Bounded remainder sets for the discrete and continuous irrational rotation

Sigrid Grepstad

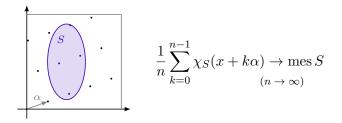
May 2017

Sigrid Grepstad

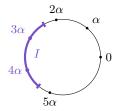
Irrational rotation on the torus

 $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d)$

The sequence $\{n\alpha\}$ is equidistributed.



$$D_n(S, x) = \sum_{k=0}^{n-1} \chi_S(x+k\alpha) - n \operatorname{mes} S = o(n)$$



Hecke (1921) and Ostrowski (1927): If $|I| \in \mathbb{Z}\alpha \pmod{1}$, then $D_n(I, x) = \mathcal{O}(1)$ as $n \to \infty$.

The converse statement was confirmed by Kesten (1966).

Definition

A set S is a BRS if there is a constant $C=C(S,\alpha)$ such that

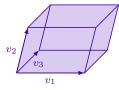
$$|D_n(S,x)| = \left|\sum_{k=0}^{n-1} \chi_S(x+k\alpha) - n \operatorname{mes} S\right| \leqslant C$$

for all n and a.e. x.

An interval I is a BRS if and only if $|I| \in \mathbb{Z}\alpha + \mathbb{Z}$.

Theorem (G., Lev 2014)

Any parallelotope in \mathbb{R}^d spanned by vectors $v_1, \ldots, v_d \in \mathbb{Z}\alpha + \mathbb{Z}^d$ is a BRS.

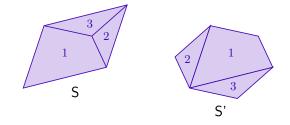


Furstenberg, Keynes and Shapiro (1973): If S is a BRS, then

$$\operatorname{mes} S = n_0 + n_1 \alpha_1 + \dots + n_d \alpha_d,$$

where $n_0, n_1, \ldots n_d$ are integers.

Equidecomposability



 $S \sim S'$: The sets are equidecomposable (or scissors congruent).

 $S \overset{\alpha}{\sim} S': \text{ The sets are equidecomposable using translations by vectors in } \mathbb{Z}\alpha + \mathbb{Z}^d \text{ only.}$

Claim: If $S \stackrel{\alpha}{\sim} S'$, and S is a BRS, then so is S'.

 $S \stackrel{\alpha}{\sim} S'$: The sets are equidecomposable using translations by vectors in $\mathbb{Z}\alpha + \mathbb{Z}^d$ only.

Claim: If $S \stackrel{\alpha}{\sim} S'$, and S is a BRS, then so is S'.

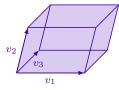
Theorem (G., Lev 2014)

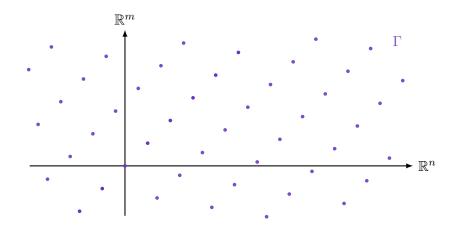
If S and S' are Jordan measurable BRS of equal measure, then

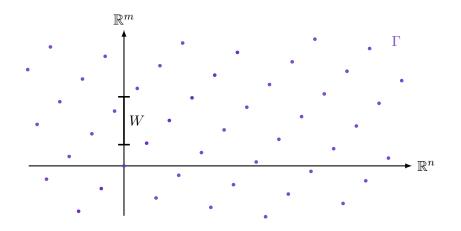
 $S \stackrel{\alpha}{\sim} S'.$

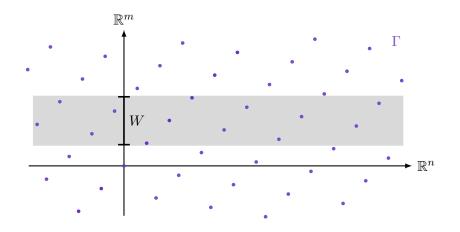
Theorem (G., Lev 2014)

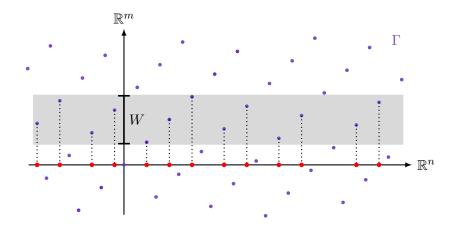
Any parallelotope in \mathbb{R}^d spanned by vectors $v_1, \ldots, v_d \in \mathbb{Z}\alpha + \mathbb{Z}^d$ is a BRS.

