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SOME DEFINITIONS

We consider:
@ planar maps , rooted in a corner

e with loops and multiple edges

v v

n: number of edges (= 4)
v is the root-vertex
A: root-degree (= 4)
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ADDING STRUCTURE

Statistical physics and combinatorics: maps equipped with a structure

@ proper g-colouring [Tutte 73-84...]
@ spanning tree [Mullin 67...]

e Ising model [Kazakov 86...]

@ Schnyder woods [Schnyder 89...]
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ADDING STRUCTURE

Statistical physics and combinatorics: maps equipped with a structure

@ proper g-colouring [Tutte 73-84...]
@ spanning tree [Mullin 67...]

e Ising model [Kazakov 86...]

@ Schnyder woods [Schnyder 89...]

Nice bijections with other classes, good properties (lattice structure,
specializations...)

In this talk — Eulerian orientations
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EuLERrIAN ORIENTATIONS (PEO)

An oriented planar map is a planar Eulerian orientation (PEO) if
every vertex has in-degree and out-degree equal . J
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An oriented planar map is a planar Eulerian orientation (PEO) if
every vertex has in-degree and out-degree equal . J
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DEecomrosition oF PEO
Two ways of creating a PEO:
e merge two PEOs O1, O, and orient the new edge
e split the root-vertex at index i iff the resulting map is still a PEO
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Splits at index 1 or A—1 are always possible; oth. we must check!
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DEecomrosition oF PEO
Two ways of creating a PEO:
e merge two PEOs O1, O, and orient the new edge
e split the root-vertex at index i iff the resulting map is still a PEO

¥

() VD

| |

Co b

Splits at index 1 or A—1 are always possible; oth. we must check!
Remember the full orientation around the root: no recurrence relation
with a finite number of parameters
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COMPUTING THE FIRST TERMS

Let o(n) be the number of PEO with » edges.
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COMPUTING THE FIRST TERMS

Let o(n) be the number of PEO with » edges.
PEO of size n: results either from a merge of two PEOs of sizes
summing to n—1, or from a split on a PEO of size n—1.

n| o) n o(n) n o(n)

0 1 6 37 548 12 37 003 723 200

1 2 7 350 090 13 | 393 856 445 664
2 10 8 3380 520 14 | 4240313009 272
3| 66 9 33558 024 15 | 46109 094 112 170
4| 504 || 10 | 340670720

514216 || 11 | 3522993 656

Not already in the OEIS!
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APPROXIMATION OF THE GROWTH RATE

u = growth rate of PEOs = limy;—.o0 0(n) 17"
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p = growth rate of PEOs = lim,,—.o,0(1) /"

Merging two PEOs with n and n’ edges gives a PEO with n +n' edges
— {0(n)},>0 is super-multiplicative , i.e. o(n+n') =o0(n) o(n’) .
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APPROXIMATION OF THE GROWTH RATE

p = growth rate of PEOs = lim,,—.o,0(1) /"

Merging two PEOs with n and n’ edges gives a PEO with n +n' edges
— {0(n)},>0 is super-multiplicative , i.e. o(n+n') =o0(n) o(n’) .

Variant of Fekete’s Lemma (1923): p=sup,_,0m)!/" e R}
= u=(0(15))1/1° ~ 8.145525470

PEO c arbitrary orientations of
Eulerian maps
=>8ld<u<16 "

1
ot +1) as a function of 1/n —
o(n) 8
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PRIME DECOMPOSITION OF MAPS

A map is prime if the
root-vertex appears exactly
once on the root-face.
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once on the root-face.
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prime maps

Counting planar Eulerian orientations 23 mars 2017 8/18



PRIME DECOMPOSITION OF MAPS

A map is prime if the / e /oy
root-vertex appears exactly f <O
once on the root-face. %

Planar map = concatenation of
prime maps

g
e @ Operations to create a prime map:
J] e Add aloop around any map
J; / e Split at index i < A(Py) in the

‘/ @ last prime P, of any map
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SUBSETS (AND SUPERSETS) OF OO

Two families of sets of orientations O, and @’]:r s.t.

