2-adic valuations of coefficients of certain integer powers of formal power series with $\{-1,+1\}$ coefficients

Maciej Ulas

Institute of Mathematics, Jagiellonian University, Kraków, Poland

22nd May 2017

• Basic definitions and the main question

- ∢ ≣ ▶

æ

- Basic definitions and the main question
- The Prouhet-Thue-Morse sequence and the binary partition function

< ∃→

- Basic definitions and the main question
- The Prouhet-Thue-Morse sequence and the binary partition function
- Some general results

< ∃→

- Basic definitions and the main question
- The Prouhet-Thue-Morse sequence and the binary partition function
- Some general results
- Applications to the Rudin-Shapiro sequence and the Lafrance-Rampersad-Yee sequence

∢ ≣ →

- Basic definitions and the main question
- The Prouhet-Thue-Morse sequence and the binary partition function
- Some general results
- Applications to the Rudin-Shapiro sequence and the Lafrance-Rampersad-Yee sequence
- Questions, problems and conjectures

< ∃ >

In the sequel we will use the following notation:

- $\bullet~\mathbb{N}$ the set of non-negative integers,
- $\bullet~\mathbb{N}_+$ the set of positive integers,
- \mathbb{P} the set of prime numbers,
- $A_{\geq k}$ the set $\{n \in A : n \geq k\}$.

∢ ≣ →

In the sequel we will use the following notation:

- $\bullet~\mathbb{N}$ the set of non-negative integers,
- ℕ₊ the set of positive integers,
- \mathbb{P} the set of prime numbers,
- $A_{\geq k}$ the set $\{n \in A : n \geq k\}$.

If $p \in \mathbb{P}$ and $n \in \mathbb{Z}$ we define the *p*-adic valuation of *n* as:

$$\nu_p(n) := \max\{k \in \mathbb{N} : p^k \mid n\}.$$

We also adopt the standard convention that $\nu_p(0) = +\infty$.

< ∃ →

In the sequel we will use the following notation:

- $\bullet~\mathbb{N}$ the set of non-negative integers,
- \mathbb{N}_+ the set of positive integers,
- P the set of prime numbers,
- $A_{\geq k}$ the set $\{n \in A : n \geq k\}$.

If $p \in \mathbb{P}$ and $n \in \mathbb{Z}$ we define the *p*-adic valuation of *n* as:

$$\nu_p(n) := \max\{k \in \mathbb{N} : p^k \mid n\}.$$

We also adopt the standard convention that $\nu_p(0) = +\infty$.

From the definition we easily deduce that for each $n_1, n_2 \in \mathbb{Z}$ the following properties hold:

$$u_p(n_1n_2) = \nu_p(n_1) + \nu_p(n_2) \text{ and } \nu_p(n_1 + n_2) \ge \min\{\nu_p(n_1), \nu_p(n_2)\}.$$

If $\nu_p(n_1) \neq \nu_p(n_2)$ then the inequality can be replaced by the equality.

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{Z}[[x]]$$

and

$$g(x) = \sum_{n=0}^{\infty} b_n x^n \in \mathbb{Z}[[x]]$$

be a formal power series with integer coefficients.

€ 990

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{Z}[[x]]$$

and

$$g(x) = \sum_{n=0}^{\infty} b_n x^n \in \mathbb{Z}[[x]]$$

be a formal power series with integer coefficients.

Let $M \in \mathbb{N}_{\geq 2}$ be given. We say that f, g are *congruent modulo* M if and only if for all n the coefficients of x^n in both series are congruent modulo M.

ヨト イヨト

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{Z}[[x]]$$

and

$$g(x) = \sum_{n=0}^{\infty} b_n x^n \in \mathbb{Z}[[x]]$$

be a formal power series with integer coefficients.

Let $M \in \mathbb{N}_{\geq 2}$ be given. We say that f, g are *congruent modulo* M if and only if for all n the coefficients of x^n in both series are congruent modulo M.

In other words

$$f \equiv g \pmod{M} \iff \forall n \in \mathbb{N} : a_n \equiv b_n \pmod{M}.$$

ヨト イヨト

One can prove that for any given $f, F, g, G \in \mathbb{Z}[[x]]$ satisfying

$$f \equiv g \pmod{M}$$
 and $F \equiv G \pmod{M}$

we have

$$f \pm F \equiv g \pm G \pmod{M}$$
 and $fF \equiv gG \pmod{M}$.

문에 비문어

æ

One can prove that for any given $f, F, g, G \in \mathbb{Z}[[x]]$ satisfying

$$f \equiv g \pmod{M}$$
 and $F \equiv G \pmod{M}$

we have

$$f \pm F \equiv g \pm G \pmod{M}$$
 and $fF \equiv gG \pmod{M}$.

Moreover, if $f(0), g(0) \in \{-1, 1\}$ then the series 1/f, 1/g have integer coefficients and we also have

$$\frac{1}{f} \equiv \frac{1}{g} \pmod{M}.$$

In consequence, in this case we have

$$f^k \equiv g^k \pmod{M}$$

for any $k \in \mathbb{Z}$.

- 米田 ト 三臣

We formulate the following general

Question 1

Let $f(x) = \sum_{n=0}^{\infty} \varepsilon_n x^n \in \mathbb{Z}[[x]]$ with $\varepsilon_0 \in \{-1, 1\}$ and take $m \in \mathbb{N}_+$. What can be said about the sequences $(\nu_p(a_m(n)))_{n \in \mathbb{N}}, (\nu_p(b_m(n)))_{n \in \mathbb{N}}, where$

$$f(x)^{m} = \left(\sum_{n=0}^{\infty} \varepsilon_{n} x^{n}\right)^{m} = \sum_{n=0}^{\infty} a_{m}(n) x^{n},$$
$$\frac{1}{f(x)^{m}} = \left(\frac{1}{\sum_{n=0}^{\infty} \varepsilon_{n} x^{n}}\right)^{m} = \sum_{n=0}^{\infty} b_{m}(n) x^{n},$$

i.e., $a_m(n)$ ($b_m(n)$) is the n-th coefficient in the power series expansion of the series $f^m(x)$ ($1/f(x)^m$ respectively)?

- ∢ ⊒ ▶

It is clear that in its full generality, the Question 1 is too difficult and we cannot expect that the sequences $(\nu_p(a_m(n)))_{n\in\mathbb{N}}$ ($\nu_p(b_m(n)))_{n\in\mathbb{N}}$ can be given in closed form or even that a reasonable description can be obtained. Indeed, in order to give an example let us consider the formal power series

$$f(x) = \prod_{n=1}^{\infty} (1-x^n) = 1 + \sum_{n=1}^{\infty} (-1)^n (x^{\frac{n(3n-1)}{2}} + x^{\frac{n(3n+1)}{2}}).$$

The second equality is well know theorem: the Euler pentagonal number theorem.

- 米田 ト 三臣

It is clear that in its full generality, the Question 1 is too difficult and we cannot expect that the sequences $(\nu_p(a_m(n)))_{n\in\mathbb{N}}$ ($\nu_p(b_m(n)))_{n\in\mathbb{N}}$ can be given in closed form or even that a reasonable description can be obtained. Indeed, in order to give an example let us consider the formal power series

$$f(x) = \prod_{n=1}^{\infty} (1-x^n) = 1 + \sum_{n=1}^{\infty} (-1)^n (x^{\frac{n(3n-1)}{2}} + x^{\frac{n(3n+1)}{2}}).$$

The second equality is well know theorem: the Euler pentagonal number theorem.

In particular $a_1(n) \in \{-1, 0, 1\}$ and thus for any given $p \in \mathbb{P}$ we have $\nu_p(a_1(n)) = 0$ in case when n is of the form $n = \frac{m(3m\pm 1)}{2}$ for some $m \in \mathbb{N}_+$, and $\nu_p(a_1(n)) = \infty$ in the remaining cases.

물 에 에 물 에 드릴

It is clear that in its full generality, the Question 1 is too difficult and we cannot expect that the sequences $(\nu_p(a_m(n)))_{n\in\mathbb{N}}$ ($\nu_p(b_m(n)))_{n\in\mathbb{N}}$ can be given in closed form or even that a reasonable description can be obtained. Indeed, in order to give an example let us consider the formal power series

$$f(x) = \prod_{n=1}^{\infty} (1-x^n) = 1 + \sum_{n=1}^{\infty} (-1)^n (x^{\frac{n(3n-1)}{2}} + x^{\frac{n(3n+1)}{2}}).$$

The second equality is well know theorem: the Euler pentagonal number theorem.

In particular $a_1(n) \in \{-1,0,1\}$ and thus for any given $p \in \mathbb{P}$ we have $\nu_p(a_1(n)) = 0$ in case when n is of the form $n = \frac{m(3m\pm 1)}{2}$ for some $m \in \mathbb{N}_+$, and $\nu_p(a_1(n)) = \infty$ in the remaining cases.

However, the characterization of the 2-adic behaviour of the sequence $(p(n))_{n\in\mathbb{N}}$ given by

$$\frac{1}{f(x)} = \prod_{n=1}^{\infty} \frac{1}{1-x^n} = 1 + \sum_{n=1}^{\infty} p(n) x^n$$

is unknown. Let us note that the number p(n) counts the integer partitions of n, i.e., the number of non-negative integer solutions of the equation $\sum_{i=1}^{n} x_i = n$. In fact, even the proof that $\nu_2(p(n)) > 0$ infinitely often is quite difficult (this was proved by Kolberg in 1959).

