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Introduction

Let b ≥ 2 be an integer. Let x be a real number and denote its
base-b expansion by

x = bxc+ 0.ε1ε2ε3 . . .

with digits 0 ≤ εi ≤ b − 1.

Definition

A real number x is normal to base b ≥ 2 if all finite blocks of digits
occur with the expected frequency in its base b expansion.

For all k, for all digits d1, . . . , dk ,

1

N
#{i ≤ N : εiεi+1 . . . εi+k−1 = d1 . . . dk} −→

1

bk

as N →∞.

x is called absolutely normal if it is normal to all integer bases
b ≥ 2.
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Introduction

� Almost all numbers are (absolutely) normal.
(Borel, 1909)

� 0. 1 2 3 4 5 6 7 8 9 10 11 . . . is normal to base 10.
(Champernowne, 1933)

� 0. 2 3 5 7 11 13 17 . . . is normal to base 10.
(Copeland/Erdős, 1946)

� No algebraic number is known to be normal or not normal,
nor is any arithmetical constant known to be normal or not
normal.

� There is no easy example of an absolutely normal number.
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β-expansions

Let the base β > 1 be a real number. Every real x can be
represented in the form

x = bxc+ 0.ε1ε2ε3 . . .

= bxc+
∞∑
i=1

εiβ
−i

where the digits εi are integers 0 ≤ εi < β that are chosen in
increasing order of i as large as possible.
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A Pisot number is a real algebraic integer > 1, all of whose
conjugates lie in the unit disk. Integers ≥ 2 are usually included in
this definition.

There is a unique Tβ-invariant ergodic probability measure µβ on
[0, 1) of maximum entropy that is equivalent to the
Lebesgue-measure.

Definition

x is normal to base β, if (T n
β (x))n≥0 is uniformly distributed

modulo 1 with respect to µβ.

� There are various constructions of normal numbers to a given
base β by concatenating strings.
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Continued fractions

Any real number x has a continued fraction expansion of the form

x = [a0; a1, a2, a3 . . .]

where a0 = bxc ∈ Z and ai ∈ N for i ≥ 1.

The ai are obtained from x via ai (x) = b1/T i−1
G (x)c where

TG : [0, 1)→ [0, 1), x 7→ 1

x
mod 1 if x > 0, and 0 7→ 0,

is the Gauss map.
TG possesses a unique invariant ergodic measure µG = 1

log 2
dx
1+x of

maximum entropy.

Definition

x is called continued fraction normal, if (T n
G (x))n≥0 is uniformly

distributed modulo 1 with respect to µG .

E.g., concatenate the partial quotients of
1/2, 1/3, 2/3, 1/4, 2/4, 3/4, . . . (Adler/Keane/Smorodinsky)
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Constructions of absolutely normal numbers

Ergodic theorem: almost all real numbers are normal.

Constructions of absolutely normal numbers have been given by
Sierpinski, Turing, Schmidt, Levin, Becher/Figueira,
Becher/Heiber/Slaman.

There seems to be a trade-off between the time-complexity and
convergence to normality (DN → 0) of these algorithms.

Becher/Heiber/Slaman: polynomial time, but DN = O( 1
logN )

Sierpinski, Lebesgue, Turing: double-exp. time, but DN = O( 1
Nε )

for some small ε.
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Some preliminaries

A string of digits ω of length n is called (ε, k)-normal, if every word
d of length k appears at least n(1− ε)µ(d) and at most
n(1 + ε)µ(d) times in ω.

A real number x is called simply normal to base b, if all base-b
digits of x appear with the same asymptotic frequency.

Absolute normality is equivalent to simple normality to all bases.
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Sierpinski’s construction

Idea:

� Compute a nested sequence of binary intervals by iteratively
halving the previous interval and deciding which of the halves
is ‘best’:

� do so by successively computing a number in [0, 1) \ BN for N
increasing with the step of the algorithm where BN is an
approximation to B, the set of ‘bad’ numbers.

� This will produce a number in [0, 1) \ B, the set of all ‘good’
numbers.

B is the set of all non-(ε, k)-normal numbers.
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Becher, Heiber, Slaman’s construction

Idea:

� Successively concatenate (ε, k)-normal words to an increasing
set of bases simultaneously.

� Any concatenation of (ε, k)-normal words, subject to weak
conditions, will be normal.

� Cylinder intervals should be well-behaved.

Need to show explicitly that there is an abundance of (ε, k)-normal
words.

Adrian Scheerer Computable absolutely normal numbers 13/26



Some ergodic theory

Theorem (Equipartition)

Let T be an ergodic transformation on a probability space
(X ,B, µ). For any ε > 0 there is an n0 = n0(ε) such that for all
n ≥ n0 the set of cylinders of length n decomposes into two sets H
and L such that

µ(L) < ε

and for any cylinder c ∈ H

exp(−n(h(T )− ε)) < µ(c) < exp(−n(h(T ) + ε)).

� Ergodicity: If T−1(A) = A, then µ(A) ∈ {0, 1}.
� h(T ) is the entropy of T .

� A cylinder of length n is a subset of [0, 1) in which all
numbers have the same first n digits.
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Absolutely Pisot normal numbers

We call a real number absolutely Pisot normal, if it is normal to
each base β that is a Pisot number.

Theorem (with Manfred Madritsch and Robert Tichy)

There is an algorithm that uses only elementary operations to
compute an absolutely Pisot normal number.