@’k_ C@k_ﬂ 4 c@l:rﬂ C@I:r

Definition
A map of 0, is obtained by either:
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SUBSETS (AND SUPERSETS) OF OO

Two families of sets of orientations 0, and G s.t.
@k_ < @)k_+1 <0< 61;1 < @I:r
Definition
A map of 0, is obtained by either:

@ a concatenation of prime maps of G, ,

e adding a loop around a map O € 0, and orienting it,

e a split on the last prime component Py of amap P;...P, € G, at
indexi<2kori=AP,)-1.
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SUBSETS (AND SUPERSETS) OF OO

Two families of sets of orientations 0, and G s.t.
@)k_ < @k_+1 cOc @l;l < @I:r
Definition
A map of 0, is obtained by either:

@ a concatenation of prime maps of G, ,

o adding a loop around a map O € G, and orienting it,

o asplit on the last prime component Py of amap P;...P, € G, at
indexi<2kori=AP,)-1.

The atomic map (one vertex, no edges) is in 0.
Fewer splits allowed — the number of orientations necessary to look at
form now a word of finite length , which we can use as a parameter
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ALGEBRAIC SYSTEM FOR OF~ =@~

The root-word w(O) of amap O is
the binary word formed as follows
in counterclockwise order around
the root-vertex:

o 1if there is an out-edge,

1110000101

e 0 if there is an in-edge.
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ALGEBRAIC SYSTEM FOR OF~ =@~

The root-word w(O) of amap O is
the binary word formed as follows
in counterclockwise order around
the root-vertex:

o 1if there is an out-edge,

1110000101

e 0 if there is an in-edge.

A word w is balanced iff |w|y — |w|; = 0.

Fw(t) : gf. of the set {Oe 0~ |w(O) =w}
Lw(t) : g.f. of the set {O € 07 |wW(O) = uw for some u}
Fl,(t), L., () : their counterparts for prime maps of 0.
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AN EXAMPLE: EQUATION FOR F, (1)
Prime oriented maps of &~ with root-word w.
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AN EXAMPLE: EQUATION FOR F, (1)
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AN EXAMPLE: EQUATION FOR F, (1)
Prime oriented maps of &~ with root-word w.

ws : maximal proper suffix of w, w, : central factor of w (w = aw.@)

For w balanced, 2 < |w| < 2k:

Fl, = tFo, + tLeLY,
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ALGEBRAIC SYSTEM FOR @)~

w=uv
LLl,+ ¥ LyuF, jw| < 2k -2
Lw = W=UDV,U£E
1+L.L. w=e
] Fly =tFy, +tLeLy, lw| <2k
tL, + tFo, + tLeL,+
tLe y (Lils —Fu)+tLg(L;U,—F;U) lw|<=2k-2
= u=ow
w u balanced
O<|ul<2k
2L, +tLeLL w=e

w=¢e=>F,=1F,=0
w non-balanced = Fy, = F, =0.
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SMALL EXAMPLE: SUBSETS, k =1

0/1 symmetry — divide the number of equations by 2
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0/1 symmetry — divide the number of equations by 2

Fi, = t+iL.L),

Le = 1+LL.,

L. = 2L +tLe(LL +2L) ~2F}),
L) = tLe+tLe(L)+L)~F}y).

Counting planar Eulerian orientations 23 mars 2017

13 /18



SMALL EXAMPLE: SUBSETS, k =1

0/1 symmetry — divide the number of equations by 2

Fi, = t+iL.L),

Le = 1+LL.,

L. = 2L +tLe(LL +2L) ~2F}),
L) = tLe+tLe(L)+L)~F}y).

Eliminating all series but L,: cubic equation for L:

PLI+t(t-4L2+ 2t +1)L.—1=0
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SMALL EXAMPLE: SUBSETS, k =2

