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Introduction

Let χ be a non-principal character modulo q, and define

M(χ) := max
t

∣∣∣∣∣∣
∑
n≤t

χ(n)

∣∣∣∣∣∣ .

Trivial Bound: M(χ) ≤ q.

Theorem (Pólya, Vinogradov 1918)

M(χ)� √q log q.
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M(χ) := max
t

∣∣∣∣∣∣
∑
n≤t

χ(n)

∣∣∣∣∣∣ .
Theorem (Montgomery and Vaughan, 1977)

Assume the Generalized Riemann Hypothesis GRH. Then

M(χ)� √q log log q.

Theorem (Paley, 1932)

There exist infinitely many q ≥ 1 such that

M (χq)� √q log log q,

where χq is the quadratic character
(
·
q

)
.
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Theorem (Granville and Soundararajan, 2007)

Assume GRH. Let χ be a primitive character modulo q. Then

M(χ) ≤


(

2eγ

π
+ o(1)

)
√
q log log q if χ is odd (χ(−1) = −1),

(
2eγ

π
√

3
+ o(1)

)
√
q log log q if χ is even (χ(−1) = 1).

Theorem (Granville and Soundararajan, 2007)

Let q be large. There exist primitive characters χ1, χ2 modulo q, such that
χ1 is odd, χ2 is even and

M(χ1) ≥
(
eγ

π
+ o(1)

)
√
q log log q,

and

M(χ2) ≥
(

eγ

π
√

3
+ o(1)

)
√
q log log q.
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M(χ) := max
t

∣∣∣∣∣∣
∑
n≤t

χ(n)

∣∣∣∣∣∣ .
Granville and Soundararajan’s Conjecture

Let χ be a primitive character modulo q. Then

M(χ) ≤


(
eγ

π
+ o(1)

)
√
q log log q if χ is odd,(

eγ

π
√

3
+ o(1)

)
√
q log log q if χ is even.

Bober, Goldmakher, Granville and Koukoulopoulos (2014)

Studied the distribution of M(χ) as χ varies among non-principal
characters modulo a large prime q.

Their results give strong evidence for the Granville-Soundararajan
conjecture.
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Application to the least quadratic non-residue

np is the least quadratic non-residue modulo p.

Burgess (1966): np � p
1

4
√
e
+o(1)

.

Vinogradov’s conjecture: np �ε p
ε.

GRH =⇒ np

{
� log2 p (Ankeny, 1950),

≤ log2 p (L., Li and Soundararajan, 2015).

Montgomery (1971): Assume GRH. There exist infinitely many p for
which np � log p log log p. He also conjectured that this is best
possible.
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M(χ) := max
t

∣∣∣∣∣∣
∑
n≤t

χ(n)

∣∣∣∣∣∣ .
The Pólya-Vinogradov inequality

M(χ) ≤ C0
√
q log q.

Theorem (Bober and Goldmakher, 2016)

Best known C0 (Hildebrand) =⇒ Burgess’s bound for np.

C0 → 0 as q →∞ =⇒ Vinogradov’s conjecture.

Granville and Soundararajan’s Conjecture for M(χ) =⇒

np � (log p)1.37+ε.
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Even order character sums

Theorem (Paley, 1932)

There exist infinitely many quadratic characters χq such that

M (χq)� √q log log q.

Is this also the case for higher order character sums?

Theorem (Granville and Soundararajan, 2007)

Assume GRH. Let k ≥ 1. There exist infinitely many positive integers q
and primitive characters χ (mod q) of order 2k such that

M (χ) ≥ Ck
√
q log log q.

Theorem (Goldmakher and L., 2014)

The previous theorem holds unconditionally.
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Theorem (Goldmakher and L., 2014)

Let k ≥ 1. There exist infinitely many positive integers q and primitive
characters χ (mod q) of order 2k such that

M (χ) ≥ Ck
√
q log log q.

In both results we have Ck → 0 as k →∞.

Goldmakher and L. (2014):

Ck =
1

π
√
pk

+ o(1),

where pk is the smallest prime such that pk ≡ 2k + 1 (mod 4k).

In both results the order 2k is fixed.
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L. (2017)

We obtain the best possible (conjectured) values for the constant Ck

(depending on the parity of χ).

We allow the order 2k →∞ as q →∞, uniformly in a certain range.

Theorem (L., 2017)

Let A ≥ 1 be fixed and Q be large. Let 1 ≤ k ≤ (logQ)A. There exists an
odd character χ of order 2k and conductor q ≤ Q, such that

M(χ) ≥
(
eγ

π
+ o(1)

)√
Q log logQ.