Proof:

� Becher/Heiber/Slaman-construction of choosing
simultaneously to several bases long ’good’ blocks of digits.

� Explicit estimate for (ε, k)-normal numbers.

Levin has also given such a construction using exponential sums
estimates.
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For β-expansions:

� The digits are independent, if one looks at two digits that are
far enough away from each other.

� Admissible sequences are exactly sequences all of whose shifts
are lexicographically strictly less than the modified expansion
of 1.

� Inserting enough zeros in-between two words gives again an
admissible word. ‘Enough’ can be made explicit and depends
only on the base, not on the blocks.
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Non-(ε, k)-normal numbers for β-expansions

Fix a string d of k digits in base β, let Xi (x) = 1− µβ(c(d)) if d
appears in x at i-th position, and Xi (x) = −µβ(c(d)) if not.

Theorem (A. Siegel)

Let X = X1 + X2 + . . .+ Xk be the sum of k possibly dependent
random variables. Suppose that Xi , for i = 1, 2, . . . , k, is the sum
of ni mutually independent random variables having values in the
interval [0, 1]. Let E [Xi ] = nipi . Then for a ≥ 0

P(X − E [X ] ≥ a) < two explicit exponential terms (a, k , pi , ni )

Lemma (Madritsch, S., Tichy)

Let β be a Pisot number. The µβ-measure of the set of not
(ε, k)-normal words of length n satisfies

µβ(B(n, ε, k)) ≤ 4βkβ−ηn

for n ≥ M + k with explicit η > 0 and M.
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Absolutely continued fraction normal numbers

Theorem

There is an algorithm that uses only elementary operations to
compute an absolutely normal number that is also continued
fraction normal.

This gives a solution to a problem of Bugeaud and Queféllec .

Proof:

� Sierpinski’s construction.

� Explicit estimate for (ε, k)-normal numbers for continued
fractions.

Has already been greatly improved some weeks ago by Becher and
Yuhjtman, who could adapt Becher, Heiber and Slaman’s
polynomial algorithm.
In particular, they used that qn(x) ∼ enL a.e., where
L = π2/(12 log(2)).
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Non-(ε, k)-normal numbers for continued fraction
expansions

Fix a string d1 . . . dk of k positive integers.

Let Xi (x) be the normalized random variable that counts whether
or not the string d1 . . . dk appears in the continued fraction
expansion of x at position i .

The Xi are not independent, but they satisfy a mixing property that
can be derived from mixing properties of the partial quotients ai :

W. Philipp:
|µG (A ∩ B)− µG (A)µG (B)| ≤ ρnµG (A)µG (B) for all
A ∈ σ(a1, . . . , ak), B ∈ σ(ak+n, ak+n+1, . . .) for some 0 < ρ < 0.8.
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Theorem (F. Merlevède, M. Peligrad, E. Rio)

Let (Xi )i≥1 be a sequence of centered real-valued random variables
bounded by a uniform constant M and with αn(Xi ) satisfying
αn ≤ exp(−2nc) for some positive c. Then there is an explicit
positive constant C depending only on c such that for all n ≥ 4
and x ≥ 0

P(|X1 + . . .+ Xn| ≥ x) ≤ exp

(
− Cx2

nM2 + Mx(log n)(log log n)

)
.

Lemma

µG (BCF (ε, d1 . . . dk , n)) ≤ exp

(
−ηCF (ε, d1 . . . dk)

n

log n

)
for some explicit ηCF (ε,

−→
d ) > 0 and all n ≥ n0 = 2(k + 1).

This was only known explicitly with linear decay by Vandehey (not
enough for this application).
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Normal numbers and discrepancies

A sequence (xn)n≥0 of real numbers is called uniformly distributed
modulo 1 if for any interval I ⊆ [0, 1),

1

N
#{n ≤ N : xn mod 1 ∈ I} −→ λ(I )

as N →∞.

Wall (1949):
x is normal to base b if and only if (bnx)n≥0 is uniformly
distributed modulo 1.

The quantity

DN(xn) = sup
I⊆[0,1)

∣∣∣∣ 1

N
#{n ≤ N : xn mod 1 ∈ I} − λ(I )

∣∣∣∣
is called the discrepancy of (xn).
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Results on discrepancy

For N fixed: 1
N ≤ DN(xn) ≤ 1.

W. Schmidt (1972):
There is a positive absolute constant c such that for any
sequence DN ≥ c logN

N holds for infinitely many N.

Schiffer (1986):
The discrepancy of Champernowne’s and Copeland-Erdős’
numbers is Θ( 1

logN ).

Philipp (1974/75), Fukuyama (2013):

for almost all x : lim supN→∞
DN(b

nx)N1/2

(log logN)1/2
= c(b) > 0.

Levin (1979, 1999):

For b ≥ 2, he constructed x with DN(bnx) = O( (logN)2

N ),

and x such that DN(bnx) = Ob( (logN)3

N1/2 ) for all b ≥ 2.
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Absolutely normal numbers of low discrepancy

Theorem (with Verónica Becher and Theodore Slaman)

There is an algorithm that uses only elementary operations to
compute an absolutely normal number x in triple-exp. time, but

with DN(bnx) = O(
√
log logN√

N
), for all b ≥ 2.

Proof:

� Combine Sierpinski’s construction with estimates by Philipp
on the discrepancy of sequences of the form (bnx)n≥0.
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Thank you for your attention!
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