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Université de Lorraine

France

Marseille, May 25, 2017

Zhiwei WANG On the largest prime factors of consecutive integers



ÉLIEIn
st

it
ut

CARTAN
Nancy

Table of contents

Table of contents

1 Definitions and notations

2 Introduction

3 Two theorems of Bombieri-Vinogradov type

4 Proofs of our results

Zhiwei WANG On the largest prime factors of consecutive integers



ÉLIEIn
st

it
ut

CARTAN
Nancy

Table of contents

Table of contents

1 Definitions and notations

2 Introduction

3 Two theorems of Bombieri-Vinogradov type

4 Proofs of our results

Zhiwei WANG On the largest prime factors of consecutive integers



ÉLIEIn
st

it
ut

CARTAN
Nancy

Table of contents

Table of contents

1 Definitions and notations

2 Introduction

3 Two theorems of Bombieri-Vinogradov type

4 Proofs of our results

Zhiwei WANG On the largest prime factors of consecutive integers



ÉLIEIn
st

it
ut

CARTAN
Nancy

Table of contents

Table of contents

1 Definitions and notations

2 Introduction

3 Two theorems of Bombieri-Vinogradov type

4 Proofs of our results

Zhiwei WANG On the largest prime factors of consecutive integers



ÉLIEIn
st

it
ut

CARTAN
Nancy

Definitions and notations
Introduction

Two theorems of Bombieri-Vinogradov type
Proofs of our results

Table of contents

1 Definitions and notations

2 Introduction

3 Two theorems of Bombieri-Vinogradov type

4 Proofs of our results

Zhiwei WANG On the largest prime factors of consecutive integers



ÉLIEIn
st

it
ut

CARTAN
Nancy

Definitions and notations
Introduction

Two theorems of Bombieri-Vinogradov type
Proofs of our results

Definitions and notations

p, p1, p2, p
′ : prime number

ε : any sufficiently small positive constant

x : tend to infinity

ϕ(n) : the Euler function

P+(n) : the largest prime factor of n

with the convention P+(1) = 1

P−(n) : the smallest prime factor of n

with the convention P−(1) = +∞
P+
y (n) : the largest prime factor p(6 y) of n

with the convention P+
y (n) = 1 if P−(n) > y
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Definition and notation

ρ(u) : the Dickman function defined as the unique continuous

solution to the differential-difference equation{
ρ(u) = 1 if 0 6 u 6 1,

uρ′(u) = −ρ(u − 1) if u > 1.

ω(u) : the Buchstab function defined as the unique continuous

solution to the differential-difference equation{
uω(u) = 1 if 1 6 u 6 2,{
uω(u)

}′
= ω(u − 1) if u > 2.
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Introduction

Two fundamental structures : additive, multiplicative
Two typical examples of shifted number :
Fermat number : 22

k
+ 1, Twin prime numbers : p, p + 2

Conjecture (De Koninck & Doyon hypothesis, 2011)
For any fixed integer k > 2 and n, let a1, a2, . . . , ak be any
permutation of the numbers 0, 1, . . . , k − 1. Then

Prob[P+(n + a1) < P+(n + a2) < · · · < P+(n + ak)] =
1

k!
,

i.e.,
1

x

∣∣{n 6 x : P+(n + a1) < · · · < P+(n + ak)
}∣∣→ 1

k!
.

The simplest case (k = 2, a1 = 0, a2 = 1) :∣∣{n 6 x : P+(n) < P+(n + 1)
}∣∣ ∼ 1

2
x .
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Three consecutive integers

Erdős & Pomerance(1978) :

(i). P+(n − 1) > P+(n) < P+(n + 1) for infinitely many n.

(ii). P+(n − 1) < P+(n) > P+(n + 1) for infinitely many n.

(iii). P+(n − 1) < P+(n) < P+(n + 1) for infinitely many n.(
n = p2

k0 , k0 = inf{k : P+(p2
k

+ 1) > p}
)

Balog(2001) :

(iv).
∣∣{n 6 x : P+(n − 1) > P+(n) > P+(n + 1)

}∣∣� x1/2.

(Conjecture : ∼ 1
6
x)
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Three consecutive integers

Theorem 1.

