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Basic definitions and the general main question

In the sequel we will use the following notation:
N - the set of non-negative integers,
N+ - the set of positive integers,
P - the set of prime numbers,
A≥k - the set {n ∈ A : n ≥ k}.

If p ∈ P and n ∈ Z we define the p-adic valuation of n as:

νp(n) := max{k ∈ N : pk | n}.

We also adopt the standard convention that νp(0) = +∞.

From the definition we easily deduce that for each n1, n2 ∈ Z the following
properties hold:

νp(n1n2) = νp(n1) + νp(n2) and νp(n1 + n2) ≥ min{νp(n1), νp(n2)}.

If νp(n1) 6= νp(n2) then the inequality can be replaced by the equality.

Maciej Ulas 2-adic valuations of coefficients ...



Basic definitions and the general main question

In the sequel we will use the following notation:
N - the set of non-negative integers,
N+ - the set of positive integers,
P - the set of prime numbers,
A≥k - the set {n ∈ A : n ≥ k}.

If p ∈ P and n ∈ Z we define the p-adic valuation of n as:

νp(n) := max{k ∈ N : pk | n}.

We also adopt the standard convention that νp(0) = +∞.

From the definition we easily deduce that for each n1, n2 ∈ Z the following
properties hold:

νp(n1n2) = νp(n1) + νp(n2) and νp(n1 + n2) ≥ min{νp(n1), νp(n2)}.

If νp(n1) 6= νp(n2) then the inequality can be replaced by the equality.

Maciej Ulas 2-adic valuations of coefficients ...



Basic definitions and the general main question

In the sequel we will use the following notation:
N - the set of non-negative integers,
N+ - the set of positive integers,
P - the set of prime numbers,
A≥k - the set {n ∈ A : n ≥ k}.

If p ∈ P and n ∈ Z we define the p-adic valuation of n as:

νp(n) := max{k ∈ N : pk | n}.

We also adopt the standard convention that νp(0) = +∞.

From the definition we easily deduce that for each n1, n2 ∈ Z the following
properties hold:

νp(n1n2) = νp(n1) + νp(n2) and νp(n1 + n2) ≥ min{νp(n1), νp(n2)}.

If νp(n1) 6= νp(n2) then the inequality can be replaced by the equality.

Maciej Ulas 2-adic valuations of coefficients ...



Let

f (x) =
∞∑
n=0

anx
n ∈ Z[[x ]]

and

g(x) =
∞∑
n=0

bnx
n ∈ Z[[x ]]

be a formal power series with integer coefficients.

Let M ∈ N≥2 be given. We say that f , g are congruent modulo M if and
only if for all n the coefficients of xn in both series are congruent modulo
M.

In other words

f ≡ g (mod M)⇐⇒ ∀n ∈ N : an ≡ bn (mod M).
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One can prove that for any given f ,F , g ,G ∈ Z[[x ]] satisfying

f ≡ g (mod M) and F ≡ G (mod M)

we have

f ± F ≡ g ± G (mod M) and fF ≡ gG (mod M).

Moreover, if f (0), g(0) ∈ {−1, 1} then the series 1/f , 1/g have integer
coefficients and we also have

1

f
≡ 1

g
(mod M).

In consequence, in this case we have

f k ≡ g k (mod M)

for any k ∈ Z.
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We formulate the following general

Question 1

Let f (x) =
∑∞

n=0 εnx
n ∈ Z[[x ]] with ε0 ∈ {−1, 1} and take m ∈ N+. What can

be said about the sequences (νp(am(n)))n∈N, (νp(bm(n)))n∈N, where

f (x)m =

(
∞∑
n=0

εnx
n

)m

=
∞∑
n=0

am(n)xn,

1

f (x)m
=

(
1∑∞

n=0 εnx
n

)m

=
∞∑
n=0

bm(n)xn,

i.e., am(n) (bm(n)) is the n-th coefficient in the power series expansion of the
series f m(x) (1/f (x)m respectively)?
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It is clear that in its full generality, the Question 1 is too difficult and we
cannot expect that the sequences (νp(am(n)))n∈N (νp(bm(n)))n∈N can be
given in closed form or even that a reasonable description can be obtained.
Indeed, in order to give an example let us consider the formal power series

f (x) =
∞∏
n=1

(1− xn) = 1 +
∞∑
n=1

(−1)n(x
n(3n−1)

2 + x
n(3n+1)

2 ).