The Prouhet-Thue-Morse sequence and the binary partition function

Let $n \in \mathbb{N}$ and $n = \sum_{i=0}^{k} \varepsilon_i 2^i$ be the unique expansion of n in base 2 and define the sum of digits function

$$s_2(n) = \sum_{i=0}^k \varepsilon_i.$$

∃ >

The Prouhet-Thue-Morse sequence and the binary partition function

Let $n \in \mathbb{N}$ and $n = \sum_{i=0}^{k} \varepsilon_i 2^i$ be the unique expansion of n in base 2 and define the sum of digits function

$$s_2(n) = \sum_{i=0}^k \varepsilon_i.$$

Next, we define the Prouhet-Thue-Morse sequence $\mathbf{t} = (t_n)_{n \in \mathbb{N}}$ (on the alphabet $\{-1, +1\}$) in the following way

$$t_n=(-1)^{s_2(n)},$$

i.e., $t_n = 1$ if the number of 1's in the binary expansion of *n* is even and $t_n = -1$ in the opposite case. We will call the sequence t as the PTM sequence in the sequel.

프 에 제 프 에 다

The Prouhet-Thue-Morse sequence and the binary partition function

Let $n \in \mathbb{N}$ and $n = \sum_{i=0}^{k} \varepsilon_i 2^i$ be the unique expansion of n in base 2 and define the sum of digits function

$$s_2(n) = \sum_{i=0}^k \varepsilon_i.$$

Next, we define the Prouhet-Thue-Morse sequence $\mathbf{t} = (t_n)_{n \in \mathbb{N}}$ (on the alphabet $\{-1, +1\}$) in the following way

$$t_n=(-1)^{s_2(n)},$$

i.e., $t_n = 1$ if the number of 1's in the binary expansion of *n* is even and $t_n = -1$ in the opposite case. We will call the sequence **t** as the PTM sequence in the sequel.

From the relations

$$s_2(0) = 0$$
, $s_2(2n) = s_2(n)$, $s_2(2n+1) = s_2(n) + 1$

we deduce the recurrence relations for the PTM sequence: $t_0 = 1$ and

$$t_{2n} = t_n, \quad t_{2n+1} = -t_n.$$

ヨト・モート

$$T(x) = \sum_{n=0}^{\infty} t_n x^n \in \mathbb{Z}[[x]]$$

be the ordinary generating function for the PTM sequence.

Э.

·문▶ · < 문▶ · ·

$$T(x) = \sum_{n=0}^{\infty} t_n x^n \in \mathbb{Z}[[x]]$$

be the ordinary generating function for the PTM sequence.

One can check that the series \mathcal{T} satisfies the following functional equation

$$T(x) = (1-x)T(x^2).$$

- < ∃ >

$$T(x) = \sum_{n=0}^{\infty} t_n x^n \in \mathbb{Z}[[x]]$$

be the ordinary generating function for the PTM sequence.

One can check that the series T satisfies the following functional equation

$$T(x) = (1-x)T(x^2).$$

In consequence we easily deduce the identity

$$T(x)=\prod_{n=0}^{\infty}(1-x^{2^n}).$$

- ∢ ≣ →

$$T(x) = \sum_{n=0}^{\infty} t_n x^n \in \mathbb{Z}[[x]]$$

be the ordinary generating function for the PTM sequence.

One can check that the series T satisfies the following functional equation

$$T(x) = (1-x)T(x^2).$$

In consequence we easily deduce the identity

$$T(x) = \prod_{n=0}^{\infty} (1 - x^{2^n}).$$

Let us also note that the (multiplicative) inverse of the series T, i.e.,

$$B(x) = \frac{1}{T(x)} = \prod_{n=0}^{\infty} \frac{1}{1 - x^{2^n}} = \sum_{n=0}^{\infty} b_n x^n$$

is an interesting object.

프 에 제 프 에 다

$$n=\sum_{i=0}^n u_i 2^i,$$

where $u_i \in \mathbb{N}$ for $i = 0, \ldots, n$.

프 🖌 🛪 프 🛌

3

$$n=\sum_{i=0}^n u_i 2^i,$$

where $u_i \in \mathbb{N}$ for $i = 0, \ldots, n$.

The sequence $(b_n)_{n \in \mathbb{N}}$ was introduced by Euler. However, it seems that the first nontrivial result concerning its arithmetic properties was obtained by Churchhouse. He proved that $\nu_2(b_n) \in \{1, 2\}$ for $n \ge 2$.

- ₹ 🖹 🕨

$$n=\sum_{i=0}^n u_i 2^i,$$

where $u_i \in \mathbb{N}$ for $i = 0, \ldots, n$.

The sequence $(b_n)_{n \in \mathbb{N}}$ was introduced by Euler. However, it seems that the first nontrivial result concerning its arithmetic properties was obtained by Churchhouse. He proved that $\nu_2(b_n) \in \{1,2\}$ for $n \ge 2$.

More precisely, $b_0 = 1$, $b_1 = 1$ and for $n \ge 2$ we have $\nu_2(b_n) = 2$ if and only if n or n - 1 can be written in the form $4^r(2u + 1)$ for some $r \in \mathbb{N}_+$ and $u \in \mathbb{N}$. In the remaining cases we have $\nu_2(b_n) = 1$.

프 🖌 🛪 프 🛌

$$n=\sum_{i=0}^n u_i 2^i,$$

where $u_i \in \mathbb{N}$ for $i = 0, \ldots, n$.

The sequence $(b_n)_{n \in \mathbb{N}}$ was introduced by Euler. However, it seems that the first nontrivial result concerning its arithmetic properties was obtained by Churchhouse. He proved that $\nu_2(b_n) \in \{1,2\}$ for $n \ge 2$.

More precisely, $b_0 = 1$, $b_1 = 1$ and for $n \ge 2$ we have $\nu_2(b_n) = 2$ if and only if n or n - 1 can be written in the form $4^r(2u + 1)$ for some $r \in \mathbb{N}_+$ and $u \in \mathbb{N}$. In the remaining cases we have $\nu_2(b_n) = 1$.

We can compactly write

$$\nu_2(b_n) = \begin{cases} \frac{1}{2} |t_n + 6t_{n-1} + t_{n-2}|, & \text{if } n \ge 2\\ 0, & \text{if } n \in \{0, 1\}. \end{cases}$$

In other words we have simple characterization of the 2-adic valuation of the number b_n for all $n \in \mathbb{N}$.

프 🖌 🔺 프 🛌

3

Let $m \in \mathbb{N}_+$ and consider the series

$$B_m(x) := B(x)^m = \prod_{n=0}^{\infty} \frac{1}{(1-x^{2^n})^m} = \sum_{n=0}^{\infty} b_m(n)x^n.$$

€ 990

Let $m \in \mathbb{N}_+$ and consider the series

$$B_m(x) := B(x)^m = \prod_{n=0}^{\infty} \frac{1}{(1-x^{2^n})^m} = \sum_{n=0}^{\infty} b_m(n)x^n.$$

We have $b_1(n) = b_n$ for $n \in \mathbb{N}$ and

$$b_m(n) = \sum_{i_1+i_2+\ldots+i_m=n} \prod_{k=1}^m b_1(i_k),$$

i.e., $b_m(n)$ is the Cauchy convolution of *m*-copies of the sequence $(b_n)_{n \in \mathbb{N}}$. For $m \in \mathbb{N}_+$ we denote the sequence $(b_m(n))_{n \in \mathbb{N}}$ by \mathbf{b}_m .

< ∃ >

Let $m \in \mathbb{N}_+$ and consider the series

$$B_m(x) := B(x)^m = \prod_{n=0}^{\infty} \frac{1}{(1-x^{2^n})^m} = \sum_{n=0}^{\infty} b_m(n)x^n.$$

We have $b_1(n) = b_n$ for $n \in \mathbb{N}$ and

$$b_m(n) = \sum_{i_1+i_2+\ldots+i_m=n} \prod_{k=1}^m b_1(i_k),$$

i.e., $b_m(n)$ is the Cauchy convolution of *m*-copies of the sequence $(b_n)_{n \in \mathbb{N}}$. For $m \in \mathbb{N}_+$ we denote the sequence $(b_m(n))_{n \in \mathbb{N}}$ by \mathbf{b}_m .

We see that the number $b_m(n)$ has a natural combinatorial interpretation. Indeed, $b_m(n)$ counts the number of representations

$$n=\sum_{i=0}^n u_i 2^i,$$

where each summand can have one of m colors.

< ∃ > ____

Now we can formulate the natural

Question 2

Let $m \in \mathbb{N}_+$ be given. What can be said about the sequence $(\nu_2(b_m(n)))_{n \in \mathbb{N}}$?

< ∃⇒

Now we can formulate the natural

Question 2

Let $m \in \mathbb{N}_+$ be given. What can be said about the sequence $(\nu_2(b_m(n)))_{n \in \mathbb{N}}$?

To give a partial answer to this question we will need two lemmas. The one concerning the characterization of parity of the number $b_m(n)$ and the second one concerning the behaviour of certain binomial coefficients modulo small powers of two.