Moreover, there exist an even character χ of order 2k , and conductor
q ≤ Q, such that

M(χ) ≥
(

eγ

π
√

3
+ o(1)

)√
Q log logQ.
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Odd order character sums

Granville and Soundararajan (2007)

Both the Pólya-Vinogradov and the Montgomery-Vaughan bounds can be
improved for characters of a fixed odd order!

g ≥ 3 is a fixed odd integer.

δg := 1− g
π sin π

g > 0.

Theorem (Granville and Soundararajan, 2007)

Let χ (mod q) be a primitive character of odd order g . Then

M(χ)�g ,ε
√
q(log q)1−δg/2+ε.

Moreover, if we assume GRH, then

M(χ)�g ,ε
√
q(log log q)1−δg/2+ε.
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Theorem (Goldmakher, 2012)

Let χ (mod q) be a primitive character of odd order g . Then

M(χ)�g ,ε
√
q(log q)1−δg+ε.

Moreover, if we assume GRH, then

M(χ)�g ,ε
√
q(log log q)1−δg+ε.

Theorem (Goldmakher, 2012)

Assume GRH. There exist infinitely many primitive characters
χ (mod q) of order g satisfying
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Further improvements: L. and Mangerel (2017+)

logj is the j-th iterate of the logarithm function.

Theorem (L. and Mangerel, 2017+)

For any primitive character χ (mod q) of order g we have

M(χ)�ε
√
q (log q)1−δg (log log q)−

1
4
+ε.

The occurrence of ε in the exponent of log2 q is a consequence of the
possible existence of Siegel zeros. In particular, if Siegel zeros do not
exist then the (log2 q)ε term can be replaced by (log3 q)O(1).

This bound is the limit of the Granville-Soundararajan method.

Theorem (L. and Mangerel, 2017+)

Assume GRH. For any primitive character χ (mod q) of order g we have

M(χ)� √q (log2 q)1−δg (log3 q)−
1
4 (log4 q)O(1) .
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Theorem 1 (L. and Mangerel, 2017+)

Let χ (mod q) be a primitive character of order g . Then

M(χ)�ε
√
q (log q)1−δg (log log q)−

1
4
+ε.

Moreover, if we assume GRH, then

M(χ)� √q (log2 q)1−δg (log3 q)−
1
4 (log4 q)O(1).

L. and Mangerel (2017+): The conditional upper bound is best possible!

Theorem 2 (L. and Mangerel, 2017+)

There are arbitrarily large q and primitive characters χ (mod q) of order g
such that

M(χ)� √q (log2 q)1−δg (log3 q)−
1
4 (log4 q)O(1) .
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Key ingredients in the proofs of Theorems 1 and 2

χ is a primitive Dirichlet character modulo q.

e(x) := e2πix .

τ(χ) :=
∑q

n=1 χ(n)e
(
n
q

)
is the Gauss sum. Note that |τ(χ)| =

√
q.

Pólya’s Fourier expansion (1918)∑
n≤αq

χ(n) =
τ(χ)

2πi

∑
1≤|n|≤q

χ(n)

n
(1− e (−αn)) + O (log q) .

M(χ)� √q max
α∈[0,1]

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)e(nα)

n

∣∣∣∣∣∣+ log q � √q log q.

Improving the Pólya-Vinogradov inequality ⇐⇒ Obtaining non-trivial
information on the exponential sum

∑
1≤|n|≤q

χ(n)e(nα)
n , for α ∈ [0, 1].
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The input of GRH: Approximation by exponential sums
over friable integers

P(n) is the largest prime factor of n, with P(1) = 1.

n is y -friable if P(n) ≤ y .

Montgomery-Vaughan (1977), Granville-Soundararajan (2007)

Assume GRH. For all α ∈ [0, 1] we have∑
n≤q

χ(n)

n
e(nα) =

∑
n≤q

P(n)≤(log q)20

χ(n)

n
e(nα) + o(1).

Conditionally on GRH, we deduce

M(χ)� √q
∑
n≤q

P(n)≤(log q)20

1

n
� √q exp

 ∑
p≤(log q)20

1

p

� √q log log q.
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Exponential sums with Dirichlet characters

The circle method

Approximate α ∈ [0, 1] by rationals.

α lies in a major arc if α ≈ b
m with m small (m ≤ (log q)A).

Otherwise α lies in a minor arc.

