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Primes of the form 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐

Pierre de Fermat: An odd prime is expressible as 𝑝𝑝 = 𝑎𝑎2 + 𝑏𝑏2 if and only if 
𝑝𝑝 = 1 mod 4

(letter to Mersenne, December 25, 1640). Proof given by Euler (1752-55).

In that case, a+ib is a prime in the Gaussian integers Z[i], 𝑖𝑖 = −1. 

The representation is unique if we assume a>b>0.  

We can then find a unique angle 𝜃𝜃𝑝𝑝 ∈ 0, 𝜋𝜋
4

such that 𝑎𝑎 + 𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑒𝑒𝑖𝑖𝜃𝜃𝑝𝑝

Goal: understand the distribution of these Gaussian primes in the plane.



The angular distribution of Gaussian primes

Hecke (1918): The angles of Gaussian primes are uniformly distributed: For fixed 0 ≤ 𝛼𝛼 < 𝛽𝛽 < 𝜋𝜋/4
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Angular distribution (𝑎𝑎 + 𝑖𝑖𝑖𝑖)/√𝑝𝑝 of the 67 
primes 1000<p<2000, p=1 mod 4, a>b>0

Question: Are the Gaussian angles “random”? i.e. do the first N 
Gaussian angles have the same statistics as N random points in 0, 𝜋𝜋

4
?

“Random Points” – picked independently and uniformly in  0, 𝜋𝜋
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Deviation from randomness: Maximal gap

Claim: The arc  (0,1/√𝑋𝑋) does not contain any angle of a prime p<X. 
.
Proof: if 𝑝𝑝 = 𝑎𝑎2 + 𝑏𝑏2 ≤ 𝑋𝑋, 0 < 𝑏𝑏 < 𝑎𝑎 has angle 𝜃𝜃𝑝𝑝 close to zero 
then 
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Question: Are the Gaussian angles “random”? i.e. do the first N Gaussian angles have 
the same statistics as N random points in 0, 𝜋𝜋

4
?

“Random Points” – picked independently and uniformly in  0, 𝜋𝜋
4

Claim: The maximal gap between the first N angles is > 1
𝑁𝑁 log 𝑁𝑁

Compare: The maximal gap between N random angles is (log𝑁𝑁)/𝑁𝑁 almost surely     
- which is much smaller. 



Deviation from randomness: The minimal gap

The minimal gap between angles: For N random, independent uniform  𝜃𝜃1, … ,𝜃𝜃𝑁𝑁 ∈ [0, 𝜋𝜋
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For the Gaussian angles, we have “repulsion”: The minimal distance between the first N angles is ≈ 1
𝑁𝑁 log 𝑁𝑁
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Note that the average gap is 1/N



Level spacing distribution -numerics
P(s) :=limiting distribution of the normalized gaps δn between adjacent levels
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Let 𝐸𝐸1 < 𝐸𝐸2 < ⋯ < 𝐸𝐸𝑁𝑁 be the reordering of the first N angles {𝜃𝜃𝑝𝑝}

Spacings of 5000 random points 𝑃𝑃 𝑠𝑠 = exp(−𝑠𝑠)
Spacings between the 39174 angles 𝜃𝜃𝑝𝑝
𝑝𝑝 < 1,000,000



Small scale distribution of Gaussian angles

We look for prime angles in “short”  (shrinking) arcs. 
To have a good chance to find them, we need the length of the arc  to be a bit bigger than  
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#{𝑝𝑝 ≤ 𝑥𝑥,𝑝𝑝 = 1 mod 4}
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Moreover, we can ask if uniform distribution persists on shrinking arcs.
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Assuming GRH, uniform distribution holds for every arc of length      𝛽𝛽 − 𝛼𝛼 ≫ 𝑥𝑥−
1
2+𝑜𝑜(1)

Unconditionally, this holds with 1/2 replaced by 12/37=0.324… (Kubilius 1952, …, Maknys 1977), 
Harman & Lewis (2001) 0.381  (existence of angles, without equidistribution).

Hecke (1918): The angles of Gaussian primes are uniformly distributed: For fixed 0 ≤ 𝛼𝛼 < 𝛽𝛽 < 𝜋𝜋/4

Note: GRH gives sharp result, since we saw that the arc  (0,1/√𝑋𝑋) does not contain 
any angle of a prime p<X. 



Almost all short arcs contain an angle

Theorem (ZR & Waxman / Parzanchevski and Sarnak, 2017):  

Assuming GRH, almost all arcs of length (log 𝑥𝑥)3

𝑥𝑥
contain an  angle 𝜃𝜃𝑝𝑝, 𝑝𝑝 ≤ 𝑋𝑋.

Unconditionally, can get arcs of length 𝑥𝑥−(12+𝛿𝛿) for a suitable 𝛿𝛿 > 0 by using a zero-density theorem.

This is achieved by giving a bound on the variance of the number of angles in short arcs.  



The number variance
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Counting angles in a small arc: Divide [0, 𝜋𝜋
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] into K small arcs and ask how many of the N prime 
angles fall into each:
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Variance:

“Thm”: Assume GRH. Then 
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Assuming GRH, almost all arcs of length 1
𝐾𝐾

contain an angle 𝜃𝜃𝑝𝑝, 𝑝𝑝 ≤ 𝐾𝐾(log𝐾𝐾)3 .

Compare: For N random points, random
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Asymptotic for the variance ?