Now we can formulate the natural

Question 2

Let $m \in \mathbb{N}_+$ be given. What can be said about the sequence $(\nu_2(b_m(n)))_{n \in \mathbb{N}}$?

To give a partial answer to this question we will need two lemmas. The one concerning the characterization of parity of the number $b_m(n)$ and the second one concerning the behaviour of certain binomial coefficients modulo small powers of two.

Lemma 1

Let
$$m \in \mathbb{N}_+$$
 be fixed and write $m = 2^k(2u+1)$ with $k \in \mathbb{N}$. Then:

- We have $b_m(n) \equiv {m \choose n} + 2^{k+1} {m-2 \choose n-2} \pmod{2^{k+2}}$ for *m* even;
- 2 We have $b_m(n) \equiv \binom{m}{n} \pmod{2}$ for m odd;
- **(3)** For infinitely many n we have $b_m(n) \not\equiv 0 \pmod{4}$ for m odd.

Lemma 2

Let *m* be a positive integer ≥ 2 . Then

$$\binom{2^m-1}{k}\equiv 1\pmod{2},\quad \textit{for}\quad k=0,1,\ldots,2^m-1,$$

and

$$\binom{2^m}{k} \equiv \begin{cases} 1 & \text{for } k = 0, 2^m \\ 4 & \text{for } k = 2^{m-2}, 3 \cdot 2^{m-2} \\ 6 & \text{for } k = 2^{m-1} \\ 0 & \text{in the remaining cases} \end{cases} \pmod{8}, \quad \text{for } k = 0, 1, \dots, 2^m.$$

æ

- 47 →
We are ready to prove the following

Theorem 3

Let $k \in \mathbb{N}_+$ be given. Then $\nu_2(b_{2^k-1}(n)) = 0$ for $n \leq 2^k - 1$ and

$$\nu_2(b_{2^k-1}(2^k n+i)) = \nu_2(b_1(2n))$$

for each $i \in \{0, \ldots, 2^k - 1\}$ and $n \in \mathbb{N}_+$.

-∢ ≣ ▶

We are ready to prove the following

Theorem 3

Let $k \in \mathbb{N}_+$ be given. Then $\nu_2(b_{2^k-1}(n)) = 0$ for $n \leq 2^k - 1$ and

$$\nu_2(b_{2^k-1}(2^k n+i)) = \nu_2(b_1(2n))$$

for each $i \in \{0, \ldots, 2^k - 1\}$ and $n \in \mathbb{N}_+$.

Proof: First of all, let us observe that the second part of Lemma 1 and the first part of Lemma 2 implies that $b_{2^k-1}(n)$ is odd for $n \le 2^k - 1$ and thus $\nu_2(b_{2^k-1}(n)) = 0$ in this case.

医下 不正下

We are ready to prove the following

Theorem 3

Let $k \in \mathbb{N}_+$ be given. Then $\nu_2(b_{2^k-1}(n)) = 0$ for $n \leq 2^k - 1$ and

$$\nu_2(b_{2^k-1}(2^k n+i)) = \nu_2(b_1(2n))$$

for each $i \in \{0, \dots, 2^k - 1\}$ and $n \in \mathbb{N}_+$.

Proof: First of all, let us observe that the second part of Lemma 1 and the first part of Lemma 2 implies that $b_{2^k-1}(n)$ is odd for $n \le 2^k - 1$ and thus $\nu_2(b_{2^k-1}(n)) = 0$ in this case.

Let us observe that from the identity $B_{2^{k}-1}(x) = T(x)B_{2^{k}}(x)$ we get the relation

$$b_{2^{k}-1}(n) = \sum_{j=0}^{n} t_{n-j} b_{2^{k}}(j), \qquad (1)$$

ヨト・モート

where t_n is the *n*-th term of the PTM sequence.

Now let us observe that from the first part of Lemma 1 and the second part of Lemma 2 we have

$$b_{2^k}(n) \equiv \begin{pmatrix} 2^k \\ n \end{pmatrix} \pmod{8}$$

for $n = 0, 1, ..., 2^k$ and $b_{2^k}(n) \equiv 0 \pmod{8}$ for $n > 2^k$, provided $k \ge 2$ or $n \ne 2$.

·문▶· ★ 문▶· · 문

Now let us observe that from the first part of Lemma 1 and the second part of Lemma 2 we have

$$b_{2^k}(n) \equiv \begin{pmatrix} 2^k \\ n \end{pmatrix} \pmod{8}$$

for $n = 0, 1, ..., 2^k$ and $b_{2^k}(n) \equiv 0 \pmod{8}$ for $n > 2^k$, provided $k \ge 2$ or $n \ne 2$. Moreover,

$$b_2(2) \equiv \begin{pmatrix} 2 \\ 2 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 5 \pmod{8}.$$

·문▶· ★ 문▶· · 문

Now let us observe that from the first part of Lemma 1 and the second part of Lemma 2 we have

$$b_{2^k}(n) \equiv \begin{pmatrix} 2^k \\ n \end{pmatrix} \pmod{8}$$

for $n = 0, 1, ..., 2^k$ and $b_{2^k}(n) \equiv 0 \pmod{8}$ for $n > 2^k$, provided $k \ge 2$ or $n \ne 2$.

Moreover,

$$b_2(2) \equiv \begin{pmatrix} 2 \\ 2 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 5 \pmod{8}.$$

Summing up this discussion we have the following expression for $b_{2^{k}-1}(n)$ (mod 8), where $k \ge 2$ and $n \ge 2^{k}$:

$$b_{2^{k}-1}(n) = \sum_{j=0}^{n} t_{n-j} b_{2^{k}}(j) = \sum_{j=0}^{2^{k}} t_{n-j} b_{2^{k}}(j) + \sum_{j=2^{k}+1}^{n} t_{n-j} b_{2^{k}}(j)$$
$$\equiv \sum_{j=0}^{2^{k}} t_{n-j} b_{2^{k}}(j) \equiv \sum_{j=0}^{2^{k}} t_{n-j} \binom{2^{k}}{j} \pmod{8}$$
$$\equiv t_{n} + t_{n-2^{k}} + 4t_{n-2^{k-2}} + 4t_{n-3 \cdot 2^{k-2}} + 6t_{n-2^{k-1}} \pmod{8}.$$

글 눈 옷 글 눈 드 글

However, it is clear that $t_{n-2^{k-2}} + t_{n-3\cdot 2^{k-2}} \equiv 0 \pmod{2}$ and thus we can simplify the above expression and get

$$b_{2^k-1}(n) \equiv t_n + t_{n-2^k} + 6t_{n-2^{k-1}} \pmod{8}$$

for $n \geq 2^k$.

▲臣▶ ▲臣▶ 臣 のへ⊙

However, it is clear that $t_{n-2^{k-2}} + t_{n-3\cdot 2^{k-2}} \equiv 0 \pmod{2}$ and thus we can simplify the above expression and get

$$b_{2^k-1}(n) \equiv t_n + t_{n-2^k} + 6t_{n-2^{k-1}} \pmod{8}$$

for $n \geq 2^k$.

If k = 1 and $n \ge 2$ then, analogously, we get

$$b_1(n) \equiv \sum_{j=0}^{2^k} t_{n-j} b_{2^k}(j) \pmod{8} \equiv t_n + 5t_{n-2} + 2t_{n-1} \pmod{8}$$

and since $t_{n-1} \equiv t_{n-2} \pmod{2}$, we thus conclude that

$$b_1(n) \equiv t_n + 6t_{n-1} + t_{n-2} \pmod{8}.$$

글 눈 옷 글 눈 드 글

Let us put

$$R_k(n) = t_n + t_{n-2^k} + 6t_{n-2^{k-1}}.$$

Using now the recurrence relations for t_n , i.e., $t_{2n} = t_n$, $t_{2n+1} = -t_n$, we easily deduce the identities

$$R_k(2n) = R_{k-1}(n), \quad R_k(2n+1) = -R_{k-1}(n)$$

for $k \geq 2$.

▲臣▶ ▲臣▶ 臣 のへ⊙

Let us put

$$R_k(n) = t_n + t_{n-2^k} + 6t_{n-2^{k-1}}.$$

Using now the recurrence relations for t_n , i.e., $t_{2n} = t_n$, $t_{2n+1} = -t_n$, we easily deduce the identities

$$R_k(2n) = R_{k-1}(n), \quad R_k(2n+1) = -R_{k-1}(n)$$

for $k \geq 2$.

Using a simple induction argument, one can easily obtain the following identities:

$$|R_k(2^k m + j)| = |R_1(2m)|$$
(2)

글 눈 옷 글 눈 드 글

for $k \geq 2, m \in \mathbb{N}$ and $j \in \{0, \ldots, 2^k - 1\}$.

From the above identity we easily deduce that

$$R_k(n) \not\equiv 0 \pmod{8}$$

for each $n \in \mathbb{N}$ and each $k \ge 1$. If k = 1 then $R_1(n) = t_n + 6t_{n-1} + t_{n-2}$ and $R_1(n) \equiv 0 \pmod{8}$ if and only if $t_n = t_{n-1} = t_{n-2}$. However, a well known property of the PTM sequence is that there are no three consecutive terms which are equal.