The second equality is well know theorem: the Euler pentagonal number
theorem.

In particular a1(n) ∈ {−1, 0, 1} and thus for any given p ∈ P we have

νp(a1(n)) = 0 in case when n is of the form n = m(3m±1)
2

for some
m ∈ N+, and νp(a1(n)) =∞ in the remaining cases.

However, the characterization of the 2-adic behaviour of the sequence
(p(n))n∈N given by

1

f (x)
=
∞∏
n=1

1

1− xn
= 1 +

∞∑
n=1

p(n)xn

is unknown. Let us note that the number p(n) counts the integer
partitions of n, i.e., the number of non-negative integer solutions of the
equation

∑n
i=1 xi = n. In fact, even the proof that ν2(p(n)) > 0 infinitely

often is quite difficult (this was proved by Kolberg in 1959).
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The Prouhet-Thue-Morse sequence and the binary partition function

Let n ∈ N and n =
∑k

i=0 εi2
i be the unique expansion of n in base 2 and

define the sum of digits function

s2(n) =
k∑

i=0

εi .

Next, we define the Prouhet-Thue-Morse sequence t = (tn)n∈N (on the
alphabet {−1,+1}) in the following way

tn = (−1)s2(n),

i.e., tn = 1 if the number of 1’s in the binary expansion of n is even and
tn = −1 in the opposite case. We will call the sequence t as the PTM
sequence in the sequel.

From the relations

s2(0) = 0, s2(2n) = s2(n), s2(2n + 1) = s2(n) + 1

we deduce the recurrence relations for the PTM sequence: t0 = 1 and

t2n = tn, t2n+1 = −tn.
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Let

T (x) =
∞∑
n=0

tnx
n ∈ Z[[x ]]

be the ordinary generating function for the PTM sequence.

One can check that the series T satisfies the following functional equation

T (x) = (1− x)T (x2).

In consequence we easily deduce the identity

T (x) =
∞∏
n=0

(1− x2n ).

Let us also note that the (multiplicative) inverse of the series T , i.e.,

B(x) =
1

T (x)
=
∞∏
n=0

1

1− x2n
=
∞∑
n=0

bnx
n

is an interesting object.
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Indeed, for n ∈ N, the number bn counts the number of binary partitions
of n. The binary partition is the representation of the integer n in the form

n =
n∑

i=0

ui2
i ,

where ui ∈ N for i = 0, . . . , n.

The sequence (bn)n∈N was introduced by Euler. However, it seems that
the first nontrivial result concerning its arithmetic properties was obtained
by Churchhouse. He proved that ν2(bn) ∈ {1, 2} for n ≥ 2.

More precisely, b0 = 1, b1 = 1 and for n ≥ 2 we have ν2(bn) = 2 if and
only if n or n − 1 can be written in the form 4r (2u + 1) for some r ∈ N+

and u ∈ N. In the remaining cases we have ν2(bn) = 1.

We can compactly write

ν2(bn) =

{
1
2
|tn + 6tn−1 + tn−2|, if n ≥ 2

0, if n ∈ {0, 1}.

In other words we have simple characterization of the 2-adic valuation of
the number bn for all n ∈ N.
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Let m ∈ N+ and consider the series

Bm(x) := B(x)m =
∞∏
n=0

1

(1− x2n )m
=
∞∑
n=0

bm(n)xn.

We have b1(n) = bn for n ∈ N and

bm(n) =
∑

i1+i2+...+im=n

m∏
k=1

b1(ik),

i.e., bm(n) is the Cauchy convolution of m-copies of the sequence (bn)n∈N.
For m ∈ N+ we denote the sequence (bm(n))n∈N by bm.

We see that the number bm(n) has a natural combinatorial interpretation.
Indeed, bm(n) counts the number of representations

n =
n∑

i=0

ui2
i ,

where each summand can have one of m colors.
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Now we can formulate the natural

Question 2

Let m ∈ N+ be given. What can be said about the sequence (ν2(bm(n)))n∈N?