(i).
∣∣{n 6 x : P+(n − 1) > P+(n) < P+(n + 1)

}∣∣ > 1.06× 10−7x ,

(ii).
∣∣{n 6 x : P+(n − 1) < P+(n) > P+(n + 1)

}∣∣ > 8.84× 10−4x .

Corollary 1. (Upper bounds of four patterns)∣∣{n 6 x : P+(n − 1) > P+(n) < P+(n + 1)
}∣∣ < 2x/3,∣∣{n 6 x : P+(n − 1) < P+(n) > P+(n + 1)
}∣∣ < 2x/3,∣∣{n 6 x : P+(n − 1) < P+(n) < P+(n + 1)
}∣∣ < 0.8636x ,∣∣{n 6 x : P+(n − 1) > P+(n) > P+(n + 1)
}∣∣ < 0.8636x .
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Three consecutive integers

Theorem 1.
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}∣∣ < 2x/3,∣∣{n 6 x : P+(n − 1) < P+(n) > P+(n + 1)
}∣∣ < 2x/3,∣∣{n 6 x : P+(n − 1) < P+(n) < P+(n + 1)
}∣∣ < 0.8636x ,∣∣{n 6 x : P+(n − 1) > P+(n) > P+(n + 1)
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Two consecutive integers

Conjecture 1. (Erdős-Pomerance, 1978) return∣∣{n 6 x : P+(n) < P+(n + 1)
}∣∣ ∼ 1

2
x .

Erdős & Pomerance (1978) :∣∣{n 6 x : P+(n) < P+(n + 1)
}∣∣ > 0.0099x .
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Two consecutive integers

Conjecture 1. (Erdős-Pomerance, 1978) return∣∣{n 6 x : P+(n) < P+(n + 1)
}∣∣ ∼ 1

2
x .

Erdős & Pomerance (1978) :∣∣{n 6 x : P+(n) < P+(n + 1)
}∣∣ > 0.0099x .
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Two consecutive integers

La Bretèche, Pomerance & Tenenbaum (2005) :∣∣{n 6 x : P+(n) < P+(n + 1)
}∣∣ > 0.05544x .

(Fouvry, 0.05544→ 0.05866)

Wang (2016) :∣∣{n 6 x : P+(n) < P+(n + 1)
}∣∣ > 0.1063x .
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P+
y (n) : max{p|n : p 6 y}

Rivat (Theorem 2, 2001) : For 3 6 y 6 exp
(

log x
100 log log x

)
,

∣∣∣ ∑
16n6x

fy (n)
∣∣∣� x exp

(− log x

10 log y

)
� x(log x)−10

where

fy (n) :=

{
1 if P+

y (n + 1) > P+
y (n),

−1 if P+
y (n + 1) < P+

y (n).

⇒
∣∣∣{n 6 x : P+

y (n + 1) > P+
y (n)

}∣∣∣ ∼ 1

2
x .

(y = x ⇒ Conjecture of Erdős & Pomerance)
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P+
y (n) : max{p|n : p 6 y}

Theorem 2.
For y = xα, 0 < α 6 1, we have∣∣{n 6 x : P+

y (n + 1) > P+
y (n)

}∣∣ > C (α)x

where C (α) is a positive constant.

(C (α) has an explicit but complicated definition).

Three examples of values of C (α) :

C
(1

3

)
> 0.0506, C

(1

2

)
> 0.0914, C

(2

3

)
> 0.0948.
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P+
y (n) : max{p|n : p 6 y}

In particular, C (1) > 0.1356 by taking α = 1. So we have

Corollary 2.∣∣{n 6 x : P+(n + 1) > P+(n)
}∣∣ > 0.1356x .

So we have improved the previous constant 0.1063.

Remark : Under the Elliott-Halberstam conjecture and the
Elliott-Halberstam conjecture for friable integers :

0.1356→ 0.411
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Several consecutive integers

Similar to the proofs of Theorem 1, we have

Theorem 3.
For any fixed integer J > 3 and j0 ∈ {0, . . . , J − 1}, we have∣∣{n 6 x : P+(n + j0) = min

06j6J−1
P+(n + j)

}∣∣ > C3(J)x + o(x)

where

C3(J) := max
0<α< 1

2(J−1)

ρ
( 1

α

)(
α log

1

2α(J − 1)

)J−1
> 0.
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Several consecutive integers