★ 프 ► = 프

From the above identity we easily deduce that

$$R_k(n) \not\equiv 0 \pmod{8}$$

for each $n \in \mathbb{N}$ and each $k \ge 1$. If k = 1 then $R_1(n) = t_n + 6t_{n-1} + t_{n-2}$ and $R_1(n) \equiv 0 \pmod{8}$ if and only if $t_n = t_{n-1} = t_{n-2}$. However, a well known property of the PTM sequence is that there are no three consecutive terms which are equal.

If $k \ge 2$ then our statement about $R_k(n)$ is clearly true for $n \le 2^k$. If $n > 2^k$ then we can write $n = 2^k m + j$ for some $m \in \mathbb{N}$ and $j \in \{0, 1, \ldots, 2^k - 1\}$. Using the reduction (2) and the property obtained for k = 1, we get the result.

< ∃ > ____

From the above identity we easily deduce that

$$R_k(n) \not\equiv 0 \pmod{8}$$

for each $n \in \mathbb{N}$ and each $k \ge 1$. If k = 1 then $R_1(n) = t_n + 6t_{n-1} + t_{n-2}$ and $R_1(n) \equiv 0 \pmod{8}$ if and only if $t_n = t_{n-1} = t_{n-2}$. However, a well known property of the PTM sequence is that there are no three consecutive terms which are equal.

If $k \ge 2$ then our statement about $R_k(n)$ is clearly true for $n \le 2^k$. If $n > 2^k$ then we can write $n = 2^k m + j$ for some $m \in \mathbb{N}$ and $j \in \{0, 1, \ldots, 2^k - 1\}$. Using the reduction (2) and the property obtained for k = 1, we get the result.

Summing up: we have proved that $\nu_2(b_{2^k-1}(n)) \leq 2$ for each $n \in \mathbb{N}$, since $\nu_2(b_1(n)) \in \{0, 1, 2\}$. Moreover, as an immediate consequence of our reasoning we get the equality

$$\nu_2(b_{2^k-1}(2^k n+j)) = \nu_2(b_1(2n))$$

for $j \in \{0, ..., 2^k - 1\}$ and our theorem is proved.

Let $(\varepsilon_n)_{n\in\mathbb{N}}$ be a sequence of integers and write

$$f(x) = \sum_{n=0}^{\infty} \varepsilon_n x^n \in \mathbb{Z}[[x]].$$

Moreover, for $m \in \mathbb{N}_+$ we define the sequence $\mathbf{b}_m = (b_m(n))_{n \in \mathbb{N}}$, where

$$\frac{1}{f(x)^m} = \sum_{n=0}^{\infty} b_m(n) x^n.$$

프 🖌 🔺 프 🕨

э

Let $(\varepsilon_n)_{n\in\mathbb{N}}$ be a sequence of integers and write

$$f(x) = \sum_{n=0}^{\infty} \varepsilon_n x^n \in \mathbb{Z}[[x]].$$

Moreover, for $m \in \mathbb{N}_+$ we define the sequence $\mathbf{b}_m = (b_m(n))_{n \in \mathbb{N}}$, where

$$\frac{1}{f(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

Theorem 4

Let $(\varepsilon_n)_{n\in\mathbb{N}}$ be a sequence of integers and suppose that $\varepsilon_n \equiv 1 \pmod{2}$ for each $n \in \mathbb{N}$. Then for any $m \in \mathbb{N}_+$ and $n \geq m$ we have the congruence

$$b_{m-1}(n) \equiv \sum_{i=0}^{m} \binom{m}{i} \varepsilon_{n-i} \pmod{2^{\nu_2(m)+1}}.$$
 (3)

- ∢ ⊒ ▶

Proof: Let $f(x) = \sum_{n=0}^{\infty} \varepsilon_n x^n \in \mathbb{Z}[[x]]$. From the assumption on sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ we get that

$$f(x) \equiv \frac{1}{1+x} \pmod{2}.$$

In consequence, writing $m = 2^{\nu_2(m)}k$ with k odd, and using the well known property saying that $U \equiv V \pmod{2^k}$ implies $U^2 \equiv V^2 \pmod{2^{k+1}}$, we get the congruence

$$\frac{1}{f(x)^m} \equiv (1+x)^m \pmod{2^{\nu_2(m)+1}}.$$

프 () (프) (프)

Proof: Let $f(x) = \sum_{n=0}^{\infty} \varepsilon_n x^n \in \mathbb{Z}[[x]]$. From the assumption on sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ we get that

$$f(x) \equiv \frac{1}{1+x} \pmod{2}.$$

In consequence, writing $m = 2^{\nu_2(m)}k$ with k odd, and using the well known property saying that $U \equiv V \pmod{2^k}$ implies $U^2 \equiv V^2 \pmod{2^{k+1}}$, we get the congruence

$$\frac{1}{f(x)^m} \equiv (1+x)^m \pmod{2^{\nu_2(m)+1}}.$$

Thus, multiplying both sides of the above congruence by f(x) we get

$$\frac{1}{f(x)^{m-1}} \equiv f(x)(1+x)^m \pmod{2^{\nu_2(m)+1}}.$$

물 제 문 제 문 문

Proof: Let $f(x) = \sum_{n=0}^{\infty} \varepsilon_n x^n \in \mathbb{Z}[[x]]$. From the assumption on sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ we get that

$$f(x) \equiv \frac{1}{1+x} \pmod{2}.$$

In consequence, writing $m = 2^{\nu_2(m)}k$ with k odd, and using the well known property saying that $U \equiv V \pmod{2^k}$ implies $U^2 \equiv V^2 \pmod{2^{k+1}}$, we get the congruence

$$\frac{1}{f(x)^m} \equiv (1+x)^m \pmod{2^{\nu_2(m)+1}}.$$

Thus, multiplying both sides of the above congruence by f(x) we get

$$\frac{1}{f(x)^{m-1}} \equiv f(x)(1+x)^m \pmod{2^{\nu_2(m)+1}}.$$

From the power series expansion of $f(x)(1+x)^m$ by comparing coefficients on the both sides of the above congruence we get that

$$b_{m-1}(n)\equiv\sum_{i=0}^{\min\{m,n\}}\binom{m}{i}arepsilon_{n-i}\pmod{2^{
u_2(m)+1}},$$

i.e., for $n \ge m$ we get the congruence (3). Our theorem is proved.

From our result we can deduce the following

Corollary 5

Let $(\varepsilon_n)_{n\in\mathbb{N}}$ be a non-eventually constant sequence, $\varepsilon_n \in \{-1,1\}$ for each $n \in \mathbb{N}$, and suppose that for each $N \in \mathbb{N}_+$ there are infinitely many $n \in \mathbb{N}$ such that $\varepsilon_n = \varepsilon_{n+1} = \ldots = \varepsilon_{n+N}$. Then, for each even $m \in \mathbb{N}_+$, there are infinitely many $n \in \mathbb{N}$ such that

 $u_2(b_{m-1}(n)) \ge \nu_2(m) + 1 \quad and \quad \nu_2(b_{m-1}(n+1)) = 1.$

글 🖌 🖌 글 🕨

From our result we can deduce the following

Corollary 5

Let $(\varepsilon_n)_{n\in\mathbb{N}}$ be a non-eventually constant sequence, $\varepsilon_n \in \{-1,1\}$ for each $n \in \mathbb{N}$, and suppose that for each $N \in \mathbb{N}_+$ there are infinitely many $n \in \mathbb{N}$ such that $\varepsilon_n = \varepsilon_{n+1} = \ldots = \varepsilon_{n+N}$. Then, for each even $m \in \mathbb{N}_+$, there are infinitely many $n \in \mathbb{N}$ such that

$$u_2(b_{m-1}(n)) \ge \nu_2(m) + 1 \quad \text{and} \quad \nu_2(b_{m-1}(n+1)) = 1.$$

Proof: From our assumption on the sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ we can find infinitely many (m+1)-tuples such that $\varepsilon_{n+1} = \varepsilon, \varepsilon_n = \ldots = \varepsilon_{n-m} = -\varepsilon$, where ε is a fixed element of $\{-1, 1\}$. We apply (3) and get

$$b_{m-1}(n) \equiv \sum_{i=0}^{m} {m \choose i} \varepsilon_{n-i} \equiv -\sum_{i=0}^{m} {m \choose i} \varepsilon \equiv -\varepsilon 2^{m} \equiv 0 \pmod{2^{\nu_{2}(m)+1}},$$

$$b_{m-1}(n+1) \equiv \sum_{i=0}^{m} {m \choose i} \varepsilon_{n+1-i} \equiv 2\varepsilon - \sum_{i=0}^{m} {m \choose i} \varepsilon \equiv \varepsilon (2-2^{m}) \equiv 2\varepsilon \pmod{2^{\nu_{2}(m)+1}}.$$

- ∢ ⊒ ▶

From our result we can deduce the following

Corollary 5

Let $(\varepsilon_n)_{n\in\mathbb{N}}$ be a non-eventually constant sequence, $\varepsilon_n \in \{-1,1\}$ for each $n \in \mathbb{N}$, and suppose that for each $N \in \mathbb{N}_+$ there are infinitely many $n \in \mathbb{N}$ such that $\varepsilon_n = \varepsilon_{n+1} = \ldots = \varepsilon_{n+N}$. Then, for each even $m \in \mathbb{N}_+$, there are infinitely many $n \in \mathbb{N}$ such that

$$u_2(b_{m-1}(n)) \ge \nu_2(m) + 1 \quad \text{and} \quad \nu_2(b_{m-1}(n+1)) = 1.$$

Proof: From our assumption on the sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ we can find infinitely many (m+1)-tuples such that $\varepsilon_{n+1} = \varepsilon, \varepsilon_n = \ldots = \varepsilon_{n-m} = -\varepsilon$, where ε is a fixed element of $\{-1, 1\}$. We apply (3) and get

$$b_{m-1}(n) \equiv \sum_{i=0}^{m} {m \choose i} \varepsilon_{n-i} \equiv -\sum_{i=0}^{m} {m \choose i} \varepsilon \equiv -\varepsilon 2^{m} \equiv 0 \pmod{2^{\nu_{2}(m)+1}},$$

$$b_{m-1}(n+1) \equiv \sum_{i=0}^{m} {m \choose i} \varepsilon_{n+1-i} \equiv 2\varepsilon - \sum_{i=0}^{m} {m \choose i} \varepsilon \equiv \varepsilon (2-2^{m}) \equiv 2\varepsilon \pmod{2^{\nu_{2}(m)+1}}.$$

In consequence $u_2(b_{m-1}(n)) \ge \nu_2(m) + 1$ and $\nu_2(b_{m-1}(n+1)) = 1$.

