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1. Classical results

Notation: ψ(x) =
∑′
n≤x

Λ(n), Λ(n) =

{
log p if n = pm,

0 otherwise.

% = β + iγ = 1− δ + iγ: non-trivial zeros of ζ(s), s = σ + it,
θ = supRe %, ε > 0 arbitrarily small, fixed constant.

Riemann–Von Mangoldt prime number formula (1895):

∆(x) := ψ(x)− x = −
∑ x%

%
− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2)
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Oscillation “caused” by a single zero % = %0 is large if

(i) β0 is large (in particular near to 1)

(ii) |γ0| is small (compared to x)

Phragmén (1891) ∆(x) = Ω(xβ0−ε) for any ε > 0

Von Koch (1903) ∆(x) = O
(√

x log2 x
)
on RH

Littlewood (1914) ∆(x) = Ω
(√

x log log log x)

Koch’s method yields ∆(x) = O(xθ log2 x)
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2. Semi-classical results and consequences of classical
results

A) Lower estimates of

(2.1) S(x) = max
u≤x
|∆(u)| and D(x) =

1
x

x∫
0

|∆(u)|du

in terms of a single zero %0 by Turán’s power sum method

Turán (1950): If x > c(%0) then

(2.2) S(x) > xβ0 exp
(
− log x log3 x/ log2 x

)
.

Knapowski (1959): If x > c(%0) then

(2.3) S(x) > xβ0 exp
(
− log x

/ √
log2 x

)
.
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The corresponding consequence for the oscillation of ∆(x) is

(2.4)
∣∣∆(xn)

∣∣ > (C − ε)
xβ0
n

|%0|
for a suitable xn →∞

with C = 1 (Pintz 1980) and later C = π/2 (S. G. Révész
1988).
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B) The case θ < 1 is simple (e.g. θ = 1/2⇐⇒ RH)

Namely,
θ′ := inf

{
ϑ; ∆(x) = O(xϑ)

}
= θ

follows from Phragmén’s theorem and ∆(x) = O(xθ log2 x).

However, for θ = 1 this implies only ∆(x) = Ω(x1−ε) and the
trivial ∆(x) = O(x1+ε).

6 / 22



7

C) Size of |∆(x)| in dependence of all zeros (θ = 1)

Theorem (Ingham, 1932)

Suppose ζ(s) 6= 0 for σ > 1− η(t) where

η(t) ∈ C 1[1,∞), η′(t) ≤ 0,
1
η(t)

= 0(log t),(2.5)

η′(t)→ 0 as t →∞,(2.6)

ωη(x) := inf
t≥1

(
η(t) log x + log t

)
.(2.7)

Then

(2.8) ∆(x)� xe−(1/2−ε)ωη(x).
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Most important special case of Ingham’s theorem. If

(2.9) ζ(s) 6= 0 for σ > 1− c1

logα t
, t > t0

then

(2.10) ∆(x)� x exp
(
−c2(α) log1/(1+α) x

)
.

Turán (1950): The conversion (2.10) =⇒ (2.9) is true.

Stás (1960/61): Worked out this more explicitly but the
zero-free region obtained after the conversion was cca. 1/80
times smaller.

Pintz (1980): for rather general domains one can obtain a
conversion up to a factor (1 + ox(1)) in the domain and in the
exponent in (2.10), respectively.

8 / 22



9

3. Problems

(i) Are the conditions for η(t) necessary?
(ii) Is the estimate (2.8) optimal? (1/2 in the exponent)
(iii) If we have an upper estimate for |∆(x)| for all large x can

we infer a zero-free region?
(iv) If the answer for (iii) is yes, can we obtain back essentially

the same zero-free region?
(v) If we only know an upper estimate for D(x) instead of

S(x) (cf. (iii)) do we obtain a zero-free region?
(vi) Is it necessary to use a zero-free region?
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Answers

(i) The conditions for η(t) can be significantly eased (Pintz
1980).

(ii) 1/2 can be replaced by 1 in (2.8) (Pintz, 1980).
(iii) YES, one can obtain a zero-free region, which is, however

smaller by a factor 1/80 (Turán, 1950, Stàs, 1961).
(iv) YES (Pintz, 1980).
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4. GOALS

I. To obtain a function ω(x) which depends in a (relatively)
simple way on the distribution of ALL zeta-zeros (cf. (vi)) and
which describes the behaviour of S(x) and D(x).

II. If we obtain such a function, then the further problem
might be answered: are S(x) and D(x) of similar size?

Key point in answers of I and II: Let

W (x) := max
%;γ>0

xβ

γ
: the contribution of the dominant zero.
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5. Results and methods

Notation: ω(x) = log
x

W (x)
= min

%;γ>0
(δ log x + log γ)

Theorem 1. log
x

S(x)
∼ log

x

D(x)
∼ ω(x) as x →∞.