To give a partial answer to this question we will need two lemmas. The
one concerning the characterization of parity of the number bm(n) and the
second one concerning the behaviour of certain binomial coefficients
modulo small powers of two.

Lemma 1

Let m ∈ N+ be fixed and write m = 2k(2u + 1) with k ∈ N. Then:
1 We have bm(n) ≡

(m
n

)
+ 2k+1

(m−2
n−2

)
(mod 2k+2) for m even;

2 We have bm(n) ≡
(m
n

)
(mod 2) for m odd;

3 For infinitely many n we have bm(n) 6≡ 0 (mod 4) for m odd.
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3 For infinitely many n we have bm(n) 6≡ 0 (mod 4) for m odd.
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Lemma 2

Let m be a positive integer ≥ 2. Then(
2m − 1

k

)
≡ 1 (mod 2), for k = 0, 1, . . . , 2m − 1,

and

(
2m

k

)
≡


1 for k = 0, 2m

4 for k = 2m−2, 3 · 2m−2

6 for k = 2m−1

0 in the remaining cases

(mod 8), for k = 0, 1, . . . , 2m.
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We are ready to prove the following

Theorem 3

Let k ∈ N+ be given. Then ν2(b2k−1(n)) = 0 for n ≤ 2k − 1 and

ν2(b2k−1(2kn + i)) = ν2(b1(2n))

for each i ∈ {0, . . . , 2k − 1} and n ∈ N+.

Proof: First of all, let us observe that the second part of Lemma 1 and the
first part of Lemma 2 implies that b2k−1(n) is odd for n ≤ 2k − 1 and thus
ν2(b2k−1(n)) = 0 in this case.

Let us observe that from the identity B2k−1(x) = T (x)B2k (x) we get the
relation

b2k−1(n) =
n∑

j=0

tn−jb2k (j), (1)

where tn is the n-th term of the PTM sequence.
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Now let us observe that from the first part of Lemma 1 and the second
part of Lemma 2 we have

b2k (n) ≡

(
2k

n

)
(mod 8)

for n = 0, 1, . . . , 2k and b2k (n) ≡ 0 (mod 8) for n > 2k , provided k ≥ 2 or
n 6= 2.

Moreover,

b2(2) ≡

(
2

2

)
+ 4

(
0

0

)
= 5 (mod 8).

Summing up this discussion we have the following expression for b2k−1(n)
(mod 8), where k ≥ 2 and n ≥ 2k :

b2k−1(n) =
n∑

j=0

tn−jb2k (j) =
2k∑
j=0

tn−jb2k (j) +
n∑

j=2k+1

tn−jb2k (j)

≡
2k∑
j=0

tn−jb2k (j) ≡
2k∑
j=0

tn−j

(
2k

j

)
(mod 8)

≡ tn + tn−2k + 4tn−2k−2 + 4tn−3·2k−2 + 6tn−2k−1 (mod 8).
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However, it is clear that tn−2k−2 + tn−3·2k−2 ≡ 0 (mod 2) and thus we can
simplify the above expression and get

b2k−1(n) ≡ tn + tn−2k + 6tn−2k−1 (mod 8)

for n ≥ 2k .

If k = 1 and n ≥ 2 then, analogously, we get

b1(n) ≡
2k∑
j=0

tn−jb2k (j) (mod 8) ≡ tn + 5tn−2 + 2tn−1 (mod 8)

and since tn−1 ≡ tn−2 (mod 2), we thus conclude that

b1(n) ≡ tn + 6tn−1 + tn−2 (mod 8).
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Let us put
Rk(n) = tn + tn−2k + 6tn−2k−1 .

Using now the recurrence relations for tn, i.e., t2n = tn, t2n+1 = −tn, we
easily deduce the identities

Rk(2n) = Rk−1(n), Rk(2n + 1) = −Rk−1(n)

for k ≥ 2.