→ Ξ →

Example: Let $F : \mathbb{N} \to \mathbb{N}$ satisfy the condition

$$\limsup_{n\to+\infty}(F(n+1)-F(n))=+\infty$$

٠

< E → < E → </p>

æ

and define the sequence

$$arepsilon_n(F) = \left\{egin{array}{cc} 1 & n=F(m) ext{ for some } m\in\mathbb{N} \ -1 & ext{ otherwise } \end{array}
ight.$$

Example: Let $F : \mathbb{N} \to \mathbb{N}$ satisfy the condition

$$\limsup_{n\to+\infty}(F(n+1)-F(n))=+\infty$$

and define the sequence

$$\varepsilon_n(F) = \begin{cases} 1 & n = F(m) \text{ for some } m \in \mathbb{N} \\ -1 & \text{ otherwise} \end{cases}$$

It is clear that the sequence $(\varepsilon_n(F))_{n\in\mathbb{N}}$ satisfies the conditions from Theorem 5 and thus for any even $m \in \mathbb{N}_+$ there are infinitely many $n \ge m$ such that $\nu_2(b_{m-1}(n)) \ge \nu_2(m) + 1$ and $\nu_2(b_{m-1}(n+1)) = 1$.

Example: Let $F : \mathbb{N} \to \mathbb{N}$ satisfy the condition

$$\limsup_{n\to+\infty}(F(n+1)-F(n))=+\infty$$

and define the sequence

$$arepsilon_n(F) = \left\{egin{array}{cc} 1 & n=F(m) ext{ for some } m\in\mathbb{N} \ -1 & ext{ otherwise } \end{array}
ight.$$

It is clear that the sequence $(\varepsilon_n(F))_{n\in\mathbb{N}}$ satisfies the conditions from Theorem 5 and thus for any even $m \in \mathbb{N}_+$ there are infinitely many $n \ge m$ such that $\nu_2(b_{m-1}(n)) \ge \nu_2(m) + 1$ and $\nu_2(b_{m-1}(n+1)) = 1$.

A particular examples of *F*'s satisfying required properties include:

- positive polynomials of degree \geq 2;
- the functions which for given n ∈ N₊ take as value the *n*-th prime number of the form ak + b, where a ∈ N₊, b ∈ Z and gcd(a, b) = 1;
- and many others.

Lemma 6

Let $s \in \mathbb{N}_{\geq 3}$. Then

$$\begin{pmatrix} 2^{s} \\ i \end{pmatrix} \pmod{16} \equiv \begin{cases} 1 & \text{for } i = 0, 2^{s} \\ 6 & \text{for } i = 2^{s-1} \\ 8 & \text{for } i = (2j+1)2^{s-3}, j \in \{0, 1, 2, 3\} \\ 12 & \text{for } i = 2^{s-2}, 3 \cdot 2^{s-2} \\ 0 & \text{in the remaining cases} \end{cases}$$

・ロト・日本・日本・日本・日本・日本・日本

Theorem 7

Let $s \in \mathbb{N}_+$ and $(\varepsilon_n)_{n \in \mathbb{N}}$ be an integer sequence and suppose that $\varepsilon_n \equiv 1 \pmod{2}$ for $n \in \mathbb{N}$. (A) For $n > 2^s$ we have

$$b_{2^{s}-1}(n) \equiv \varepsilon_{n} + 2\varepsilon_{n-2^{s-1}} + \varepsilon_{n-2^{s}} \pmod{4}. \tag{4}$$

In particular, if $\varepsilon_n \in \{-1,1\}$ for all $n \in \mathbb{N}$ then:

$$\nu_2(b_{2^s-1}(n)) > 1 \quad \Longleftrightarrow \quad \varepsilon_n = \varepsilon_{n-2^{s-1}} = \varepsilon_{n-2^s} \text{ or } \varepsilon_n = -\varepsilon_{n-2^{s-1}} = \varepsilon_{n-2^s}$$
$$\nu_2(b_{2^s-1}(n)) = 1 \quad \Longleftrightarrow \quad \varepsilon_n = -\varepsilon_{n-2^s}.$$

(B) For $s \ge 2$ and $n \ge 2^s$ we have

$$b_{2^{s}-1}(n) \equiv \varepsilon_{n} + 6\varepsilon_{n-2^{s-1}} + \varepsilon_{n-2^{s}} \pmod{8}.$$
(5)

E > < E >

э

In particular, if $\varepsilon_n \in \{-1,1\}$ for all $n \in \mathbb{N}$, then:

$$\nu_2(b_{2^s-1}(n)) > 2 \iff \varepsilon_n = \varepsilon_{n-2^{s-1}} = \varepsilon_{n-2^s}$$

$$\nu_2(b_{2^s-1}(n)) = 2 \iff \varepsilon_n = -\varepsilon_{n-2^{s-1}} = \varepsilon_{n-2^s}$$

$$\nu_2(b_{2^s-1}(n)) = 1 \iff \varepsilon_n = -\varepsilon_{n-2^s}.$$

Theorem 7 (continuation)

(C) For $s \ge 3$ and $n \ge 2^s$ we have $b_{2^s-1}(n) \equiv \varepsilon_n + \varepsilon_{n-2^s} + 6\varepsilon_{n-2^{s-1}} + 12(\varepsilon_{n-2^{s-2}} + \varepsilon_{n-3\cdot2^{s-2}}) \pmod{16}$ (6) In particular, if $\varepsilon_n \in \{-1,1\}$ for all $n \in \mathbb{N}$, then: $\nu_2(b_{2^s-1}(n)) > 3 \iff \varepsilon_n = \varepsilon_{n-2^{s-2}} = \varepsilon_{n-2^{s-1}} = \varepsilon_{n-3\cdot2^{s-2}} = \varepsilon_{n-2^s} \text{ or } \varepsilon_n = -\varepsilon_{n-2^{s-2}} = \varepsilon_{n-2^{s-1}} = -\varepsilon_{n-3\cdot2^{s-2}} = \varepsilon_{n-2^{s}};$ $\nu_2(b_{2^s-1}(n)) = 3 \iff \varepsilon_n = \varepsilon_{n-2^{s-2}} = \varepsilon_{n-2^{s-1}} = -\varepsilon_{n-3\cdot2^{s-2}} = \varepsilon_{n-2^s} \text{ or } \varepsilon_n = -\varepsilon_{n-2^{s-2}} = \varepsilon_{n-2^{s-1}} = -\varepsilon_{n-3\cdot2^{s-2}} = \varepsilon_{n-2^{s}};$ $\varepsilon_n = -\varepsilon_{n-2^{s-2}} = \varepsilon_{n-2^{s-1}} = -\varepsilon_{n-3\cdot2^{s-2}} = \varepsilon_{n-2^{s}} \text{ or } \varepsilon_n = -\varepsilon_{n-2^{s-2}} = \varepsilon_{n-2^{s-1}} = \varepsilon_{n-3\cdot2^{s-2}} = \varepsilon_{n-2^{s}};$ $\varepsilon_n = -\varepsilon_{n-2^{s-2}} = \varepsilon_{n-2^{s-1}} = \varepsilon_{n-3\cdot2^{s-2}} = \varepsilon_{n-2^{s}};$ $\varepsilon_n = -\varepsilon_{n-2^{s-2}} + 2\varepsilon_{n-2^{s-1}} + 8 \pmod{16};$ (7)

(문) (문) (문)

As a first application of Theorem 7 we get the following:

Corollary 8

Let $s \in \mathbb{N}_{\geq 2}$ and $(\varepsilon_n)_{n \in \mathbb{N}}$ with $\varepsilon_n \in \{-1, 1\}$ for all $n \in \mathbb{N}$. If there is no $n \in \mathbb{N}_{\geq 2^s}$ such that $\varepsilon_n = \varepsilon_{n-2^{s-1}} = \varepsilon_{n-2^s}$, then

$$\nu_2(b_{2^s-1}(n)) = \nu_2(\varepsilon_n + 6\varepsilon_{n-2^{s-1}} + \varepsilon_{n-2^s}).$$

In particular, for each $n \in \mathbb{N}_{\geq 2^s}$ we have $\nu_2(b_{2^s-1}(n)) \in \{1,2,3\}$.

