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1. Classical results

Notation: ¥(x) = S_'A(n), A(n) =

n<x 0 otherwise.

{logp if n=p",

0= L0+ ivy=1—4¢+ iy: non-trivial zeros of {(s), s = o + it,
0 = sup Re 0, € > 0 arbitrarily small, fixed constant.

Riemann—Von Mangoldt prime number formula (1895):

A(x) =9P(x) —x=— X—: — % — % log(1 — x72)
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Oscillation “caused” by a single zero o = oy is large if
(i) Bo is large (in particular near to 1)

(ii) |70 is small (compared to x)

Phragmén (1891) A(x) = Q(xP0=¢) for any € > 0
Von Koch (1903) A(x) = O(y/xlog” x) on RH
Littlewood (1914) A(x) = Q(v/x loglog log x)
(x) = O(x

Koch's method yields A(x) = O(x? log? X)
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2. Semi-classical results and consequences of classical
results

A) Lower estimates of

X

(21)  S(x)=max|A(u)| and D(x) = %/]A(u)\du

in terms of a single zero o by Turan's power sum method
Turan (1950): If x > c(go) then

(2.2) S(x) > x" exp(— log x logs x/ log, x).

Knapowski (1959): If x > c(go) then

(2.3) S(x) > xP exp(— log x / @)
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The corresponding consequence for the oscillation of A(x) is

Bo
(2.4) |A(x,)| > (C - 5)‘2’ | for a suitable x, — oo
0

with C =1 (Pintz 1980) and later C = 7/2 (S. G. Révész
1988).
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B) The case 6 < 1 is simple (e.g. § = 1/2 <= RH)

Namely,
¢ = inf {¥; A(x)=O0(x")} =6

follows from Phragmén's theorem and A(x) = O(x’ log” x).

However, for § = 1 this implies only A(x) = Q(x*~¢) and the
trivial A(x) = O(x**9).
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C) Size of |A(x)]| in dependence of all zeros (§ = 1)
Theorem (Ingham, 1932)

Suppose ((s) # 0 for o > 1 — n(t) where
@5 o€ ClLoo). (1) <0, = 0lloge)

n'(t) >0 as t — oo,
wy(x) = lgﬁ(n(t) log x + log t).

Then

(2.8) A(x) < xe~ (/2=
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Most important special case of Ingham'’s theorem. If

a1

(29) C(s)#O for O'>].—|og—at, t> 1t
then
(2.10) A(x) < xexp (—cz(a) log!/(++) x) :

Turan (1950): The conversion (2.10) = (2.9) is true.

Stas (1960/61): Worked out this more explicitly but the
zero-free region obtained after the conversion was cca. 1/80
times smaller.

Pintz (1980): for rather general domains one can obtain a
conversion up to a factor (1 + ox(1)) in the domain and in the
exponent in (2.10), respectively.
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3. Problems

(i)
(ii)
(iii)

(iv)

Are the conditions for 7(t) necessary?
Is the estimate (2.8) optimal? (1/2 in the exponent)

If we have an upper estimate for |A(x)| for all large x can
we infer a zero-free region?

If the answer for (iii) is yes, can we obtain back essentially
the same zero-free region?

If we only know an upper estimate for D(x) instead of
S(x) (cf. (iii)) do we obtain a zero-free region?

Is it necessary to use a zero-free region?
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Answers
(i) The conditions for n(t) can be significantly eased (Pintz
1980).
(ii) 1/2 can be replaced by 1 in (2.8) (Pintz, 1980).
(iii) YES, one can obtain a zero-free region, which is, however

smaller by a factor 1/80 (Turan, 1950, Stas, 1961).
(iv) YES (Pintz, 1980).
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4. GOALS

|. To obtain a function w(x) which depends in a (relatively)
simple way on the distribution of ALL zeta-zeros (cf. (vi)) and
which describes the behaviour of S(x) and D(x).