Using a simple induction argument, one can easily obtain the following
identities:

|Rk(2km + j)| = |R1(2m)| (2)

for k ≥ 2,m ∈ N and j ∈ {0, . . . , 2k − 1}.
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From the above identity we easily deduce that

Rk(n) 6≡ 0 (mod 8)

for each n ∈ N and each k ≥ 1. If k = 1 then R1(n) = tn + 6tn−1 + tn−2

and R1(n) ≡ 0 (mod 8) if and only if tn = tn−1 = tn−2. However, a well
known property of the PTM sequence is that there are no three
consecutive terms which are equal.

If k ≥ 2 then our statement about Rk(n) is clearly true for n ≤ 2k . If
n > 2k then we can write n = 2km + j for some m ∈ N and
j ∈ {0, 1, . . . , 2k − 1}. Using the reduction (2) and the property obtained
for k = 1, we get the result.

Summing up: we have proved that ν2(b2k−1(n)) ≤ 2 for each n ∈ N, since
ν2(b1(n)) ∈ {0, 1, 2}. Moreover, as an immediate consequence of our
reasoning we get the equality

ν2(b2k−1(2kn + j)) = ν2(b1(2n))

for j ∈ {0, ..., 2k − 1} and our theorem is proved.
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Some general results

Let (εn)n∈N be a sequence of integers and write

f (x) =
∞∑
n=0

εnx
n ∈ Z[[x ]].

Moreover, for m ∈ N+ we define the sequence bm = (bm(n))n∈N, where

1

f (x)m
=
∞∑
n=0

bm(n)xn.

Theorem 4

Let (εn)n∈N be a sequence of integers and suppose that εn ≡ 1 (mod 2) for
each n ∈ N. Then for any m ∈ N+ and n ≥ m we have the congruence

bm−1(n) ≡
m∑
i=0

(
m

i

)
εn−i (mod 2ν2(m)+1). (3)
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Proof: Let f (x) =
∑∞

n=0 εnx
n ∈ Z[[x ]]. From the assumption on sequence

(εn)n∈N we get that

f (x) ≡ 1

1 + x
(mod 2).

In consequence, writing m = 2ν2(m)k with k odd, and using the well known
property saying that U ≡ V (mod 2k) implies U2 ≡ V 2 (mod 2k+1), we
get the congruence

1

f (x)m
≡ (1 + x)m (mod 2ν2(m)+1).

Thus, multiplying both sides of the above congruence by f (x) we get

1

f (x)m−1
≡ f (x)(1 + x)m (mod 2ν2(m)+1).

From the power series expansion of f (x)(1 + x)m by comparing coefficients
on the both sides of the above congruence we get that

bm−1(n) ≡
min{m,n}∑

i=0

(
m

i

)
εn−i (mod 2ν2(m)+1),

i.e., for n ≥ m we get the congruence (3). Our theorem is proved.
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From our result we can deduce the following

Corollary 5

Let (εn)n∈N be a non-eventually constant sequence, εn ∈ {−1, 1} for each
n ∈ N, and suppose that for each N ∈ N+ there are infinitely many n ∈ N such
that εn = εn+1 = . . . = εn+N . Then, for each even m ∈ N+, there are infinitely
many n ∈ N such that

ν2(bm−1(n)) ≥ ν2(m) + 1 and ν2(bm−1(n + 1)) = 1.

Proof: From our assumption on the sequence (εn)n∈N we can find infinitely
many (m + 1)-tuples such that εn+1 = ε, εn = . . . = εn−m = −ε, where ε
is a fixed element of {−1, 1}. We apply (3) and get

bm−1(n) ≡
m∑
i=0

(m
i

)
εn−i ≡ −

m∑
i=0

(m
i

)
ε ≡ −ε2m ≡ 0 (mod 2ν2(m)+1),

bm−1(n + 1) ≡
m∑
i=0

(m
i

)
εn+1−i ≡ 2ε−

m∑
i=0

(m
i

)
ε ≡ ε(2− 2m) ≡ 2ε (mod 2ν2(m)+1).

In consequence ν2(bm−1(n)) ≥ ν2(m) + 1 and ν2(bm−1(n + 1)) = 1.
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Example: Let F : N→ N satisfy the condition

lim sup
n→+∞

(F (n + 1)− F (n)) = +∞

and define the sequence

εn(F ) =

{
1 n = F (m) for some m ∈ N
−1 otherwise

.

