpha})}{\varphi(p_1 p_2)}$$

and

$$S_{2} := \sum_{m \leqslant x^{1-\alpha}} \sum_{\substack{x^{\beta} < p_{1}, p_{2} \leqslant x^{\gamma} \\ p_{1} \neq p_{2}}} \left\{ \pi(x/m; b, p_{1}p_{2}) - \frac{\pi(x/m)}{\varphi(p_{1}p_{2})} - \left(\pi(x^{\alpha}; b, p_{1}p_{2}) - \frac{\pi(x^{\alpha})}{\varphi(p_{1}p_{2})} \right) \right\}.$$

Theorem 1 (ii) : $P^+(n-1) < P^+(n) > P^+(n+1)$

where

$$\mathbb{S}_1 := \sum_{m \leqslant x^{1-\alpha}} \sum_{x^{\beta} < p_1, p_2 \leqslant x^{\gamma}, p_1 \neq p_2} \frac{\pi(x/m) - \pi(x^{\alpha})}{\varphi(p_1 p_2)}$$

and

$$S_{2} := \sum_{m \leqslant x^{1-\alpha}} \sum_{\substack{x^{\beta} < p_{1}, p_{2} \leqslant x^{\gamma} \\ p_{1} \neq p_{2}}} \left\{ \pi(x/m; b, p_{1}p_{2}) - \frac{\pi(x/m)}{\varphi(p_{1}p_{2})} - \left(\pi(x^{\alpha}; b, p_{1}p_{2}) - \frac{\pi(x^{\alpha})}{\varphi(p_{1}p_{2})} \right) \right\}.$$

For S_2 , by the theorem of Bombieri-Vinogradov we have

$$\mathbb{S}_2 \ll x(\log x)^{-A}$$
 $(\gamma < \alpha/4).$

Theorem 1 (ii) : $P^+(n-1) < P^+(n) > P^+(n+1)$

For S_1 , we can calculate that

$$\mathbb{S}_1 = x \Big(eta \log rac{\gamma}{eta} \Big)^2 \log rac{1}{lpha} + o(x) \ > 7 imes 10^{-4} x$$

with

$$\alpha \approx 0.895, \quad \beta \approx 0.105, \quad \gamma \approx 0.22375.$$

So we have the following lower bound

$$\sum_{\substack{n \leq x \\ P^+(n-1) < P^+(n) > P^+(n+1) \\ x^{0.895} < P^+(n) \leq x}} 1 > 7 \times 10^{-4} x.$$

Theorem 1 (ii) : $P^+(n-1) < P^+(n) > P^+(n+1)$

With the same method we have

$$\sum_{\substack{n \leq x \\ P^+(n-1) < P^+(n) > P^+(n+1) \\ x^{0.835} < P^+(n) \leq x^{0.895}}} 1 > 1.84 \times 10^{-4} x,$$

and so Theorem 1 (ii) is proved

$$\sum_{\substack{n \leqslant x \\ P^+(n-1) < P^+(n) > P^+(n+1) \\ x^{0.835} < P^+(n) \leqslant x}} 1 > 8.84 \times 10^{-4} x.$$

Corollary 1 : Upper bounds of four patterns

We note for
$$a_1(x) + a_2(x) + a_3(x) + a_4(x) = [x]$$

 $a_1(x) := |\{n \le x : P^+(n-1) > P^+(n) < P^+(n+1)\}|,$
 $a_2(x) := |\{n \le x : P^+(n-1) < P^+(n) > P^+(n+1)\}|,$
 $a_3(x) := |\{n \le x : P^+(n-1) < P^+(n) < P^+(n+1)\}|,$
 $a_4(x) := |\{n \le x : P^+(n-1) > P^+(n) > P^+(n+1)\}|.$

in view of the lower bound of $a_i(x)$ in Theorem 1 (ii), we get

Corollary 1 : Upper bounds of four patterns

We note for
$$a_1(x) + a_2(x) + a_3(x) + a_4(x) = [x]$$

 $a_1(x) := |\{n \le x : P^+(n-1) > P^+(n) < P^+(n+1)\}|,$
 $a_2(x) := |\{n \le x : P^+(n-1) < P^+(n) > P^+(n+1)\}|,$
 $a_3(x) := |\{n \le x : P^+(n-1) < P^+(n) < P^+(n+1)\}|,$
 $a_4(x) := |\{n \le x : P^+(n-1) > P^+(n) > P^+(n+1)\}|.$