- ∢ ⊒ →

Application to the Rudin-Shapiro sequence

Let $\mathbf{r} = (r_n)_{n \in \mathbb{N}}$ be the Rudin-Shapiro sequence (the RS sequence for short), i.e., the sequence defined as

$$r_n=(-1)^{u_n},$$

where u_n is the number of occurrences of the word "11" in the binary expansion of the number n.

- ∢ ≣ ▶

Let $\mathbf{r} = (r_n)_{n \in \mathbb{N}}$ be the Rudin-Shapiro sequence (the RS sequence for short), i.e., the sequence defined as

$$r_n=(-1)^{u_n},$$

where u_n is the number of occurrences of the word "11" in the binary expansion of the number n.

One can easily check that the sequence ${\bf r}$ satisfies the following recurrence relations: $r_0=1$ and

$$r_{2n} = r_n, \quad r_{2n+1} = (-1)^n r_n$$

for $n \in \mathbb{N}$.

- ₹ ∃ →

Let $\mathbf{r} = (r_n)_{n \in \mathbb{N}}$ be the Rudin-Shapiro sequence (the RS sequence for short), i.e., the sequence defined as

$$r_n=(-1)^{u_n},$$

where u_n is the number of occurrences of the word "11" in the binary expansion of the number n.

One can easily check that the sequence ${\bf r}$ satisfies the following recurrence relations: $r_0=1$ and

$$r_{2n} = r_n, \quad r_{2n+1} = (-1)^n r_n$$

for $n \in \mathbb{N}$.

It is well known that the formal power series $R(x) = \sum_{n=0}^{\infty} r_n x^n$ associated with the sequence **r** satisfies the following functional equation:

$$R(x) = (1 - x)R(x^{2}) + 2xR(x^{4}).$$

프 🖌 🔺 프 🛌

$$\frac{1}{R(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

- < 注 → - < 注 →

$$\frac{1}{R(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

We prove boundedness of the 2-adic valuation of $b_m(n)$ for m = 2 and $m = 2^s - 1$ with $s \in \mathbb{N}_{\geq 2}$. The first step needed in the proof is the following:

< ∃ >

э

$$\frac{1}{R(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

We prove boundedness of the 2-adic valuation of $b_m(n)$ for m = 2 and $m = 2^s - 1$ with $s \in \mathbb{N}_{\geq 2}$. The first step needed in the proof is the following:

Lemma 9

The following congruence holds:

$$\frac{1}{R(x)} \equiv \frac{\sqrt{(1+x)(1-x-x^2-3x^3)}}{1+x} \pmod{4}.$$

< ∃⇒

$$\frac{1}{R(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

We prove boundedness of the 2-adic valuation of $b_m(n)$ for m = 2 and $m = 2^s - 1$ with $s \in \mathbb{N}_{\geq 2}$. The first step needed in the proof is the following:

Lemma 9

The following congruence holds:

$$\frac{1}{R(x)} \equiv \frac{\sqrt{(1+x)(1-x-x^2-3x^3)}}{1+x} \pmod{4}.$$

To get the above result it is enough to write 1/R(x) = 1 + x + 2T(x) and observe that T satisfies the congruence

$$(1+x)^4 T(x)^2 + (1+x)^5 T(x) + x(1+x)^3(1+x+x^2) \equiv 0 \pmod{2}.$$

- ∢ ≣ →

As a consequence of the above result we get: As a simple consequence of the above result we get:

Corollary 10

Let $1/R(x)^2 = \sum_{n=0}^{\infty} b_2(n)x^n$. Then

$$u_2(b_2(n)) = \left\{ egin{array}{ccc} 0 & n=0,2 \ 1 & n=1 \ 2 & n\geq 3 \end{array}
ight.$$

∃ ⊳
As a consequence of the above result we get: As a simple consequence of the above result we get:

Corollary 10

Let $1/R(x)^2 = \sum_{n=0}^{\infty} b_2(n)x^n$. Then

$$u_2(b_2(n)) = \left\{ egin{array}{ccc} 0 & n=0,2 \ 1 & n=1 \ 2 & n\geq 3 \end{array}
ight.$$

We note the congruence

$$\sum_{n=0}^{\infty} b_2(n) x^n = \frac{1}{R(x)^2} \equiv \frac{1-x-x^2-3x^3}{1+x} \equiv 1-2x+x^2 + \sum_{n=3}^{\infty} 4(-1)^n x^n \pmod{8}.$$

and get the result.

∃ ⊳

As a consequence of the above result we get: As a simple consequence of the above result we get:

Corollary 10

Let $1/R(x)^2 = \sum_{n=0}^{\infty} b_2(n)x^n$. Then

$$u_2(b_2(n)) = \left\{ egin{array}{ccc} 0 & n=0,2 \ 1 & n=1 \ 2 & n\geq 3 \end{array}
ight.$$

We note the congruence

$$\sum_{n=0}^{\infty} b_2(n) x^n = \frac{1}{R(x)^2} \equiv \frac{1 - x - x^2 - 3x^3}{1 + x} \equiv 1 - 2x + x^2 + \sum_{n=3}^{\infty} 4(-1)^n x^n \pmod{8}.$$

and get the result.

Lemma 11

Let $(r_n)_{n \in \mathbb{N}}$ be the Rudin-Shapiro sequence. Then there is no $n \in \mathbb{N}_{>4}$ such that

$$r_n = r_{n-1} = r_{n-2} = r_{n-3} = r_{n-4}$$
 or $r_n = -r_{n-1} = r_{n-2} = -r_{n-3} = r_{n-4}$.

Let $s \in \mathbb{N}_{\geq 2}$, $R(x) = \sum_{n=0}^{\infty} r_n x^n$ and write

$$\frac{1}{\mathsf{R}(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

Then for $n \ge 2^s$ we have $\nu_2(b_{2^s-1}(n)) \in \{1,2,3\}$. Moreover, the following formula holds

$$\nu_2(b_{2^s-1}(n)) = \nu_2(r_n + 6r_{n-2^{s-1}} + r_{n-2^s}).$$

ヨト・モート

э

Let $s \in \mathbb{N}_{\geq 2}, R(x) = \sum_{n=0}^{\infty} r_n x^n$ and write

$$\frac{1}{R(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

Then for $n \ge 2^s$ we have $\nu_2(b_{2^s-1}(n)) \in \{1,2,3\}$. Moreover, the following formula holds

$$\nu_2(b_{2^s-1}(n)) = \nu_2(r_n + 6r_{n-2^{s-1}} + r_{n-2^s}).$$

Sketch of the proof: First we consider the case s = 2, i.e. m = 3. From Lemma 9 we have

$$\frac{1}{R(x)^4} \equiv 1 - 4x + 6x^2 + 4x^3 + 9x^4 \pmod{16}.$$

< ∃ >

Let
$$s \in \mathbb{N}_{\geq 2}$$
, $R(x) = \sum_{n=0}^{\infty} r_n x^n$ and write

$$\frac{1}{\mathsf{R}(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

Then for $n \ge 2^s$ we have $\nu_2(b_{2^s-1}(n)) \in \{1,2,3\}$. Moreover, the following formula holds

$$\nu_2(b_{2^s-1}(n)) = \nu_2(r_n + 6r_{n-2^{s-1}} + r_{n-2^s}).$$

Sketch of the proof: First we consider the case s = 2, i.e. m = 3. From Lemma 9 we have

$$\frac{1}{R(x)^4} \equiv 1 - 4x + 6x^2 + 4x^3 + 9x^4 \pmod{16}.$$

In consequence

$$\frac{1}{R(x)^3} \equiv R(x)(1 - 4x + 6x^2 + 4x^3 + 9x^4)$$
$$\equiv 1 + 13x + 3x^2 + 5x^3 + 8x^4 + \sum_{n=5}^{\infty} h_n x^n \pmod{16},$$

where $h_n := r_n - 4r_{n-1} + 6r_{n-2} + 4r_{n-3} + 9r_{n-4}$.

$$h_n \equiv 0 \pmod{16} \iff r_n = r_{n-1} = r_{n-2} = r_{n-3} = r_{n-4}$$

or $r_n = -r_{n-1} = r_{n-2} = -r_{n-3} = r_{n-4}$

which according to Lemma 11 is impossible.

注▶ ★ 注▶

æ

$$h_n \equiv 0 \pmod{16} \iff r_n = r_{n-1} = r_{n-2} = r_{n-3} = r_{n-4}$$

or $r_n = -r_{n-1} = r_{n-2} = -r_{n-3} = r_{n-4}$

which according to Lemma 11 is impossible.

Thus h_n does not vanish modulo 16 and

$$h_n = r_n - 4(r_{n-1} - r_{n-3}) + 6r_{n-2} + 9r_{n-4} \equiv r_n + 6r_{n-2} + r_{n-4} \pmod{8}.$$

In consequence, due to non-vanishing of the integer $r_n + 6r_{n-2} + r_{n-4}$ we get that $\nu_2(b_3(n)) = \nu_2(r_n + 6r_{n-2} + r_{n-4})$.

프 🖌 🛪 프 🛌

э

$$h_n \equiv 0 \pmod{16} \iff r_n = r_{n-1} = r_{n-2} = r_{n-3} = r_{n-4}$$

or $r_n = -r_{n-1} = r_{n-2} = -r_{n-3} = r_{n-4}$

which according to Lemma 11 is impossible.