It is clear that the sequence (εn(F ))n∈N satisfies the conditions from
Theorem 5 and thus for any even m ∈ N+ there are infinitely many n ≥ m
such that ν2(bm−1(n)) ≥ ν2(m) + 1 and ν2(bm−1(n + 1)) = 1.

A particular examples of F ’s satisfying required properties include:
positive polynomials of degree ≥ 2;
the functions which for given n ∈ N+ take as value the n-th prime number
of the form ak + b, where a ∈ N+, b ∈ Z and gcd(a, b) = 1;
and many others.
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Lemma 6

Let s ∈ N≥3. Then

(
2s

i

)
(mod 16) ≡



1 for i = 0, 2s

6 for i = 2s−1

8 for i = (2j + 1)2s−3, j ∈ {0, 1, 2, 3}
12 for i = 2s−2, 3 · 2s−2

0 in the remaining cases

.
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Theorem 7

Let s ∈ N+ and (εn)n∈N be an integer sequence and suppose that εn ≡ 1 (mod 2) for
n ∈ N.
(A) For n ≥ 2s we have

b2s−1(n) ≡ εn + 2εn−2s−1 + εn−2s (mod 4). (4)

In particular, if εn ∈ {−1, 1} for all n ∈ N then:

ν2(b2s−1(n)) > 1 ⇐⇒ εn = εn−2s−1 = εn−2s or εn = −εn−2s−1 = εn−2s

ν2(b2s−1(n)) = 1 ⇐⇒ εn = −εn−2s .

(B) For s ≥ 2 and n ≥ 2s we have

b2s−1(n) ≡ εn + 6εn−2s−1 + εn−2s (mod 8). (5)

In particular, if εn ∈ {−1, 1} for all n ∈ N, then:

ν2(b2s−1(n)) > 2 ⇐⇒ εn = εn−2s−1 = εn−2s

ν2(b2s−1(n)) = 2 ⇐⇒ εn = −εn−2s−1 = εn−2s

ν2(b2s−1(n)) = 1 ⇐⇒ εn = −εn−2s .

Maciej Ulas 2-adic valuations of coefficients ...



Theorem 7 (continuation)

(C) For s ≥ 3 and n ≥ 2s we have

b2s−1(n) ≡ εn + εn−2s + 6εn−2s−1 + 12(εn−2s−2 + εn−3·2s−2 ) (mod 16) (6)

In particular, if εn ∈ {−1, 1} for all n ∈ N, then:

ν2(b2s−1(n)) > 3 ⇐⇒ εn = εn−2s−2 = εn−2s−1 = εn−3·2s−2 = εn−2s or
εn = −εn−2s−2 = εn−2s−1 = −εn−3·2s−2 = εn−2s ;

ν2(b2s−1(n)) = 3 ⇐⇒ εn = εn−2s−2 = εn−2s−1 = −εn−3·2s−2 = εn−2s or
εn = −εn−2s−2 = εn−2s−1 = εn−3·2s−2 = εn−2s

⇐⇒ εn ≡ −εn−2s + 2εn−2s−1 + 8 (mod 16)

(7)
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As a first application of Theorem 7 we get the following:

Corollary 8

Let s ∈ N≥2 and (εn)n∈N with εn ∈ {−1, 1} for all n ∈ N. If there is no
n ∈ N≥2s such that εn = εn−2s−1 = εn−2s , then

ν2(b2s−1(n)) = ν2(εn + 6εn−2s−1 + εn−2s ).

In particular, for each n ∈ N≥2s we have ν2(b2s−1(n)) ∈ {1, 2, 3}.
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Application to the Rudin-Shapiro sequence

Let r = (rn)n∈N be the Rudin-Shapiro sequence (the RS sequence for
short), i.e., the sequence defined as

rn = (−1)un ,

where un is the number of occurrences of the word “11” in the binary
expansion of the number n.

One can easily check that the sequence r satisfies the following recurrence
relations: r0 = 1 and

r2n = rn, r2n+1 = (−1)nrn

for n ∈ N.

It is well known that the formal power series R(x) =
∑∞

n=0 rnx
n associated

with the sequence r satisfies the following functional equation:

R(x) = (1− x)R(x2) + 2xR(x4).
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Let m ∈ N+ and write

1

R(x)m
=
∞∑
n=0

bm(n)xn.