Montgomery-Vaughan (1977)

If α lies in a minor arc, then
∑

1≤|n|≤q

χ(n)e(nα)

n
is small.

Granville-Soundararajan (2007)

If α ≈ b
m lies in a major arc, then there is N = N(α, q, b,m) such that

∑
1≤|n|≤q

χ(n)

n
e(nα) ≈

∑
1≤|n|≤N

χ(n)

n
e

(
n
b

m

)
.
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The case α = b/m ∈ Q

∑
1≤|n|≤N

χ(n)

n
e

(
n
b

m

)
=

∑
a mod m

e

(
ab

m

) ∑
1≤|n|≤N
n≡a mod m

χ(n)

n

=
1

φ(m)

∑
ψ mod m

( ∑
a mod m

ψ(a)e

(
ab

m

)) ∑
1≤|n|≤N

χ(n)ψ(n)

n
.

The bracketed sum τ̃(ψ, b) =
∑

a mod m ψ(a)e(ab/m) is a Gauss sum.
In particular, |τ̃(ψ, b)| ≤

√
m.

The only characters ψ that contribute to the sum are those of
opposite parity to χ. Indeed

∑
1≤|n|≤N

χ(n)ψ(n)

n
= (1− χ(−1)ψ(−1))

∑
n≤N

χ(n)ψ(n)

n
.
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e
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n
b

m
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∑
a mod m

e

(
ab

m

) ∑
1≤|n|≤N
n≡a mod m

χ(n)

n

=
1

φ(m)

∑
ψ mod m

( ∑
a mod m

ψ(a)e

(
ab

m

)) ∑
1≤|n|≤N

χ(n)ψ(n)

n
.

The bracketed sum τ̃(ψ, b) =
∑

a mod m ψ(a)e(ab/m) is a Gauss sum.
In particular, |τ̃(ψ, b)| ≤

√
m.

The only characters ψ that contribute to the sum are those of
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The work of Granville-Soundararajan (2007)

F the class of completely multiplicative functions f such that
|f (n)| ≤ 1, for all n ≥ 1.

For f , g ∈ F we define D(f , g ; y) :=

∑
p≤y

1− Ref (p)g(p)

p

1/2

.

Proposition (Granville-Soundararajan)

For f ∈ F we have∑
n≤x

f (n)

n
� (log x) exp

(
−1

2
D(f , 1; x)2

)
.

∑
n≤x

χ(n)ψ(n)

n
� (log x) exp

(
−1

2
D(χ, ψ; x)2

)
.
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∑
n≤x

χ(n)ψ(n)

n
� (log x) exp

(
−1

2
D(χ, ψ; x)2

)
.

Proposition (Granville and Soundararajan)

A character χ (mod q) of odd order g cannot be very close to a
character of opposite parity and small conductor!

If χ (mod q) has order g , and ψ (mod m) is such that
ψ(−1) = −χ(−1) and m ≤ (log y)A, then

D(χ, ψ; y)2 ≥
(
δg + o(1)

)
log log y .

M(χ)�g ,ε

{√
q(log q)1−δg/2+ε unconditionally,
√
q(log log q)1−δg/2+ε under GRH.
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Goldmakher’s thesis

M(f ; y ,T ) := min
|t|≤T

D(f , nit ; y)2 = min
|t|≤T

Re
∑
p≤y

1− f (p)p−it

p
.

A logarithmic Halász Theorem (Montgomery-Vaughan, Tenenbaum)

For all f ∈ F and T ≥ 1, we have∑
n≤x

f (n)

n
� (log x) exp

(
−M(f ; x ,T )

)
+

1√
T
.

Proposition (Goldmakher, 2012)

If χ (mod q) has order g , and ψ (mod m) is an odd primitive character
with m ≤ (log y)A, then

M(χψ; y , (log y)2) ≥ (δg + o(1)) log log y .

Youness Lamzouri (York/IECL) Large Character Sums May 25, 2017 21 / 27



Goldmakher’s thesis

M(f ; y ,T ) := min
|t|≤T

D(f , nit ; y)2 = min
|t|≤T

Re
∑
p≤y

1− f (p)p−it

p
.

A logarithmic Halász Theorem (Montgomery-Vaughan, Tenenbaum)

For all f ∈ F and T ≥ 1, we have∑
n≤x

f (n)

n
� (log x) exp

(
−M(f ; x ,T )

)
+

1√
T
.

Proposition (Goldmakher, 2012)

If χ (mod q) has order g , and ψ (mod m) is an odd primitive character
with m ≤ (log y)A, then

M(χψ; y , (log y)2) ≥ (δg + o(1)) log log y .