Thus h_n does not vanish modulo 16 and

$$h_n = r_n - 4(r_{n-1} - r_{n-3}) + 6r_{n-2} + 9r_{n-4} \equiv r_n + 6r_{n-2} + r_{n-4} \pmod{8}.$$

In consequence, due to non-vanishing of the integer $r_n + 6r_{n-2} + r_{n-4}$ we get that $\nu_2(b_3(n)) = \nu_2(r_n + 6r_{n-2} + r_{n-4})$.

We proceed by induction on s and $n \ge 2^s$. For s = 3 and $n \ge 8$ we have

$$b_7(n) \equiv r_n + r_{n-8} + 6r_{n-4} + 12(r_{n-2} + r_{n-6}) \pmod{16}$$

and careful analysis shows that the right side doesn't vanish modulo 16.

프 > < 프 > _ 프

$$h_n \equiv 0 \pmod{16} \iff r_n = r_{n-1} = r_{n-2} = r_{n-3} = r_{n-4}$$

or $r_n = -r_{n-1} = r_{n-2} = -r_{n-3} = r_{n-4}$

which according to Lemma 11 is impossible.

Thus h_n does not vanish modulo 16 and

$$h_n = r_n - 4(r_{n-1} - r_{n-3}) + 6r_{n-2} + 9r_{n-4} \equiv r_n + 6r_{n-2} + r_{n-4} \pmod{8}.$$

In consequence, due to non-vanishing of the integer $r_n + 6r_{n-2} + r_{n-4}$ we get that $\nu_2(b_3(n)) = \nu_2(r_n + 6r_{n-2} + r_{n-4})$.

We proceed by induction on s and $n \ge 2^s$. For s = 3 and $n \ge 8$ we have

$$b_7(n) \equiv r_n + r_{n-8} + 6r_{n-4} + 12(r_{n-2} + r_{n-6}) \pmod{16}$$

and careful analysis shows that the right side doesn't vanish modulo 16. Similarly, for $s \ge 4$, $n \ge 2^s$, one can show impossibility of the conditions

$$\begin{array}{rcl} C_1(n,s): & r_n & = & r_{n-2^{s-2}} & = & r_{n-2^{s-1}} & = & r_{n-3\cdot 2^{s-2}} & = & r_{n-2^s}, \\ C_2(n,s): & r_n & = & -r_{n-2^{s-2}} & = & r_{n-2^{s-1}} & = & -r_{n-3\cdot 2^{s-2}} & = & r_{n-2^s} \end{array}$$

and get the result.

Let
$$s \in \mathbb{N}_{\geq 2}$$
 and write $\mathcal{H}_s(x) = \sum_{n=2^s}^{\infty} R_s(n) x^n$, where
 $R_s(n) = \nu_2(r_n + 6r_{n-2^{s-1}} + r_{n-2^s})$

Then \mathcal{H}_2 satisfies the following Mahler type functional equation

$$P(x) + Q(x)\mathcal{H}_2(x) + R(x)\mathcal{H}_2(x^2) = 0,$$

where

$$\begin{split} P(x) &= x^4 (3+5x+9x^2+12x^3+9x^4+13x^5+12x^6+12x^7+8x^8+4x^9+7x^{10}+12x^{11}\\ &\quad +11x^{12}+13x^{13}+13x^{14}+12x^{15}+12x^{16}+13x^{17}+12x^{18}+12x^{19}+6x^{20}+4x^{21}\\ &\quad +9x^{22}+12x^{23}+11x^{24}+13x^{25}+10x^{26}+12x^{27}+11x^{28}+13x^{29}+13x^{30}+12x^{31}\\ &\quad +9x^{32}+8x^{33}+3x^{34})\\ Q(x) &= (x-1)(x+1)^2(x^4+1)(x^8+1)(x^{16}+1)(x^4+3x^2+1)\\ R(x) &= (x-1)(x+1)(x^4+1)(x^8+1)(x^{16}+1)(x^2+3x+1). \end{split}$$

Moreover, for $s \ge 3$ we have

$$\mathcal{H}_{s}(x) = \frac{1-x^{2^{s-2}}}{1-x}\mathcal{H}_{2}(x^{2^{s-2}}).$$

프 + + 프 +

э

Corollary 14

Let $s \in \mathbb{N}$. Then

 $R_{s+2}(2^{s}n) = R_{2}(n)$ and $R_{s+2}(2^{s}n-i) = R_{2}(n-1)$ for $i \in \{1, \dots, 2^{s}-1\}$

for $n \geq 5$.

▲臣▶ ▲臣▶ 臣 のへ⊙

Corollary 14

Let $s \in \mathbb{N}$. Then $R_{s+2}(2^{s}n) = R_{2}(n)$ and $R_{s+2}(2^{s}n-i) = R_{2}(n-1)$ for $i \in \{1, ..., 2^{s}-1\}$ for $n \ge 5$.

The form of the functional equation for \mathcal{H}_2 allows to deduce the following:

Corollary 15

For $s \in \mathbb{N}_{\geq 2}$ the series $\mathcal{H}_s(x)$ is transcendental over $\mathbb{Q}(x)$. In particular, the sequence $(R_s(n))_{n \in \mathbb{N}_{\geq 2^s}}$ is not periodic.

Let $n \in \mathbb{N}$ and denote by $inv_2(n)$ the number of occurrences of the word "10" as a scattered subsequence of the representation of n in base 2. For example $13 = 2^3 + 2^2 + 2^0 = (1101)_2$ and thus $inv_2(13) = 2$. Recently, Lafrance, Rampersad and Yee introduced the sequence $\mathbf{j} = (j_n)_{n \in \mathbb{N}}$, where

$$j_n = (-1)^{\mathsf{inv}_2(n)}$$

→ Ξ →

Let $n \in \mathbb{N}$ and denote by $inv_2(n)$ the number of occurrences of the word "10" as a scattered subsequence of the representation of n in base 2. For example $13 = 2^3 + 2^2 + 2^0 = (1101)_2$ and thus $inv_2(13) = 2$. Recently, Lafrance, Rampersad and Yee introduced the sequence $\mathbf{j} = (j_n)_{n \in \mathbb{N}}$, where

$$j_n = (-1)^{\mathsf{inv}_2(n)}$$

In the sequel the sequence $(j_n)_{n \in \mathbb{N}}$ will be called the LRY sequence for short. We have the following recurrence relation:

$$j_0 = 1$$
, $j_{2n} = t_n j_n$, $j_{2n+1} = j_n$,

where t_n is the *n*-th term of the PTM sequence.

Let $n \in \mathbb{N}$ and denote by $inv_2(n)$ the number of occurrences of the word "10" as a scattered subsequence of the representation of n in base 2. For example $13 = 2^3 + 2^2 + 2^0 = (1101)_2$ and thus $inv_2(13) = 2$. Recently, Lafrance, Rampersad and Yee introduced the sequence $\mathbf{j} = (j_n)_{n \in \mathbb{N}}$, where

$$j_n = (-1)^{\mathsf{inv}_2(n)}$$

In the sequel the sequence $(j_n)_{n \in \mathbb{N}}$ will be called the LRY sequence for short. We have the following recurrence relation:

$$j_0 = 1$$
, $j_{2n} = t_n j_n$, $j_{2n+1} = j_n$,

where t_n is the *n*-th term of the PTM sequence.

Defining now $J(x) := \sum_{n=0}^{\infty} j_n x^n$ it is possible to prove that J satisfies the following functional equation

$$J(x) + x(x-1)J(x^{2}) - (1+x^{4})J(x^{4}) = 0.$$

프 🖌 🛪 프 🛌

Lemma 16

Let $(j_n)_{n\in\mathbb{N}}$ be the LRY sequence. Then there is no $n\in\mathbb{N}$ such that $j_n=j_{n-1}=j_{n-2}$.

·문▶ · < 문▶ · ·

Ξ.

Lemma 16

Let $(j_n)_{n\in\mathbb{N}}$ be the LRY sequence. Then there is no $n\in\mathbb{N}$ such that $j_n=j_{n-1}=j_{n-2}.$

For $m \in \mathbb{N}_+$ let us write

$$\frac{1}{J(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

- ∢ ≣ ▶

э

Lemma 16

Let $(j_n)_{n\in\mathbb{N}}$ be the LRY sequence. Then there is no $n\in\mathbb{N}$ such that $j_n = j_{n-1} = j_{n-2}$.

For $m \in \mathbb{N}_+$ let us write

$$\frac{1}{J(x)^m}=\sum_{n=0}^{\infty}b_m(n)x^n.$$

Theorem 17

Let $s \in \mathbb{N}_{\geq 2}$. Then for $n \geq 2^s$ we have $\nu_2(b_{2^s-1}(n)) \in \{1,2\}$ and $\nu_2(b_{2^s-1}(n)) = \nu_2(L_s(n))$, where $L_s(n) := j_n + 6j_{n-2^{s-1}} + j_{n-2^s}$.