Theorem 4.
For any fixed J > 3 and j0 ∈ {0, . . . , J − 1}, with “min”
replaced by “max” we have∣∣{n 6 x : P+(n + j0) = max

06j6J−1
P+(n + j)

}∣∣ > C4(J)x + o(x)

where

C4(J) := max
2J−2
2J−1

<α<1

1−α6β<γ< α
2(J−1)

(
β log

γ

β

)J−1
log

1

α
> 0.
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Tools for the proofs

Theorems 1, 3 and 4

(i). a well adapted system of weights

(ii). the Bombieri-Vinogradov theorem and the
Bombieri-Vinogradov theorem for friable integers

Theorem 2

(i). two theorems of Bombieri-Vinogradov type

(ii). a well adapted system of weights

(iii). the Rosser-Iwaniec linear sieve
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Theorem of Bombieri-Vinogradov type for
S(x ; y , z)

Proposition 1.

For any A > 0, we have∑
q6 x1/2

(log x)B

max
t6x

max
(a, q)=1

∣∣∣∣ ∑
n∈S(t; y ,z)
n≡a(mod q)

1− 1

ϕ(q)

∑
n∈S(t; y ,z)
(n, q)=1

1

∣∣∣∣� x

(log x)A

uniformly for

2 6 z 6 y 6 x and exp{(log x)2/5+ε} 6 y 6 x ,

where B and the implied constant depend on A, ε alone and

S(x ; y , z) :=
{
n 6 x : p|n⇒ p 6∈ (z , y ]

}
.
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Motohashi’s works

Let f be a complex valued arithmetic function, and let
introduce the following properties.

(A) : f (n)� τ(n)C , where τ(n) is the divisor function, C is a
fixed constant.

(B) : If the conductor of a non-principal character χ is
O((log x)D), then∑

n6x

f (n)χ(n)� x(log x)−3D

where D is an arbitrarily large constant.
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Motohashi’s works

(C) : Let

Ef (y ; q, a) :=
∑
n6y

n≡a(mod q)

f (n)− 1

ϕ(q)

∑
n6y

(n,q)=1

f (n),

then for any A > 0, there exists B = B(A) > 0 such that∑
q6x1/2/(log x)B

max
y6x

max
(a, q)=1

∣∣Ef (y ; q, a)
∣∣� x

(log x)A
.

The constants A,B = B(A),C ,D depend only on f .
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Motohashi’s works

Lemma 1. (Motohashi, 1976)

Let f and g have the properties (A), (B) and (C). Then the
multiplicative convolution f ∗ g does so.
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Proof of Proposition 1

Let λ be the indicator function of the set S(x ; y , z) and vz , uy
be two arithmetic functions defined by

vz(n) :=

{
1 si P+(n) 6 z ,
0 sinon,

and

uy (n) :=

{
1 si P−(n) > y ,
0 sinon.

Then it suffices to prove that vz , uy have the properties (A),
(B) and (C), considering λ = vz ∗ uy .
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Proof of Proposition 1

vz : (A)→ trivial

(B)→ Théorème 4, Fouvry & Tenenbaum, 1991

(C)→ Théorème 6, Fouvry & Tenenbaum, 1991

and

uy : (A)→ trivial

(B)→ Theorem 1, Xuan, 2000

(C)→ Theorem(Satz), Wolke, 1973

⇒ Proposition 1 is proved.
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Theorem of Bombieri-Vinogradov type with
well factorable function

An arithmetic fonction λ is called to be of level Q and of finite
order k if

λ(q) = 0 (q > Q) et |λ(q)| 6 τk(q) (q 6 Q).

λ is called well factorable of level Q if for any Q1,Q2 > 1,
Q = Q1Q2, there exist two functions λ1, λ2 of levels Q1,Q2

and orders k respectively such that

λ = λ1 ∗ λ2.
In addition, we define

π(x ; `, a, q) :=
∑
`p6x

`p≡a(mod q)

1.
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Theorem of Bombieri-Vinogradov type with
well factorable function

Proposition 2.

Let a ∈ Z∗ and A > 0, then for any well factorable function
λ(q) of level Q, we have∑

(a, q)=1

λ(q)
∑

L16`6L2
(`, q)=1

(
π(x ; `, a, q)− li(x/`)

ϕ(q)

)
� x

(log x)A

for
Q = x4/7−ε, 1 6 L1 6 L2 6 x1−ε.