We prove boundedness of the 2-adic valuation of bm(n) for m = 2 and
m = 2s − 1 with s ∈ N≥2. The first step needed in the proof is the
following:

Lemma 9

The following congruence holds:

1

R(x)
≡
√

(1 + x)(1− x − x2 − 3x3)

1 + x
(mod 4).

To get the above result it is enough to write 1/R(x) = 1 + x + 2T (x) and
observe that T satisfies the congruence

(1 + x)4T (x)2 + (1 + x)5T (x) + x(1 + x)3(1 + x + x2) ≡ 0 (mod 2).
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As a consequence of the above result we get: As a simple consequence of
the above result we get:

Corollary 10

Let 1/R(x)2 =
∑∞

n=0 b2(n)xn. Then

ν2(b2(n)) =


0 n = 0, 2

1 n = 1

2 n ≥ 3

.

We note the congruence

∞∑
n=0

b2(n)x
n =

1

R(x)2
≡

1− x − x2 − 3x3

1 + x
≡ 1−2x+x2+

∞∑
n=3

4(−1)nxn (mod 8).

and get the result.

Lemma 11

Let (rn)n∈N be the Rudin-Shapiro sequence. Then there is no n ∈ N≥4 such that

rn = rn−1 = rn−2 = rn−3 = rn−4 or rn = −rn−1 = rn−2 = −rn−3 = rn−4.
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Theorem 12

Let s ∈ N≥2,R(x) =
∑∞

n=0 rnx
n and write

1

R(x)m
=
∞∑
n=0

bm(n)xn.

Then for n ≥ 2s we have ν2(b2s−1(n)) ∈ {1, 2, 3}. Moreover, the following
formula holds

ν2(b2s−1(n)) = ν2(rn + 6rn−2s−1 + rn−2s ).

Sketch of the proof: First we consider the case s = 2, i.e. m = 3. From
Lemma 9 we have

1

R(x)4
≡ 1− 4x + 6x2 + 4x3 + 9x4 (mod 16).

In consequence

1

R(x)3
≡ R(x)(1− 4x + 6x2 + 4x3 + 9x4)

≡ 1 + 13x + 3x2 + 5x3 + 8x4 +
∞∑
n=5

hnx
n (mod 16),

where hn := rn − 4rn−1 + 6rn−2 + 4rn−3 + 9rn−4.
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One can check that

hn ≡ 0 (mod 16) ⇐⇒ rn = rn−1 = rn−2 = rn−3 = rn−4

or rn = −rn−1 = rn−2 = −rn−3 = rn−4,

which according to Lemma 11 is impossible.

Thus hn does not vanish modulo 16 and

hn = rn − 4(rn−1 − rn−3) + 6rn−2 + 9rn−4 ≡ rn + 6rn−2 + rn−4 (mod 8).

In consequence, due to non-vanishing of the integer rn + 6rn−2 + rn−4 we
get that ν2(b3(n)) = ν2(rn + 6rn−2 + rn−4).

We proceed by induction on s and n ≥ 2s . For s = 3 and n ≥ 8 we have

b7(n) ≡ rn + rn−8 + 6rn−4 + 12(rn−2 + rn−6) (mod 16)

and careful analysis shows that the right side doesn’t vanish modulo 16.

Similarly, for s ≥ 4, n ≥ 2s , one can show impossibility of the conditions

C1(n, s) : rn = rn−2s−2 = rn−2s−1 = rn−3·2s−2 = rn−2s ,
C2(n, s) : rn = −rn−2s−2 = rn−2s−1 = −rn−3·2s−2 = rn−2s

and get the result.
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Theorem 13

Let s ∈ N≥2 and write Hs(x) =
∑∞

n=2s Rs(n)xn, where

Rs(n) = ν2(rn + 6rn−2s−1 + rn−2s ).