[I. If we obtain such a function, then the further problem
might be answered: are S(x) and D(x) of similar size?
Key point in answers of | and II: Let

W(x) := max — : the contribution of the dominant zero.
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5. Results and methods

. X
Notation: w(x) = log —— =

W) Qrggwo(d log x + log )

Theorem 1. log ~ log ~ w(x) as x = 0.

S(x) 7 D(x)

This includes

Theorem 2. A(x) < xe~(1=e)w(),
Theorem 3. S(x) > D(x) > xe~(1+e)w(),
Corollary

A(x) = Q(xe~+e)w0)),
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Main tools of the proof

(i) A density theorem for the zeta-zeros (first such theorem,
due to Carlsson (1920) is sufficient).

(i) Any zero-free region of type (e.g. Chudakov 1938:

a=3/4+¢)
>1 ¢ ith some a <1
o - Wi « .
log™(|t] + 2)
Cloglogt
(The minimum is near to o > 1 — %, t > ty, due
og

to Littlewood, 1922.)

(iii) Turan's power sum method.
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Sketch of proof of Theorem 2
A(x) < xe= (1790 for x > xo(e).

We restrict ourselves to the more difficult case § = 1. Let
e =¢/6.

1
Z Z — < oxt ™ log® x < Zxe ).
1] 2

B<1—¢’
[v[<x

We will use Carlson's density theorem (1920):

N1-€,T)= Y 1< T%,

Bz1—e' |v|<T
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This implies

B
X 4ne’ X
— <KL, e max oz xtloz~
en<y<entl e og x+logy
B>1—¢ -
e"<~/§e"+1

X

e
<e ™ max

enc~<entl (dlogx+logy)(1-5¢") "

Summing over all n we obtain Theorem 2.
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Sketch of proof of Theorem 3
D(x) > xe= (0 for x > xo(e).

This will follow in the crucial case # = 1 from the following
Theorem 4. Let 0 < e < a, ((00) =C(1 — 6o+ iv) =0

(70 > 0), do < 2. For x > 7/*" we have

X

D(x) > / A(u)|du >

X17€60’70_6

1 XBO
(x®%)* 70
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Notation: L =logx, w = doL + logyo, o =% <20 p will
be a real number, to be chosen later with

€ [L—6e1w, L — Berw] = [L(1 — 6e1x), L(1 — 5e1av)],

M = bejap € [4eyw, bew], k = Se2a = e1 M.
This implies w > VL > C81_5, k > C€1_3.
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We will use two identities:

[e.e]

/A(u):u( “du) = C( s)+ P H(s) (o >1),

1

BZ
As2+Bs
e sgmen ().

()

3
—
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These imply our basic identity

_ A 1 ks24pus
U=U(u) = o / H(s + oo)e ds
(2
1 OOA(u) (u — log u)? p—logu
N / utreo P ( 4k ot T )
1
er—M  gutM 00
U= (/1 + (/2 + (/3 = d/p + J/P + d/p .
1 en—M en+M

It is easy to show that

19/22



20

M2 M

(i) Uy, Us < e /> (negligible) because YT > w;

|A(u)|du, because

1leqw\ 1150
. Yo [ €
U < =
) vl < 2 (=)

w—M>1lgw,
p+ M < L=logx;
(i) Up =) eklemeo+ule—e) 4 O(e);
o
(iv) U= Ey(p) + O(e™) :=
Z exp {5cTau(o — 00)* + (0 — o)} + O(e™).

ly—ol<ert
B>1-2a

Xe—llslw
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Crucial result to use:
Turan's second main theorem (continuous form):

Ifa,d >0, ay,...,a, € C, Rea; = 0. Then

n
§ eOé,'t
i=1

(oY
= \8e (=9

maX
a<t<a+d

The lower estimate depends strongly on n. Using Vinogradov's
method to estimate ((s) near the line 0 = 1 we obtain by
Jensen's inequality for the number of terms

1/3

11
n < ce;log —aPw.
a
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This yields to
Ex(p) > e, |U(p)| > e /2
and finally to

Bo

1 X
D(x) > + / A)|du > e
X

Yo

Xe—EW
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