Youness Lamzouri (York/IECL) Large Character Sums May 25, 2017 21 / 27



L. and Mangerel (2017+)

M(f ; y ,T ) := min
|t|≤T

D(f , nit ; y)2 = min
|t|≤T

Re
∑
p≤y

1− f (p)p−it

p
.

L. and Mangerel (2017+)

We obtain precise estimates for M(χψ; y ,T ), where χ (mod q)
has order g , and ψ (mod m) is an odd primitive character with
m ≤ (log y)A.

There is a large secondary term in the lower bound forM(χψ; y ,T )
that appears only when T is very small (of size (log x)−α).

This secondary term is of size (log log y)/k2 where k is the order of
ψ. It is responsible for the extra saving of (log log q)−1/4

((log3 q)−1/4 on GRH) in Pólya-Vinogradov.
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M(f ; y ,T ) := min
|t|≤T

D(f , nit ; y)2 = min
|t|≤T

Re
∑
p≤y

1− f (p)p−it

p
.

Proposition (L. and Mangerel, 2017+)

Let α ∈ (0, 1). Let χ (mod q) be of order g . Let ψ (mod m) be odd,
with m ≤ (log y)4α/7. Then

M(χψ̄; y , (log y)−α) ≥
(
δg +

Cα,g
k2

)
log2 y −

βε logm + Oα (log2m) ,

where β = 1 if m is an exceptional modulus and β = 0 otherwise.

Proposition (L. and Mangerel, 2017+)

Assume GRH. Let N be large, and y ≤ (logN)/10. Let ψ (mod m) be
odd with (log2 y)ε ≤ m ≤ log y . There exists a χ (mod q) of order g with
q ≤ N, such that

M(χψ̄; y , 1) ≤ δg log2 y + O (log2m).
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Logarithmic Halász revisited

Montgomery-Vaughan, Tenenbaum

For all f ∈ F and T ≥ 1, we have∑
n≤x

f (n)

n
� (log x) exp

(
−M(f ; x ,T )

)
+

1√
T
.

Halász’s Theorem (Halász, Montgomery, Tenenbaum)

1

x

∑
n≤x

f (n)�M(f ; x ,T ) exp
(
−M(f ; x ,T )

)
+

1

T
.

M(f ; x ,T ) is small ⇐⇒ f is close to nit for some |t| ≤ T .
1
x

∑
n≤x n

it ∼ x it

1+it is large for bounded t.

|
∑

n≤x n
it/n| � min(|t|−1, log x) is large only when |t| is small!

The logarithmic version of Halász’s Theorem is not optimal.
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Theorem 3 (L. and Mangerel, 2017+)

Let f ∈ F and x ≥ 2. Then, for any real number 0 < T ≤ 1 we have∑
n≤x

f (n)

n
� (log x) exp

(
−M(f ; x ,T )

)
+

1

T
.

As an application we characterize the functions f ∈ F that have a
large logarithmic mean, in the sense that∑

n≤x

f (n)

n
� (log x)α (as x →∞), for some α ∈ (0, 1]. (1)

Note that f (n) = nit satisfies (1) if and only if |t| � (log x)−α.

Corollary (L. and Mangerel, 2017+)

Let α ∈ (0, 1]. If f ∈ F satisfies (1), then f close to nit for some
|t| � (log x)−α.
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� (log x)α (as x →∞), for some α ∈ (0, 1]. (1)

Note that f (n) = nit satisfies (1) if and only if |t| � (log x)−α.

Corollary (L. and Mangerel, 2017+)

Let α ∈ (0, 1]. If f ∈ F satisfies (1), then f close to nit for some
|t| � (log x)−α.
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Omega results for M(χ)

L. and Mangerel (2017+): There are arbitrarily large q and χ (mod q) of

order g such that M(χ)� √q (log2 q)1−δg (log3 q)−
1
4 (log4 q)O(1).

Goldmakher and L. (2012)

Use ideas of Paley (Fourier analytic techniques) to shorten the
exponential sum

∑
n≤q χ(n)e(nα)/n.

Maximize the short sum by controlling χ(p) for the small primes p.

This method result in a loss of a factor of log3 q.

L. and Mangerel (2017+)

Relate M(χ) to L(1, χψ) (for a certain ψ that we choose).

Use zero-density estimates to approximate L(1, χψ) by a short
truncation (over small primes) of its Euler product, for almost all χ.

Maximize this truncated Euler product for many χ.
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Thank you for your attention !
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