Then H2 satisfies the following Mahler type functional equation

P(x) + Q(x)H2(x) + R(x)H2(x
2) = 0,

where

P(x) = x4(3 + 5x + 9x2 + 12x3 + 9x4 + 13x5 + 12x6 + 12x7 + 8x8 + 4x9 + 7x10 + 12x11

+ 11x12 + 13x13 + 13x14 + 12x15 + 12x16 + 13x17 + 12x18 + 12x19 + 6x20 + 4x21

+ 9x22 + 12x23 + 11x24 + 13x25 + 10x26 + 12x27 + 11x28 + 13x29 + 13x30 + 12x31

+ 9x32 + 8x33 + 3x34)

Q(x) = (x − 1)(x + 1)2(x4 + 1)(x8 + 1)(x16 + 1)(x4 + 3x2 + 1)

R(x) = (x − 1)(x + 1)(x4 + 1)(x8 + 1)(x16 + 1)(x2 + 3x + 1).

Moreover, for s ≥ 3 we have

Hs(x) =
1− x2

s−2

1− x
H2(x

2s−2
).
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Corollary 14

Let s ∈ N. Then

Rs+2(2sn) = R2(n) and Rs+2(2sn− i) = R2(n− 1) for i ∈ {1, . . . , 2s − 1}

for n ≥ 5.

The form of the functional equation for H2 allows to deduce the following:

Corollary 15

For s ∈ N≥2 the series Hs(x) is transcendental over Q(x). In particular, the
sequence (Rs(n))n∈N≥2s

is not periodic.
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Application to the Lafrance-Rampersad-Yee sequence

Let n ∈ N and denote by inv2(n) the number of occurrences of the word
”10” as a scattered subsequence of the representation of n in base 2. For
example 13 = 23 + 22 + 20 = (1101)2 and thus inv2(13) = 2. Recently,
Lafrance, Rampersad and Yee introduced the sequence j = (jn)n∈N, where

jn = (−1)inv2(n).

In the sequel the sequence (jn)n∈N will be called the LRY sequence for
short. We have the following recurrence relation:

j0 = 1, j2n = tnjn, j2n+1 = jn,

where tn is the n-th term of the PTM sequence.

Defining now J(x) :=
∑∞

n=0 jnx
n it is possible to prove that J satisfies the

following functional equation

J(x) + x(x − 1)J(x2)− (1 + x4)J(x4) = 0.
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Lemma 16

Let (jn)n∈N be the LRY sequence. Then there is no n ∈ N such that
jn = jn−1 = jn−2.

For m ∈ N+ let us write

1

J(x)m
=
∞∑
n=0

bm(n)xn.

Theorem 17

Let s ∈ N≥2. Then for n ≥ 2s we have ν2(b2s−1(n)) ∈ {1, 2} and

ν2(b2s−1(n)) = ν2(Ls(n)), where Ls(n) := jn + 6jn−2s−1 + jn−2s .
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Theorem 18

Let s ∈ N and write Js (x) =
∑∞

n=0 Js (n)x
n, where

Js (n) = ν2(jn + 6jn−2s−1 + jn−2s ).

Then Ji , i = 2, 3, satisfies the following Mahler type functional equations

Pi (x) + Qi (x)Ji (x) + Ri (x)Ji (x
2) + Si (x)Ji (x

4) = 0,

where

P1(x) =x6(x + 1)(2x12 − 2x11 + 3x10 − 3x9 + 3x8 − 2x7 + 2x6 − 2x5 + 3x4 − 2x3 + 3x2 − 3x + 2),

P2(x) =x9(x + 1)(2x24 − 2x23 + 3x22 − 3x21 + 3x20 − 3x19 + 2x18 − 2x17 + 3x16 − 2x15

+ 2x14 − 2x13 + x12 + 2x8 − 2x7 + 3x6 − 3x5 + 2x4 − x3 + 1),

and
Q1(x) = x2(x − 1)(x4 + 1)(x8 + 1), Q2(x) = x(x − 1)(x8 + 1)(x16 + 1),
R1(x) = x3(x2 − 1)(x8 + 1), R2(x) = x2(x2 − 1)(x16 + 1),
S1(x) = x2(x − 1)(x4 − 1), S2(x) = x2(x − 1)(x4 − 1).