The implied constant depend only on a, A and ε.

L1 = L2 = 1⇒ Theorem of Bombieri-Friedlander-Iwaniec.
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Ideas of Theorem 1

Theorem 1 (i) : P+(n − 1) > P+(n) < P+(n + 1)

Let y =xα, α > 0

n → P+(n) 6 y

n − 1, n + 1 → P+(n − 1) > y , P+(n + 1) > y

Theorem 1 (ii) : P+(n − 1) < P+(n) > P+(n + 1)

n → n = mp, p is sufficiently large

n − 1, n + 1 → n − 1 = p1n1, n + 1 = p2n2,

x/p < p1, p2 < p

Zhiwei WANG On the largest prime factors of consecutive integers
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Theorem 1 (i) : P+(n − 1) > P+(n) < P+(n + 1)

Let

S(x , y) := {n 6 x : P+(n) 6 y}, P(y , z) :=
∏

z<p6y

p,

and

Ψ(x , y ; a, q) :=
∑

n∈S(x , y)
n≡a(mod q)

1, Ψq(x , y) :=
∑

n∈S(x , y)
(n, q)=1

1.

Then we have ∑
n6x

P+(n−1)>P+(n)<P+(n+1)

1 >
∑

n∈S(x , y)
(n±1, P(x ,y))>1

1.
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Theorem 1 (i) : P+(n − 1) > P+(n) < P+(n + 1)

In order to detect the condition (n ± 1, P(x , y)) > 1, we
introduce a well adapted system of weights :

ω(n; y , z) :=
∑

z<p6y
p|n

1 6
log x

log z
(n 6 x , z < y),

which implies(
log x

log z

)−1
ω(n; y , z)

{
6 1 if (n, P(z , y)) > 1,

= 0 otherwise.
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Theorem 1 (i) : P+(n − 1) > P+(n) < P+(n + 1)

The inequality of weights :∑
n6x

P+(n−1)>P+(n)<P+(n+1)

1 >
∑

n∈S(x , y)

ω(n − 1; x , y)

( log x
log y

)
· ω(n + 1; x , y)

( log x
log y

)

> α2
∑

y<p16x

∑
y<p26x

p1p26x1/2/(log x)B

p1 6=p2

∑
n∈S(x , y)

n≡1 (mod p1)
n≡−1 (mod p2)

1

for y = xα, α < 1/4. By Chinese remainder theorem, there
exists a < p1p2 such that

n ≡ a (mod p1p2).
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Theorem 1 (i) : P+(n − 1) > P+(n) < P+(n + 1)

So we have ∑
n6x

P+(n−1)>P+(n)<P+(n+1)

1 > α2
∑

y<p16x

∑
y<p26x

p1p26x1/2/(log x)B

p1 6=p2

∑
n∈S(x , y)

n≡a(mod p1p2)

1

= α2(S1 + S2),

where

S1 :=
∑

y<p16x

∑
y<p26x

p1p26x1/2/(log x)B , p1 6=p2

Ψp1p2(x , y)

ϕ(p1p2)
,

S2 :=
∑

y<p16x

∑
y<p26x

p1p26x1/2/(log x)B , p1 6=p2

(
Ψ(x , y ; a, p1p2)− Ψp1p2(x , y)

ϕ(p1p2)

)
.
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Theorem 1 (i) : P+(n − 1) > P+(n) < P+(n + 1)

For the error term S2 and any A > 0, by the following lemma
2 of Wolke or Fouvry & Tenenbaum for the friable integers,
combined with the Cauchy-Schwarz inequality

Lemma 2.
For x > y > 2∑
q6x1/2/(log x)B

max
z6x

max
(a, q)=1

∣∣∣∣Ψ(z , y ; a, q)− Ψq(z , y)

ϕ(q)

∣∣∣∣�A
x

(log x)A

we have

S2 � x(log x)−A.
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Theorem 1 (i) : P+(n − 1) > P+(n) < P+(n + 1)

For the principal term S1, by a result of Hildebrand for the
friable integers we obtain

S1 = xρ
( 1

α

)
α

∫ 1
2α
−1

1

log t
1
2
− αt

dt + o(x) (α < 1/4).