Corollary 2 implies that

 $[x] - a_2(x) - a_3(x) > 0.1356x, \ [x] - a_2(x) - a_4(x) > 0.1356x.$

In view of the lower bound of $a_2(x)$ in Theorem 1 (ii), we get

$$a_3(x), \ a_4(x) < (0.8644 - 8.84 \times 10^{-4})x.$$

Corollary 1 : Upper bounds of four patterns

Lemma 3. (De Koninck & Doyon, 2011)

We have

$$\sum_{n \leq x} \delta(n)^{-1} > 2x/3 + o(x)$$

where

$$\delta(n) := \min_{\substack{m \neq n \\ P^+(m) \leqslant P^+(n)}} |m - n|.$$

By Lemma 3,

$$\frac{2}{3}x < \sum_{n \leq x} \delta(n)^{-1} \leq a_2(x) + a_3(x) + a_4(x) + \frac{a_1(x)}{2}.$$

So we have $a_1(x) < 2x/3$.

Corollary 1 : Upper bounds of four patterns

Very similar to the proof of Lemma 3, we can deduce that

$$\sum_{n\leqslant x}\delta_*(n)^{-1}>2x/3+o(x)$$

where

$$\delta_*(n) := \min_{\substack{m \neq n \\ P^+(m) \ge P^+(n)}} |m - n|.$$

Just like $a_1(x)$, we have

 $a_2(x) < 2x/3.$

Proofs of Theorems 3 and 4

The proof of Theorem 3, for the *n* such

$$P^+(n+j_0) = \min_{0 \le j \le J-1} P^+(n+j)$$

is similar to that of Theorem 1 (i).

The proof of Theorem 4, for the n such

$$P^+(n+j_0) = \max_{0 \leq j \leq J-1} P^+(n+j)$$

is similar to that of Theorem 1 (ii).

Proof of Theorem 2 : $P_y^+(n+1) > P_y^+(n)$

- Theorem 2 : $y = x^{\alpha}, \ \alpha \in (0, 1/2]$
 - (i). a well adapted system of weights
 - (ii). Proposition 1 for S(x; y, z)
- Theorem 2 : $y = x^{\alpha}, \ \alpha \in (1/2, 1]$
 - (i). a well adapted system of weights
 - (ii). Proposition 2 for well factorable function
 - (iii). the Rosser-Iwaniec linear sieve

Proof of Theorem 2 : $\alpha \in (0, 1/2]$

For $\alpha \in (0, 1/2]$, the proof is very similar to that of Theorem 1 (i). The difference is the following error term :

$$\mathsf{TE} := \sum_{z$$

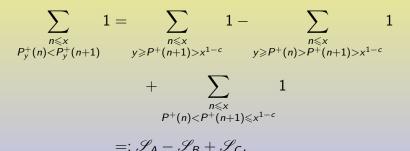
where

$$y = x^{lpha}, \ z = x^{eta}$$
 avec $0 < eta < lpha \leqslant 1/2$

By Proposition 1, the error term is admissible.

Proof of Theorem 2 : $\alpha \in (1/2, 1]$

For $\alpha \in (1/2, 1]$ and a parameter $c \in [1 - \alpha, \frac{1}{2}]$, we have



Next we shall evaluate \mathscr{S}_A , \mathscr{S}_B and \mathscr{S}_C separately.

Proof of Theorem 2 : estimation of \mathscr{S}_A

By the following formula of Hildebrand

$$\Psi(x,y) := \Psi_1(x,y) = x\rho(u) \left\{ 1 + O_{\varepsilon}\left(\frac{\log(u+1)}{\log y}\right) \right\}$$

for

$$\exp\{(\log_2 x)^{5/3+\varepsilon}\} \leqslant y \leqslant x, \quad u = \log x/\log y,$$

and

$$\rho(u) = 1 - \log u \quad (1 \leqslant u \leqslant 2),$$

we have

$$\begin{aligned} \mathscr{S}_{A} &= x \left\{ \rho \left(\frac{\log x}{\log y} \right) - \rho \left(\frac{\log x}{\log x^{1-c}} \right) \right\} + o(x) \\ &= x \log \left(\frac{\alpha}{1-c} \right) + o(x). \end{aligned}$$

ÉLIE CARTAN Nancy

Proof of Theorem 2 : estimation of \mathscr{S}_B

For \mathscr{S}_B , we use the Rosser-Iwaniec sieve.