Conjecture: ,
logVar( ) ~ min(1,2 )
logK N
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Compare: For N random points, 
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Motivation for conjecture:

a) A random  matrix model: Express variance through 
zeros of a certain family of Hecke L-functions, then 
replace these zeros by eigenphases of a suitable 
ensemble of random matrices.

b) A function field analogue Data:  35241 angles of the Gaussian primes 108 < 𝑝𝑝 < 2 ∗ 108

random



A function field analogue

analogues:

integers Z ↔ polynomials Fq[T] 

primes p ↔  irreducible polynomial P(T)  (“prime”)

positive integer n>0 ↔  monic polynomial P(T)=Td+…. 

In both cases we have the Fundamental Theorem of Arithmetic – unique factorization 
into primes (prime polynomials). 
Prime Number Theorem ↔ Prime Polynomial Theorem

Sums of two squares 𝑝𝑝 = 𝑎𝑎2 + 𝑏𝑏2 ↔  polynomials 𝑃𝑃 𝑇𝑇 = 𝐴𝐴2 + 𝑇𝑇𝐵𝐵2

Gaussian integers ↔ 𝐅𝐅𝑞𝑞[ −𝑇𝑇 ]

Fq[T]= polynomials f(T) = a0+a1T+a2T2+....+adTd ,   with coefficients ai εFq

Advantage of Fq[T]  : Can take q→∞



Analogue of Gaussian integers
𝐅𝐅𝑞𝑞[ −𝑇𝑇] Euclidean domain, equipped with Galois conjugation 𝜎𝜎 𝑓𝑓 (𝑆𝑆) ≔ 𝑓𝑓(−𝑆𝑆)
and norm:   Norm 𝑓𝑓 ≔ 𝑓𝑓 ⋅ 𝜎𝜎 𝑓𝑓 ∈ 𝐅𝐅𝑞𝑞 [𝑇𝑇]

analogue of the unit circle 𝑆𝑆1 = {𝑧𝑧 ∈ 𝐂𝐂 ∶ �𝑧𝑧 𝑧𝑧 = 1}
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Sums of two squares in 𝐅𝐅𝒒𝒒 𝑇𝑇
A monic irreducible 𝑃𝑃 𝑇𝑇 ∈ 𝐅𝐅𝑞𝑞 𝑇𝑇 , coprime to T, is of the form 𝑃𝑃 𝑇𝑇 = 𝐴𝐴 𝑇𝑇 2 + 𝑇𝑇𝑇𝑇 𝑇𝑇 2 if 
and only if 𝑃𝑃 0 is a square in 𝐅𝐅𝑞𝑞

Equivalently,    
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Counting Gaussian prime polynomials in sectors
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Variance in polynomial sectors
Theorem : As 𝑞𝑞 → ∞, the number variance is
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This matches our conjecture over the integers:
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Picking out directions in sectors
Main tool – “super-even” Dirichlet characters modulo  𝑆𝑆2𝜅𝜅 , 𝑆𝑆 = −𝑇𝑇
Definition: A Dirichlet character modulo 𝑆𝑆2𝜅𝜅 is a homomorphism 

2[ ] / ( ): ( )q S S κχ × ×→
It is “even” if it is trivial on the scalars 𝐅𝐅𝑞𝑞∗
It is “super even” if in addition it is trivial on the subgroup of even polynomials 
{f(S)=f(-S) modulo 𝑆𝑆2𝜅𝜅} 

There are exactly 𝐾𝐾 = 𝑞𝑞𝜅𝜅 super-even characters modulo 𝑆𝑆2𝜅𝜅

Key fact: For a polynomial 𝑓𝑓 = 𝐴𝐴2 + 𝑇𝑇𝐵𝐵2, the direction 𝑈𝑈 𝑓𝑓 ≔ 𝐴𝐴+ −𝑇𝑇𝐵𝐵
𝐴𝐴− −𝑇𝑇𝐵𝐵
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lies in the sector Sect(𝑢𝑢, 𝑘𝑘 ) if and only if 
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The L-function for a super-even character

The L-function associated to χ :    for 
Re(s)>1
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Norm  of a polynomial:  ||f||:=#Fq[S]/(f)=qdeg(f)   ( analogy: for 0≠nεZ, |n|=#Z/nZ )

If χ is nontrivial (“primitive”) character modulo 𝑇𝑇2𝜅𝜅 then

• L(s, χ) is a polynomial in q-s  of degree 2𝜅𝜅 − 1

• If χ is “even” then there is a trivial zero at s=0

• RH (Weil, 1940’s): All non-trivial zeros lie on Re(s)=1/2 
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Θ(χ) = unitary mxm matrix, m= 2κ-2,   called the “unitarized Frobenius matrix”

1/2( , ) (1 ) det( )ssL s q I q χχ − −= − − Θ⋅



The variance via super-even characters
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N.M. Katz (2016): As 𝑞𝑞 → ∞, the unitarized Frobenius classes {Θχ:𝜒𝜒 super even mod 𝑆𝑆2𝜅𝜅 }
become uniformly distributed in the unitary symplectic group USp(2κ-2)  
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Theorem: as 𝑞𝑞 → ∞
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Summary
The angles associated to representations of primes as 𝑝𝑝 = 𝑎𝑎2 + 𝑏𝑏2 exhibit randomness on 
global scale, but deviations on shorter scales.

In particular we predict that the number variance in short arcs exhibits: 

- Poissonian statistics for very short arcs, 

- Random Matrix Theory statistics for medium-sized arcs

We develop a function field analogue where we prove
the corresponding statements in the large finite field limit
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