Fpn=Fio = Fy,
FI]O =F(’)1 = t+tLgL'1,
FIllOO = tFp+ tLgL’mO,
FllOlO = tFp1 + tLEL(/)lO’
Foi1o = tLeLyyg,
Le = 1+LL,,
LO = Ll = LELéy
) Loo=L11 = LeLy,
Lot =L = LeLy,
L, = 2L, +tLe(L, +2(LY ~ Fiy + Loy = Fiyoo + Loso ~ Floto + 1!
Ly=L} = tLe+tLe(Ly+Lo—Fio+Ligo = Fiio0+ Loz~ Fioro
! _ ! ! !
Lo = tLo+tLe(Log +Lygg = Fi100),

! —_ ! — ! ! li ! ! ! !
Lyg=Loy = tLa+t+tLe(Lyy+ Ly —Foy +Loyo = Fio10+ Lygg = For10)
Lioo = tL1o+tLe(Lygy +Ligg = F1y00)s
Loro = tLoy +tLe (Lo + Lyyg — Flo10)»

Li1o = tLyy +tLe(Lyqg +Ligg = Foy)-

!
+Ly30 = Fo
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FinpING L,

Generate the systems automatically then eliminate the variables with
Maple (keeping L;)

k = 4: find the first terms using the Newton GF package

Counting planar Eulerian orientations 23 mars 2017 15/ 18



FinpING L,

Generate the systems automatically then eliminate the variables with

Maple (keeping L;)
k = 4: find the first terms using the Newton GF package
nature | k | degree | growth rate
inf 1 3 10.60
inf 2 6 10.97
inf 3 20 11.22
inf 4 258 11.44)
inf 5 - 11.56™)
inf 6 - 11.68™
PEO | - - ?

(*) not proven, use of quadratic approximants
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FinpING L,

Generate the systems automatically then eliminate the variables with
Maple (keeping L;)

k = 4: find the first terms using the Newton GF package

nature | k | degree | growth rate
inf 1 3 10.60
inf 2 6 10.97
inf 3 20 11.22
inf 4 258 11.44®
inf 5 - 11.56™
inf 6 - 11.68™)
PEO | - - ?

(*) not proven, use of quadratic approximants

For each k >0, og(n) ~yn=3'?p™" (p and y depend on k). J

Let y;” be the growth rate of the set @, . Then 1, —j oo - J
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SurerseTs oF PEO

General idea: allowing splits at indices i = A(P,) , creating non Eulerian
orientations
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SurerseTs oF PEO

General idea: allowing splits at indices i = A(P,) , creating non Eulerian
orientations

One catalytic variable x (for the half-degree of the root)

Same kind of systems, but with divided differences !

Fork=1:
LE(trx) = ]- + LE (tyx)L;;(tvx)r
LLt,2) = 2xLe(t, )+ (1) (2L (1) + %(Lg(t,x) —xLL(5 1),
Lo(tx) = teLe(t, )+ He(t,1) (XLt 1) + Lot ~xLy(t, 1))
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Surersets o PEO

The supersets of PEO have algebraic generating functions. J
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SurerseTs oF PEO

The supersets of PEO have algebraic generating functions.

Conjecture

For each k >0, ox(n) ~yn>?p™" (p and y depend on k).

nature | k | degree | growth rate
PEO | - - ?
sup |5 - 13.005%)
sup | 4 - 13.017)
sup | 3 - 13.031%
sup 2 28 13.047
sup 1 3 13.065

(*) not proven, use of quadratic approximants
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FiNALLY...

e What is the nature of the generating function of PEOs?
e What if we restrict the vertex degrees? (4-regular, [Kostov 00])

e Find another grammar / decomposition for the PEOs?
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FiNALLY...

e What is the nature of the generating function of PEOs?
e What if we restrict the vertex degrees? (4-regular, [Kostov 00])

e Find another grammar / decomposition for the PEOs?

Thank you!
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