Let $s \in \mathbb{N}$ and write $\mathcal{J}_s(x) = \sum_{n=0}^{\infty} J_s(n)x^n$, where $J_s(n) = \nu_2(j_n + 6j_{n-2^{s-1}} + j_{n-2^s}).$

Then \mathcal{J}_i , i = 2, 3, satisfies the following Mahler type functional equations

$$P_i(x) + Q_i(x)\mathcal{J}_i(x) + R_i(x)\mathcal{J}_i(x^2) + S_i(x)\mathcal{J}_i(x^4) = 0,$$

where

$$\begin{split} P_1(x) =& x^6(x+1)(2x^{12}-2x^{11}+3x^{10}-3x^9+3x^8-2x^7+2x^6-2x^5+3x^4-2x^3+3x^2-3x+2) \\ P_2(x) =& x^9(x+1)(2x^{24}-2x^{23}+3x^{22}-3x^{21}+3x^{20}-3x^{19}+2x^{18}-2x^{17}+3x^{16}-2x^{15}\\ &+2x^{14}-2x^{13}+x^{12}+2x^8-2x^7+3x^6-3x^5+2x^4-x^3+1), \end{split}$$

and

$$\begin{array}{ll} Q_1(x) = x^2(x-1)(x^4+1)(x^8+1), & Q_2(x) = x(x-1)(x^8+1)(x^{16}+1), \\ R_1(x) = x^3(x^2-1)(x^8+1), & R_2(x) = x^2(x^2-1)(x^{16}+1), \\ S_1(x) = x^2(x-1)(x^4-1), & S_2(x) = x^2(x-1)(x^4-1). \end{array}$$

Moreover, the following relation is true:

$$\mathcal{J}_{s+2}(x) = (1+x^3)\mathcal{J}_s(x^4) + \frac{1}{2}x(x+1)(\mathcal{J}_{s+1}(x^2) + \mathcal{J}_{s+1}(-x^2)).$$

(本部) (本語) (本語) (一語)

Conjecture 1

Let $(\varepsilon_n)_{n\in\mathbb{N}} \in \{-1,1\}^{\mathbb{N}}$, $f(x) = \sum_{n=0}^{\infty} \varepsilon_n x^n$ and write $f(x)^{-m} = \sum_{n=0}^{\infty} b_m(n) x^n$ for $m \in \mathbb{N}_+$. Let us suppose that for each $N \in \mathbb{N}_+$ there are infinitely many $n \in \mathbb{N}$ such that $\varepsilon_n = \varepsilon_{n+1} = \ldots = \varepsilon_{n+N}$. Then for each $m \in \mathbb{N}_+$ we have

 $\limsup_{n\to+\infty}\nu_2(b_m(n))=+\infty.$

医下 利用下

Conjecture 1

Let $(\varepsilon_n)_{n\in\mathbb{N}} \in \{-1,1\}^{\mathbb{N}}$, $f(x) = \sum_{n=0}^{\infty} \varepsilon_n x^n$ and write $f(x)^{-m} = \sum_{n=0}^{\infty} b_m(n) x^n$ for $m \in \mathbb{N}_+$. Let us suppose that for each $N \in \mathbb{N}_+$ there are infinitely many $n \in \mathbb{N}$ such that $\varepsilon_n = \varepsilon_{n+1} = \ldots = \varepsilon_{n+N}$. Then for each $m \in \mathbb{N}_+$ we have

 $\limsup_{n\to+\infty}\nu_2(b_m(n))=+\infty.$

In fact we expect that the following strong statement is true:

Conjecture 2

Let $(\varepsilon_n)_{n\in\mathbb{N}} \in \{-1,1\}^{\mathbb{N}}$, $f(x) = \sum_{n=0}^{\infty} \varepsilon_n x^n$ and write $f(x)^m = \sum_{n=0}^{\infty} c_m(n) x^n$ for $m \in \mathbb{Z}$. Then there are infinitely many $m \in \mathbb{Z}$ (both positive and negative) such that

 $\limsup_{n\to+\infty}\nu_2(c_m(n))=+\infty.$

・ 戸 ト ・ ヨ ト ・ ヨ ト

We proved the boundedness of the 2-adic valuation of the coefficients of power series expansion of $R(x)^m$, where $m = 2, -2, 1 - 2^s, s \in \mathbb{N}_{\geq 2}$ and R(x) is the generating function for the RS sequence. Moreover, we also proved that the corresponding expressions for 2-adic valuations satisfy certain recurrence relations.

We proved the boundedness of the 2-adic valuation of the coefficients of power series expansion of $R(x)^m$, where $m = 2, -2, 1 - 2^s, s \in \mathbb{N}_{\geq 2}$ and R(x) is the generating function for the RS sequence. Moreover, we also proved that the corresponding expressions for 2-adic valuations satisfy certain recurrence relations.

In the remaining cases we expect that the following is true:

Conjecture 3

Let
$$m \in \mathbb{Z}$$
 and write $R(x)^m = \sum_{n=0}^{\infty} a_m(n)x^n$. If $m \neq 2, -2, 1-2^s, s \in \mathbb{N}_+$ then

$$\limsup_{n\to+\infty}\nu_2(a_m(n))=+\infty.$$

In case when $m = 2^k$ then we expect the more precise:

Conjecture 4

Let
$$k \in \mathbb{N}_{\geq 2}$$
 and write $g_k(n) = \nu_2(a_{2^k}(n)), G_k(x) = \sum_{n=0}^{\infty} g_k(n)x^n$. Then
 $P_k(x) + Q_k(x)G_k(x) + R_k(x)G_k(x^2) = 0,$

where

$$\begin{array}{ll} P_2(x) = x(2-x+x^2), & P_{k+1}(x) = (1+x^{2^k})P_k(x) + x(1-kx^{2^{k}-1}), \\ Q_2(x) = (x^2-1)(x^2-x+1), & Q_{k+1}(x) = (1+x^{2^k})Q_k(x) + (1-x^2)x^{2^k-1}, \\ R_k(x) = (1-x^2)x^{2^k-1}. \end{array}$$

・ロト・日本・日本・日本・日本・日本・日本

We proved boundedness of 2-adic valuations of the sequences $(b_{2^{s}-1}(n))_{n\in\mathbb{N}}$ corresponding to the RS sequence and the LRY sequence. We also know that a similar property holds for the PTM sequence. All these sequences are 2-automatic and come from some kinds of binary patterns.

∃ >

We proved boundedness of 2-adic valuations of the sequences $(b_{2^s-1}(n))_{n\in\mathbb{N}}$ corresponding to the RS sequence and the LRY sequence. We also know that a similar property holds for the PTM sequence. All these sequences are 2-automatic and come from some kinds of binary patterns.

This suggest the following general:

Problem 1

Let τ be a finite word on $\{0,1\}$ alphabet and $P_{\tau}(n)$ denotes the number of occurrences of the word τ (the scattered word τ) in the binary expansion of n. We define $\varepsilon_{\tau}(n) = (-1)^{P_{\tau}(n)}$ for $n \in \mathbb{N}$ and $f_{\tau}(x) = \sum_{n=0}^{\infty} \varepsilon_{\tau}(n) x^n$ and for $m \in \mathbb{Z}$ we put

$$f_{\tau}(x)^{m}=\sum_{n=0}^{\infty}c_{\tau,m}(n)x^{n}.$$

- **()** What conditions need τ to satisfy in order to get boundedness of the sequence $(\nu_2(c_{\tau,m}(n))_{n\in\mathbb{N}})$ for some $m\in\mathbb{Z}$?
- **(2)** What conditions need τ to satisfy in order to get boundedness of the sequence $(\nu_2(c_{\tau,1-2^s}(n))_{n\in\mathbb{N}})$ for all but finitely many $s \in \mathbb{N}$?

ヨト イヨト

We performed some numerical experiments and noted that for the patterns $\tau = 0,00,10,01$ it should be possible to prove similar results as in the case of the RS sequence, i.e., the sequence $(\nu_2(c_{\tau,1-2^s}(n)))_{n\in\mathbb{N}}$ is bounded. The bound seems to be: 2 for $\tau = 0$; 3 for $\tau = 00, 10$; and 4 for $\tau = 01$.

We performed some numerical experiments and noted that for the patterns $\tau = 0, 00, 10, 01$ it should be possible to prove similar results as in the case of the RS sequence, i.e., the sequence $(\nu_2(c_{\tau,1-2^s}(n)))_{n\in\mathbb{N}}$ is bounded. The bound seems to be: 2 for $\tau = 0$; 3 for $\tau = 00, 10$; and 4 for $\tau = 01$.

In case of patterns τ of length 3 the situation seems to be more complicated and we expect that for most $m \in \mathbb{Z}$ the sequence $(\nu_2(c_{\tau,m}(n)))_{n \in \mathbb{N}}$ is unbounded.

< ∃ →

Problem 2

Generalize the above results for $p \in \mathbb{P}_{>3}$.

∃ ► < ∃ ►</p>

æ

Problem 2

Generalize the above results for $p \in \mathbb{P}_{\geq 3}$.

Theorem 19

Let $p \in \mathbb{P}_{>3}$ and write

$$F_p(x) = \prod_{n=0}^{\infty} \frac{1}{1-x^{p^n}}$$

and for $m \in \mathbb{N}_+$

$$F_p(x)^m = \sum_{n=0}^{\infty} b_{m,p}(n) x^n.$$

Then for $s \in \mathbb{N}_+$ we have

$$\nu_p(b_{(p-1)(p^s-1),p}(n)) = 1$$

for $n \ge p^s$.

э

Thank you for your attention!

∢ 臣 ≯

æ