$$\mathscr{S}_B \leqslant \left| \left\{ n \leqslant x : \ n = ap = bp' - 1, \ x^{1-lpha} < a < b \leqslant x^c
ight\} \right| + o(x)$$

$$\leq \sum_{x^{1-lpha} < b \leq x^c} \left| \left\{ n \in \mathscr{A}(b) : n \text{ is prime} \right\} \right| + o(x),$$

where

$$\mathscr{A}(b) := \Big\{ rac{ap+1}{b} : \ ap \leqslant x, \ x^{1-\alpha} < a < b, \ ap \equiv -1 \ (\mathrm{mod} \ b) \Big\}.$$

Then we shall sieve the sequence $\mathscr{A}(b)$.

Proof of Theorem 2 : estimation of \mathscr{S}_B

Some definitions of Rosser-Iwaniec sieve :

 $\mathcal{A} : \text{ finite sequence of integers}$ $\mathcal{P} : \text{ set of primes}$ $z : z \ge 2$ $\mathcal{A}_d := \{a \in \mathcal{A} : d \mid a\}$ $P_{\mathcal{P}}(z) := \prod_{p < z, p \in \mathcal{P}} p$ $S(\mathcal{A}; \mathcal{P}, z) := |\{a \in \mathcal{A} : (a, P_{\mathcal{P}}(z)) = 1\}|$

Proof of Theorem 2 : estimation of \mathscr{S}_B

For $d \mid P_{\mathcal{P}}(z)$, we suppose

$$|\mathcal{A}_d| = \frac{w(d)}{d}X + r(\mathcal{A}, d)$$

where $X \sim |\mathcal{A}|$ and w(d) is multiplicative verifying

$$\begin{cases} 0 < w(p) < p \quad (p \in \mathcal{P}) \\ \prod_{u < p \leqslant v} \left(1 - \frac{w(p)}{p}\right)^{-1} \leqslant \frac{\log v}{\log u} \left(1 + \frac{K}{\log u}\right) \end{cases}$$

In addition, we define

$$V(z) := \prod_{p < z, p \in \mathcal{P}} \left(1 - rac{w(p)}{p}\right).$$

Proof of Theorem 2 : estimation of \mathscr{S}_B

Lemma 4. (Rosser-Iwaniec sieve)

For $D^{1/2} \ge z \ge 2$, we have

$$S(\mathcal{A}; \mathcal{P}, z) \leqslant XV(z) \Big\{ F\Big(\frac{\log D}{\log z} \Big) + E \Big\}$$

$$+\sum_{\ell<\exp(8/arepsilon^3)}\,\sum_{d|\mathcal{P}_{\mathcal{P}}(z)}\lambda_\ell^+(d)r(\mathcal{A},d),$$

where

$$F(s) = rac{2\mathrm{e}^{\gamma}}{s} \ (0 < s \leqslant 3), \quad E = O\Big(arepsilon + rac{\mathrm{e}^{K}(\log D)^{-rac{1}{3}}}{arepsilon^{8}}\Big).$$

 $\lambda_{\ell}^+(d)$, the Rosser-Iwaniec weights with $|\lambda_{\ell}^+(d)| \leq 1$, denote a well factorable coefficient of level *D* and ordre 1.

Proof of Theorem 2 : estimation of \mathscr{S}_B

Take $D = z^2 = x^{4/7-\varepsilon}/b$ in Lemma 4, then we have

$$S(\mathscr{A}(b); \mathcal{P}, z) \leq \{1 + o(1)\} \frac{2X}{\log(x^{4/7 - \varepsilon}/b)} + \sum_{\ell < \exp(8/\varepsilon^3)} \sum_{d < D, d | P(z)} \lambda_{\ell}^+(d) r(\mathscr{A}(b), d),$$

and so that

$$\mathscr{S}_B \leqslant \sum_{x^{1-lpha} < b \leqslant x^c} \left(\mathcal{S}(\mathscr{A}(b); \mathfrak{P}, z) + z
ight) \ \leqslant \left\{ 1 + o(1) \right\} \mathscr{S}_{B1} + \mathscr{S}_{B2} + O(x(\log x))$$

 $^{-1}),$

Proof of Theorem 2 : estimation of \mathscr{S}_B

where

$$\mathscr{S}_{B1} := \sum_{x^{1-\alpha} < b \leqslant x^{c}} \frac{2x}{b \log(x^{4/7-\varepsilon}/b)} \log\left(\frac{\alpha \log x}{\log(x/b)}\right),$$