Moreover, the following relation is true:

Js+2(x) = (1 + x3)Js (x
4) +

1

2
x(x + 1)(Js+1(x

2) + Js+1(−x2)).
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Question and conjectures

Conjecture 1

Let (εn)n∈N ∈ {−1, 1}N, f (x) =
∑∞

n=0 εnx
n and write f (x)−m =

∑∞
n=0 bm(n)xn

for m ∈ N+. Let us suppose that for each N ∈ N+ there are infinitely many
n ∈ N such that εn = εn+1 = . . . = εn+N . Then for each m ∈ N+ we have

lim sup
n→+∞

ν2(bm(n)) = +∞.

In fact we expect that the following strong statement is true:

Conjecture 2

Let (εn)n∈N ∈ {−1, 1}N, f (x) =
∑∞

n=0 εnx
n and write f (x)m =

∑∞
n=0 cm(n)xn

for m ∈ Z. Then there are infinitely many m ∈ Z (both positive and negative)
such that

lim sup
n→+∞

ν2(cm(n)) = +∞.
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We proved the boundedness of the 2-adic valuation of the coefficients of
power series expansion of R(x)m, where m = 2,−2, 1− 2s , s ∈ N≥2 and
R(x) is the generating fucntion for the RS sequence. Moreover, we also
proved that the corresponding expressions for 2-adic valuations satisfy
certain recurrence relations.

In the remaining cases we expect that the following is true:

Conjecture 3

Let m ∈ Z and write R(x)m =
∑∞

n=0 am(n)xn. If m 6= 2,−2, 1− 2s , s ∈ N+ then

lim sup
n→+∞

ν2(am(n)) = +∞.

In case when m = 2k then we expect the more precise:
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Conjecture 4

Let k ∈ N≥2 and write gk(n) = ν2(a2k (n)),Gk(x) =
∑∞

n=0 gk(n)xn. Then

Pk(x) + Qk(x)Gk(x) + Rk(x)Gk(x2) = 0,

where

P2(x) = x(2− x + x2), Pk+1(x) = (1 + x2k )Pk(x) + x(1− kx2k−1),

Q2(x) = (x2 − 1)(x2 − x + 1), Qk+1(x) = (1 + x2k )Qk(x) + (1− x2)x2k−1,

Rk(x) = (1− x2)x2k−1.
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We proved boundedness of 2-adic valuations of the sequences
(b2s−1(n))n∈N corresponding to the RS sequence and the LRY sequence.
We also know that a similar property holds for the PTM sequence. All
these sequences are 2-automatic and come from some kinds of binary
patterns.

This suggest the following general:

Problem 1

Let τ be a finite word on {0, 1} alphabet and Pτ (n) denotes the number of
occurrences of the word τ (the scattered word τ) in the binary expansion of n.
We define ετ (n) = (−1)Pτ (n) for n ∈ N and fτ (x) =

∑∞
n=0 ετ (n)xn and for

m ∈ Z we put

fτ (x)m =
∞∑
n=0

cτ,m(n)xn.

1 What conditions need τ to satisfy in order to get boundedness of the sequence
(ν2(cτ,m(n))n∈N for some m ∈ Z?

2 What conditions need τ to satisfy in order to get boundedness of the sequence
(ν2(cτ,1−2s (n))n∈N for all but finitely many s ∈ N?
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We performed some numerical experiments and noted that for the patterns
τ = 0, 00, 10, 01 it should be possible to prove similar results as in the case
of the RS sequence, i.e., the sequence (ν2(cτ,1−2s (n)))n∈N is bounded. The
bound seems to be: 2 for τ = 0; 3 for τ = 00, 10; and 4 for τ = 01.

In case of patterns τ of length 3 the situation seems to be more
complicated and we expect that for most m ∈ Z the sequence
(ν2(cτ,m(n)))n∈N is unbounded.
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Problem 2

Generalize the above results for p ∈ P≥3.

Theorem 19

Let p ∈ P≥3 and write

Fp(x) =
∞∏
n=0

1

1− xpn

and for m ∈ N+

Fp(x)m =
∞∑
n=0

bm,p(n)xn.

Then for s ∈ N+ we have

νp(b(p−1)(ps−1),p(n)) = 1

for n ≥ ps .
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Thank you for your attention!
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