So Theorem 1 (i) is proved :∑
n6x

P+(n−1)>P+(n)<P+(n+1)

1 > xρ
( 1

α

)
α3

∫ 1
2α
−1

1

log t
1
2
− αt

dt + o(x)

> 1.063× 10−7x

by taking α ≈ 1
4.6
, with the help of Mathematica 9.0.
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Theorem 1 (ii) : P+(n − 1) < P+(n) > P+(n + 1)

Let α, β, γ be three parameters with

4/5 < α 6 1, 1− α 6 β < γ < α/4.

Given an integer m and p1 6= p2 satisfying

1 6 m 6 x1−α, xβ < p1, p2 6 xγ,

we consider the congruence system :

mp − 1 ≡ 0 (mod p1), mp + 1 ≡ 0 (mod p2).

Chinese remainder theorem implies that p ≡ b (mod p1p2).

Then for these m and p > xα, we have

P+(mp − 1) < P+(mp) > P+(mp + 1).
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Theorem 1 (ii) : P+(n − 1) < P+(n) > P+(n + 1)

So we also get an inequality of weights∑
n6x

P+(n)>P+(n−1)
P+(n)>P+(n+1)
xα<P+(n)6x

1 >
∑

m6x1−α

∑
xα<p6 x

m

∏
i={1,−1}

ω(mp + i ; xγ, xβ)

( log x
log xβ

)

= β2
∑

m6x1−α

∑ ∑
xβ<p1, p26xγ

p1 6=p2

∑
xα<p6 x

m
p≡b (mod p1p2)

1

= β2(S1 + S2),
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Theorem 1 (ii) : P+(n − 1) < P+(n) > P+(n + 1)

where

S1 :=
∑

m6x1−α

∑ ∑
xβ<p1, p26xγ , p1 6=p2

π(x/m)− π(xα)

ϕ(p1p2)

and

S2 :=
∑

m6x1−α

∑ ∑
xβ<p1, p26xγ

p1 6=p2

{
π(x/m; b, p1p2)− π(x/m)

ϕ(p1p2)

−
(
π(xα; b, p1p2)− π(xα)

ϕ(p1p2)

)}
.

For S2, by the theorem of Bombieri-Vinogradov we have

S2 � x(log x)−A (γ < α/4).
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Theorem 1 (ii) : P+(n − 1) < P+(n) > P+(n + 1)

For S1, we can calculate that

S1 = x
(
β log

γ

β

)2
log

1

α
+ o(x)

> 7× 10−4x

with
α ≈ 0.895, β ≈ 0.105, γ ≈ 0.22375.

So we have the following lower bound∑
n6x

P+(n−1)<P+(n)>P+(n+1)
x0.895<P+(n)6x

1 > 7× 10−4x .

Zhiwei WANG On the largest prime factors of consecutive integers



ÉLIEIn
st

it
ut

CARTAN
Nancy

Definitions and notations
Introduction

Two theorems of Bombieri-Vinogradov type
Proofs of our results

Theorem 1 (ii) : P+(n − 1) < P+(n) > P+(n + 1)

With the same method we have∑
n6x

P+(n−1)<P+(n)>P+(n+1)
x0.835<P+(n)6x0.895

1 > 1.84× 10−4x ,

and so Theorem 1 (ii) is proved∑
n6x

P+(n−1)<P+(n)>P+(n+1)
x0.835<P+(n)6x

1 > 8.84× 10−4x .
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Corollary 1 : Upper bounds of four patterns

We note for a1(x) + a2(x) + a3(x) + a4(x) = [x ]

a1(x) :=
∣∣{n 6 x : P+(n − 1) > P+(n) < P+(n + 1)

}∣∣,
a2(x) :=

∣∣{n 6 x : P+(n − 1) < P+(n) > P+(n + 1)
}∣∣,

a3(x) :=
∣∣{n 6 x : P+(n − 1) < P+(n) < P+(n + 1)

}∣∣,
a4(x) :=

∣∣{n 6 x : P+(n − 1) > P+(n) > P+(n + 1)
}∣∣.

Corollary 2 implies that

[x ]− a2(x)− a3(x) > 0.1356x , [x ]− a2(x)− a4(x) > 0.1356x .