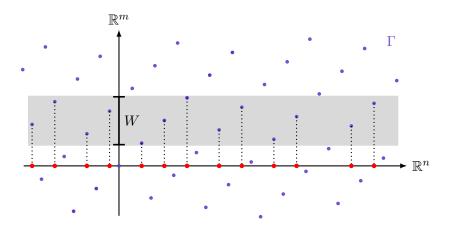






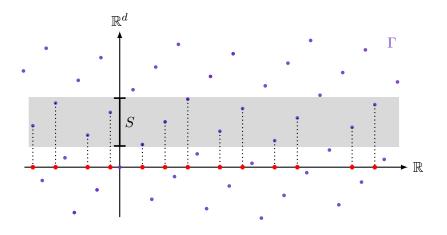


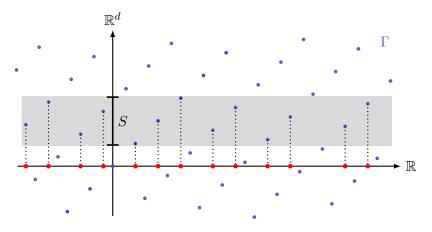




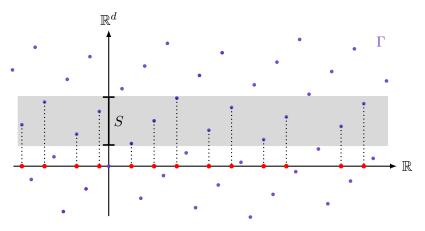
We define the Meyer cut-and-project set:

$$X = \{p_1(\gamma) : \gamma \in \Gamma, \, p_2(\gamma) \in W\}.$$





$$\Gamma = \left\{ \left(n + \beta^{\top} (n\alpha + m), n\alpha + m \right) : n \in \mathbb{Z}, m \in \mathbb{Z}^d \right\} \subset \mathbb{R} \times \mathbb{R}^d,$$



$$\begin{split} &\Gamma = \left\{ \left(n + \beta^{\top} (n\alpha + m), n\alpha + m \right) \, : \, n \in \mathbb{Z}, \, m \in \mathbb{Z}^d \right\} \subset \mathbb{R} \times \mathbb{R}^d, \\ &X = \left\{ n + \beta^{\top} (n\alpha + m) \, : \, n \in \mathbb{Z}, \, m \in \mathbb{Z}^d, \, n\alpha + m \in S \right\} \subset \mathbb{R} \end{split}$$
 Notice that $p_2(\Gamma) = \mathbb{Z}\alpha + \mathbb{Z}^d$

Sigrid Grepstad

A cut-and-project set $X = X(\Gamma, W) \subset \mathbb{R}^n$ is at bounded distance from a lattice $L \subset \mathbb{R}^n$ if there exists a bijective map $\varphi : X \mapsto L$ such that

$$\sup_{x \in X} \|\varphi(x) - x\| < \infty.$$

Duneau and Oguey (1990):

If W is a fundamental domain of a lattice in $p_2(\Gamma)$, then $X(\Gamma, W)$ is at bounded distance from a lattice.

A cut-and-project set $X = X(\Gamma, W) \subset \mathbb{R}^n$ is at bounded distance from a lattice $L \subset \mathbb{R}^n$ if there exists a bijective map $\varphi : X \mapsto L$ such that

$$\sup_{x \in X} \|\varphi(x) - x\| < \infty.$$

Duneau and Oguey (1990):

If W is a fundamental domain of a lattice in $p_2(\Gamma)$, then $X(\Gamma, W)$ is at bounded distance from a lattice.

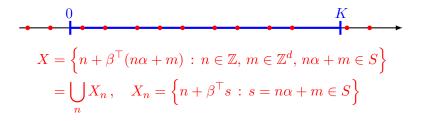
If S is a fundamental domain of a lattice in $p_2(\Gamma) = \mathbb{Z}\alpha + \mathbb{Z}^d$ (e.g. a parallelotope spanned by $v_1, \ldots, v_d \in \mathbb{Z}\alpha + \mathbb{Z}^d$), then $X = X(\Gamma, S)$ is at bounded distance from the arithmetical progression $\{j/\text{mes }S\}_{j\in\mathbb{Z}}$.

Claim: If $X(\Gamma, S)$ is at bounded distance from $\{j / \operatorname{mes} S\}_{j \in \mathbb{Z}}$, then S is a BRS (with respect to α).

Claim: If $X(\Gamma, S)$ is at bounded distance from $\{j / \operatorname{mes} S\}_{j \in \mathbb{Z}}$, then S is a BRS (with respect to α).

$$X = \left\{ n + \beta^{\top}(n\alpha + m) : n \in \mathbb{Z}, m \in \mathbb{Z}^{d}, n\alpha + m \in S \right\}$$
$$= \bigcup_{n} X_{n}, \quad X_{n} = \left\{ n + \beta^{\top}s : s = n\alpha + m \in S \right\}$$

Claim: If $X(\Gamma, S)$ is at bounded distance from $\{j / \text{mes } S\}_{j \in \mathbb{Z}}$, then S is a BRS (with respect to α).