 $\mathscr{S}_{B2} := \sum_{\ell < \exp(8/\varepsilon^{3})} \sum_{x^{1-\alpha} < b \leqslant x^{c}} \sum_{\substack{d < D \\ d \mid P(z)}} \lambda_{\ell}^{+}(d) r(\mathscr{A}(b), d).$

Proof of Theorem 2 : estimation of \mathscr{S}_B

To evaluate the error term $\mathscr{S}_{\mathsf{B2}}$, we define λ_ℓ by

$$\lambda_\ell(q) := \sum_{\substack{\mathbb{B}/2 < b \leqslant \mathbb{B} \ b d = q}} \sum_{\substack{d < D, \ d \mid P(z)}} \mathbb{1}_{]\mathbb{B}/2, \mathbb{B}]}(b) \, \lambda_\ell^+(d),$$

where

$$\mathbb{1}_{]\mathbb{B}/2,\mathbb{B}]}(b) = \begin{cases} 1 & \text{if } \mathbb{B}/2 < b \leqslant \mathbb{B}, \\ 0 & \text{otherwise.} \end{cases}$$

We can deduce that λ_{ℓ} is well factorable of level $x^{4/7-\varepsilon}$ if we impose the condition $c \leq 2/7 - \varepsilon$.

Proof of Theorem 2 : estimation of \mathscr{S}_B

\mathscr{S}_{B2} is admissible

 $\mathscr{S}_{B2} \ll x(\log x)^{-B}$

for

$$\begin{cases} D = \frac{x^{4/7-\varepsilon}}{b}, & 0 < c \leq \frac{2}{7} - \varepsilon \text{ (Proposition 2),} \\ D = \frac{x^{1/2}}{b(\log x)^{B}}, & \frac{2}{7} - \varepsilon < c < \frac{1}{2} \text{ (Pan-Ding-Wang).} \end{cases}$$

\mathscr{S}_{B1} : partial summation

Proof of Theorem 2 : estimation of \mathscr{S}_B

So for
$$y = x^{lpha}, 1 - c \leqslant lpha \leqslant 1$$
, \mathscr{S}_{B} is majorized by

$$\mathscr{S}_{B} \leqslant \begin{cases} 2x \int_{1-\alpha}^{c} \log\left(\frac{\alpha}{1-t}\right) \frac{\mathrm{d}t}{4/7-t} + o(x) & 0 < c \leqslant \frac{2}{7} - \varepsilon, \\ \\ 2x \int_{1-\alpha}^{c} \log\left(\frac{\alpha}{1-t}\right) \frac{\mathrm{d}t}{1/2-t} + o(x) & \frac{2}{7} - \varepsilon < c < \frac{1}{2}. \end{cases}$$

Proof of Theorem 2 : estimation of \mathscr{S}_{C}

For \mathscr{S}_{C} , by the same method as Theorem 1 (i), we have

$$\mathscr{S}_{\mathsf{C}} \ge x \vartheta_0 \left(\frac{\delta}{\alpha}, \frac{1}{\alpha} \right) \delta \log \frac{1}{2\delta} + o(x),$$

where δ is a parameter with $c \leq \delta \leq 1/2$.

Proof of Theorem 2 : $1/2 < \alpha \leqslant 1$

So for $y = x^{\alpha}$, $\alpha \in (1/2, 1]$, combine $\mathscr{S}_A, \mathscr{S}_B, \mathscr{S}_C$ and we have

$$\left|\left\{n \leqslant x : P_y^+(n+1) > P_y^+(n)\right\}\right| \ge C_2(\alpha)x$$

where $C_2(\alpha) > 0$ is a constant.

Proof of Theorem 2

Finally, we get Theorem 2 :

$$\left|\left\{n\leqslant x: P_{y}^{+}(n+1)>P_{y}^{+}(n)\right\}\right|\geqslant C(\alpha)x$$

for $y = x^{\alpha}$, $0 < \alpha \leqslant 1$, where

$$\mathcal{C}(lpha) := egin{cases} \mathcal{C}_1(lpha) & ext{if } 0 < lpha \leqslant 1/2, \ \mathcal{C}_2(lpha) & ext{if } 1/2 < lpha \leqslant 1. \end{cases}$$

Thank you !