This includes

Theorem 2. ∆(x)� xe−(1−ε)ω(x).

Theorem 3. S(x) > D(x)� xe−(1+ε)ω(x).

Corollary

∆(x) = Ω(xe−(1+ε)ω(x)).
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Main tools of the proof

(i) A density theorem for the zeta-zeros (first such theorem,
due to Carlsson (1920) is sufficient).

(ii) Any zero-free region of type (e.g. Chudakov 1938:
α = 3/4 + ε)

σ > 1− c

logα(|t|+ 2)
with some α < 1.

(The minimum is near to σ > 1− C log log t
log t

, t > t0, due

to Littlewood, 1922.)
(iii) Turán’s power sum method.
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Sketch of proof of Theorem 2

∆(x) ≤ xe−(1−ε)ω(x) for x > x0(ε).

We restrict ourselves to the more difficult case θ = 1. Let
ε′ = ε/6.

∑
1

=
∑

β≤1−ε′
|γ|≤x

xβ

|γ|
≤ cx1−ε′ log2 x ≤ 1

2
xe−ω(x).

We will use Carlson’s density theorem (1920):

N(1− ε′,T ) :=
∑

β≥1−ε′,|γ|≤T

1�ε T
4ε′ .
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This implies∑
β>1−ε′

en<γ≤en+1

xβ

γ
�ε e4nε′ max

en<γ≤en+1

x

eδ log x+log γ

≤ e−nε
′

max
en<γ≤en+1

x

e(δ log x+log γ)(1−5ε′) .

Summing over all n we obtain Theorem 2.
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Sketch of proof of Theorem 3

D(x) ≥ xe−(1+ε)ω(x) for x > x0(ε).

This will follow in the crucial case θ = 1 from the following

Theorem 4. Let 0 < ε < a, ζ(%0) = ζ(1− δ0 + iγ0) = 0
(γ0 > 0), δ0 < ε10. For x > γ

1/ε10

0 we have

D(x) ≥ 1
x

x∫
x1−εδ0γ−ε0

|∆(u)|du ≥ 1
(xδ0γ0)ε

· x
β0

γ0
.
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Notation: L = log x , ω = δ0L + log γ0, α = ω
L
< 2ε10. µ will

be a real number, to be chosen later with

µ ∈ [L− 6ε1ω, L− 5ε1ω] =
[
L(1− 6ε1α), L(1− 5ε1α)

]
,

M = 5ε1αµ ∈ [4ε1ω, 5ε1ω], k = 5ε2
1αµ = ε1M .

This implies ω ≥ c
√
L ≥ cε−5

1 , k ≥ cε−3
1 .
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We will use two identities:
∞∫

1

∆(u)
d

du
(u−sdu) =

ζ ′

ζ
(s) +

s

s − 1
=: H(s) (σ > 1),

1
2πi

∫
(2)

eAs
2+Bsds =

1
2(πA)1/2 exp

(
−B2

4A

)
.
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These imply our basic identity

U = U(µ) :=
1
2πi

∫
(2)

H(s + %0)eks
2+µsds

=
1

2
√
πk

∞∫
1

∆(u)

u1+%0
exp
(
−(µ− log u)2

4k

)(
−%0 +

µ− log u
2k

)
du

U := U1 + U2 + U3 :=

eµ−M∫
1

+

eµ+M∫
eµ−M

+

∞∫
eµ+M

.

It is easy to show that
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(i) U1,U3 ≤ e−ω/5 (negligible) because
M2

4k
=

M

4ε1
> ω;

(ii) |U2| ≤
γ0

ε1

(
e11ε1ω

x

)1+β0
x∫

xe−11ε1ω

|∆(u)|du, because

µ−M ≥ 11ε1ω,
µ + M ≤ L = log x ;

(iii) U2 =
∑
%

ek(%−%0)2+µ(%−%0) + O(e−ω);

(iv) U2 = E2(µ) + O(e−ω) :=∑
|γ−γ0|≤ε−1

1
β≥1−2α

exp
{
5ε2

1αµ(%− %0)2 + (%− %0)µ
}

+ O(e−ω).
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Crucial result to use:

Turán’s second main theorem (continuous form):

If a, d > 0, α1, . . . , αn ∈ C , Re α1 = 0. Then

max
a≤t≤a+d

∣∣∣∣ n∑
i=1

eαi t

∣∣∣∣ ≥
(

1
8e
(
a+d
a

))n

.

The lower estimate depends strongly on n. Using Vinogradov’s
method to estimate ζ(s) near the line σ = 1 we obtain by
Jensen’s inequality for the number of terms

n ≤ cε−1
1 log

1
α
α1/3ω.
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This yields to

E2(µ) ≥ e−ε1ω, |U(µ)| ≥ e−ε1ω
/
2

and finally to

D(x) ≥ 1
x

x∫
xe−εω

|∆(u)|du ≥ e−εω
xβ0

γ0
.
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