In view of the lower bound of a2(x) in Theorem 1 (ii), we get

a3(x), a4(x) < (0.8644− 8.84× 10−4)x .
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Corollary 1 : Upper bounds of four patterns

Lemma 3. (De Koninck & Doyon, 2011)

We have ∑
n6x

δ(n)−1 > 2x/3 + o(x)

where
δ(n) := min

m 6=n
P+(m)6P+(n)

|m − n|.

By Lemma 3,

2

3
x <

∑
n6x

δ(n)−1 6 a2(x) + a3(x) + a4(x) +
a1(x)

2
.

So we have a1(x) < 2x/3.
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Corollary 1 : Upper bounds of four patterns

Very similar to the proof of Lemma 3, we can deduce that∑
n6x

δ∗(n)−1 > 2x/3 + o(x)

where
δ∗(n) := min

m 6=n
P+(m)>P+(n)

|m − n|.

Just like a1(x), we have

a2(x) < 2x/3.
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Proofs of Theorems 3 and 4

The proof of Theorem 3, for the n such

P+(n + j0) = min
06j6J−1

P+(n + j)

is similar to that of Theorem 1 (i).

The proof of Theorem 4, for the n such

P+(n + j0) = max
06j6J−1

P+(n + j)

is similar to that of Theorem 1 (ii).
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Proof of Theorem 2 : P+
y (n + 1) > P+

y (n)

Theorem 2 : y = xα, α ∈ (0, 1/2]

(i). a well adapted system of weights

(ii). Proposition 1 for S(x ; y , z)

Theorem 2 : y = xα, α ∈ (1/2, 1]

(i). a well adapted system of weights

(ii). Proposition 2 for well factorable function

(iii). the Rosser-Iwaniec linear sieve

Zhiwei WANG On the largest prime factors of consecutive integers



ÉLIEIn
st

it
ut

CARTAN
Nancy

Definitions and notations
Introduction

Two theorems of Bombieri-Vinogradov type
Proofs of our results

Proof of Theorem 2 : α ∈ (0, 1/2]

For α ∈ (0, 1/2], the proof is very similar to that of Theorem
1 (i). The difference is the following error term :

TE :=
∑

z<p6y

( ∑
n∈S(x ; y ,z)

n≡−1 (mod p)

1− 1

ϕ(p)

∑
n∈S(x ; y ,z)
(n, p)=1

1
)
,

where

y = xα, z = xβ avec 0 < β < α 6 1/2.

By Proposition 1, the error term is admissible.
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Proof of Theorem 2 : α ∈ (1/2, 1]

For α ∈ (1/2, 1] and a parameter c ∈ [1− α, 1
2
], we have∑

n6x
P+
y (n)<P+

y (n+1)

1 =
∑
n6x

y>P+(n+1)>x1−c

1−
∑
n6x

y>P+(n)>P+(n+1)>x1−c

1

+
∑
n6x

P+(n)<P+(n+1)6x1−c

1

=: SA −SB + SC .

Next we shall evaluate SA, SB and SC separately.
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Proof of Theorem 2 : estimation of SA

By the following formula of Hildebrand

Ψ(x , y) := Ψ1(x , y) = xρ(u)
{

1 + Oε

(
log(u+1)
log y

)}
for

exp{(log2 x)5/3+ε} 6 y 6 x , u = log x/ log y ,

and
ρ(u) = 1− log u (1 6 u 6 2),

we have

SA = x
{
ρ
( log x

log y

)
− ρ
( log x

log x1−c

)}
+ o(x)

= x log
( α

1− c

)
+ o(x).
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Proof of Theorem 2 : estimation of SB

For SB , we use the Rosser-Iwaniec sieve.

SB 6
∣∣{n 6 x : n = ap = bp′ − 1, x1−α < a < b 6 xc

}∣∣
+ o(x)

6
∑

x1−α<b6xc

∣∣{n ∈ A (b) : n is prime
}∣∣+ o(x),

where

A (b) :=
{ap + 1

b
: ap 6 x , x1−α < a < b, ap ≡ −1 (mod b)

}
.