Claim: If $X(\Gamma, S)$ is at bounded distance from $\{j / \operatorname{mes} S\}_{j \in \mathbb{Z}}$, then S is a BRS (with respect to α).

$$X = \left\{ n + \beta^{\top} (n\alpha + m) : n \in \mathbb{Z}, m \in \mathbb{Z}^{d}, n\alpha + m \in S \right\}$$
$$= \bigcup_{n} X_{n}, \quad X_{n} = \left\{ n + \beta^{\top} s : s = n\alpha + m \in S \right\}$$

$$N = |X \cap [0, K)| = \sum_{k=0}^{K-1} |X_k| + const = \sum_{k=0}^{K-1} \chi_S(k\alpha) + const$$

Claim: If $X(\Gamma, S)$ is at bounded distance from $\{j / \operatorname{mes} S\}_{j \in \mathbb{Z}}$, then S is a BRS (with respect to α).

$$X = \left\{ n + \beta^{\top}(n\alpha + m) : n \in \mathbb{Z}, m \in \mathbb{Z}^{d}, n\alpha + m \in S \right\}$$
$$= \bigcup_{n} X_{n}, \quad X_{n} = \left\{ n + \beta^{\top}s : s = n\alpha + m \in S \right\}$$

$$N = |X \cap [0, K)| = \sum_{k=0}^{K-1} |X_k| + const = \sum_{k=0}^{K-1} \chi_S(k\alpha) + const$$
$$= |\mathbb{Z}/\max S \cap [0, K)| + const = K \max S + const$$

Consider the sequence

$$\{x_n\}_{n=1}^{\infty} = \left\{\sum_{k=0}^{n-1} \chi_S(k\alpha) - n \, \text{mes} \, S\right\}_{n=1}^{\infty}$$

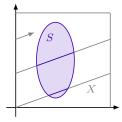
Do there exist sets $S \subset \mathbb{R}^d$ for which this sequence is unbounded, but in BMO, i.e. for which

$$\left|\frac{1}{m-n}\sum_{k=n}^{m-1}\left|x_{k}-\frac{x_{n}+\dots+x_{m-1}}{m-n}\right|\leqslant M$$

for all n < m ?

Continuous irrational rotation

$$\label{eq:alpha} \begin{split} \alpha > 0 \text{ irrational and } x = (x_1, x_2) \in I^2 = [0, 1)^2 \\ X(t) = (\{x_1 + t\}, \{x_2 + \alpha t\}) \end{split}$$



$$D_T(S, x) = \int_0^T \chi_S(\{x_1 + t\}, \{x_2 + \alpha t\}) \, dt - T \operatorname{mes} S$$

Theorem (Beck)

Let $S\subset I^2$ be an arbitrary Lebesgue measurable set with positive measure. Then for every $\varepsilon>0$ and almost all α , we have

$$\int_0^T \chi_S\left(\{t\}, \{\alpha t\}\right) \, dt - T \operatorname{mes} S = o\left((\log T)^{3+\varepsilon}\right).$$

Theorem 1 (G., Larcher 2016)

Let $S \subset I^2$ be a polygon. Then the discrepancy $D_T(S, \alpha)$ is bounded (in absolute value) as $T \to \infty$ for almost every $\alpha > 0$ and every starting point $x \in I^2$.

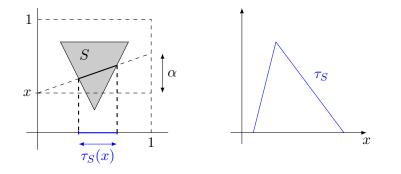
Theorem 2 (G., Larcher 2016)

Let $S \subset I^2$ be a convex set whose boundary ∂S is a twice continuously differentiable curve with positive curvature at every point. Then the discrepancy $D_T(S, \alpha)$ is bounded (in absolute value) as $T \to \infty$ for almost every $\alpha > 0$ and every starting point $x \in I^2$.

Proof Outline

Let

$$\tau_S(x) = \int_0^1 \chi_S(t, \{t\alpha + x\}) \, dt.$$



 $|D_T(S,x)| \leqslant C_1 \quad \Leftrightarrow \quad \left|\sum_{k=0}^{N-1} \tau_S(\{k\alpha\}) - N \int_0^1 \tau_S(x) \, dx\right| \leqslant C_2$

Bounded remainder sets

Ostrowski expansion to base α : $N = b_s q_s + \cdots + b_1 q_1 + b_0 q_0$ Condition on $\alpha = [0; a_1, a_2, \ldots]$:

$$\sum_{l=0}^{s} \frac{a_{l+1}}{\sqrt{q_l}} \sum_{k=1}^{l+1} a_k \leqslant C$$

We then have:

2

$$\left|\sum_{k=0}^{N-1} \tau_S\left(\{k\alpha\}\right) - \sum_{l=0}^s \sum_{b=0}^{b_l} \sum_{k=0}^{q_l} \tau_S\left(\frac{k}{q_l}\right)\right| \leqslant C_1,$$

$$\left|\sum_{l=0}^{s}\sum_{b=0}^{b_l}\sum_{k=0}^{q_l}\tau_S\left(\frac{k}{q_l}\right) - N\int_0^1\tau_S(x)\,dx\right| \leqslant C_2$$

In two dimensions: Is every convex set $S \subset I^2$ a bounded remainder set with respect to almost every continuous irrational rotation?

In higher dimensions: Can we establish any conditions on $S \subset I^d$ sufficient for bounding the discrepancy $|D_T(S, x)|$ as $T \to \infty$ for a given $\alpha > 0$?

Thank you!