Then we shall sieve the sequence A (b).
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Proof of Theorem 2 : estimation of SB

Some definitions of Rosser-Iwaniec sieve :

A : finite sequence of integers

P : set of primes

z : z > 2

Ad :=
{
a ∈ A : d | a

}
PP(z) :=

∏
p<z, p∈P

p

S(A;P, z) := |{a ∈ A : (a, PP(z)) = 1}|
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Proof of Theorem 2 : estimation of SB

For d | PP(z), we suppose

|Ad | =
w(d)

d
X + r(A, d)

where X ∼ |A| and w(d) is multiplicative verifying
0 < w(p) < p (p ∈ P)∏
u<p6v

(
1− w(p)

p

)−1
6

log v

log u

(
1 +

K

log u

)
In addition, we define

V (z) :=
∏

p<z, p∈P

(
1− w(p)

p

)
.
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Proof of Theorem 2 : estimation of SB

Lemma 4. (Rosser-Iwaniec sieve)

For D1/2 > z > 2, we have

S(A;P, z) 6 XV (z)
{
F
( logD

log z

)
+ E

}
+

∑
`<exp(8/ε3)

∑
d |PP(z)

λ+` (d)r(A, d),

where

F (s) =
2eγ

s
(0 < s 6 3), E = O

(
ε +

eK (logD)−
1
3

ε8

)
.

λ+` (d), the Rosser-Iwaniec weights with |λ+` (d)| 6 1, denote a
well factorable coefficient of level D and ordre 1.
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Proof of Theorem 2 : estimation of SB

Take D = z2 = x4/7−ε/b in Lemma 4, then we have

S(A (b);P, z) 6 {1 + o(1)} 2X

log(x4/7−ε/b)

+
∑

`<exp(8/ε3)

∑
d<D, d |P(z)

λ+` (d) r
(
A (b), d

)
,

and so that

SB 6
∑

x1−α<b6xc

(
S(A (b);P, z) + z

)
6
{

1 + o(1)
}
SB1 + SB2 + O

(
x(log x)−1

)
,
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Proof of Theorem 2 : estimation of SB

where

SB1 :=
∑

x1−α<b6xc

2x

b log(x4/7−ε/b)
log

(
α log x

log(x/b)

)
,

SB2 :=
∑

`<exp(8/ε3)

∑
x1−α<b6xc

∑
d<D
d |P(z)

λ+` (d) r
(
A (b), d

)
.
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Proof of Theorem 2 : estimation of SB

To evaluate the error term SB2, we define λ` by

λ`(q) :=
∑

B/2<b6B

∑
d<D, d |P(z)

bd=q

1]B/2,B](b)λ+` (d),

where

1]B/2,B](b) =

{
1 if B/2 < b 6 B,

0 otherwise.

We can deduce that λ` is well factorable of level x4/7−ε if we
impose the condition c 6 2/7− ε.
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Proof of Theorem 2 : estimation of SB

SB2 is admissible

SB2 � x(log x)−B

for D = x4/7−ε

b
, 0 < c 6 2

7
− ε (Proposition 2),

D = x1/2

b(log x)B
, 2

7
− ε < c < 1

2
(Pan-Ding-Wang).

SB1 : partial summation
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Proof of Theorem 2 : estimation of SB

So for y = xα, 1− c 6 α 6 1, SB is majorized by

SB 6


2x
∫ c

1−α log
(

α
1−t

)
dt

4/7−t + o(x) 0 < c 6 2
7
− ε,

2x
∫ c

1−α log
(

α
1−t

)
dt

1/2−t + o(x) 2
7
− ε < c < 1

2
.
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Proof of Theorem 2 : estimation of SC

For SC , by the same method as Theorem 1 (i), we have

SC > xϑ0

(
δ

α
,

1

α

)
δ log

1

2δ
+ o(x),

where δ is a parameter with c 6 δ 6 1/2.
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Proof of Theorem 2 : 1/2 < α 6 1

So for y = xα, α ∈ (1/2, 1], combine SA,SB , SC and we
have ∣∣{n 6 x : P+

y (n + 1) > P+
y (n)

}∣∣ > C2(α)x

where C2(α) > 0 is a constant.
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Proof of Theorem 2

Finally, we get Theorem 2 :∣∣{n 6 x : P+
y (n + 1) > P+

y (n)
}∣∣ > C (α)x

for y = xα, 0 < α 6 1, where

C (α) :=

C1(α) if 0 < α 6 1/2,

C2(α) if 1/2 < α 6 1.
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Thank you !
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