Generalized p-angulations in
higher dimension

Luca Lionni
Paris-Sud (LPT) & Paris 13 (LIPN)

Aléa — Marseille —23/03/2017



1 — Motivation and main ideas

2 — Colored triangulations and edge-colored graphs

3 — Generalized p-angulations

4 — Quadrangulations in 4D

5 — Gluings of octahedra



1 — Motivation and main ideas



1 — Motivation and main ideas

Motivation : quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

Z()\,N) — / D[g fOlDQU\A?(QA_i Z \'D NPD-2—anp
M
gonnzcte.d 'T T\
triangulation

|

# of D simplices

# of D-2 simplices



1 — Motivation and main ideas

Motivation : quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

Z(\,N) :/ D[g]e—dem\/E(QA—iR) _ Z \"D NTMD-2—anp
M

T
connected
triangulation

Allow topology fluctuations -> non-classical —T



1 — Motivation and main ideas

Motivation : quantum gravity

Einstein-Hilbert partition function for Euclidean pure gravity in dimension D

Z(\,N) :/ D[g]e—dem\/E(QA—iR) _ Z \"D NTMD-2—anp
M

T A
connected
triangulation

Allow topology fluctuations -> non-classical —T

e Large N limit (physical limit of small Newton constant) :

configurations which maximize

e ® .~ : Continuum limit = quantum space-time



1 — Motivation and main ideas

D=2 : continuum limit = Brownian map

Hausdorff dimension 4, homeomorphic to S?,

Quantum sphere of Liouville quantum gravity (Miller, Sheffield, 2016)

Fig : J. Bettinelli



1 — Motivation and main ideas

D>2 : Basicidea

* Glue building blocks together

“Quanta of space-time”

''''''
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D>2 : Main ideas

* |dentify configurations which maximize Tl —9 atfix T p

DD -1
e Gurau’stheorem: Mp_o < D + (4 )np

* In known cases, max. configurations verify N p_—2 = D+ a np

D(D — 1)

with a < (“ < “for interesting cases )

>  find the coefficient a ? what is their topology ?

* Count maximal configurations : generating function has a singularity
— continuum limit = space-time

- critical exponent ? ... Hausdorff dimension ? Fractal dimension ? Etc.
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2 — Colored triangulations and edge-colored graphs

Simplicial pseudo-complexes obtained by gluing D-simplices
Colored faces (D-1 simplices) are glued in a unique way :

with matching colors on their sub-simplices

N = o = T
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2 — Colored triangulations and edge-colored graphs

D-simplices are represented by >\ >Z

(D+1)-valent vertices \
# N
The colored faces are dual to colored 3 Ly 0.
/ ~
edges 7

Black vertex / white vertex : opposite
ordering of colors around faces




2 — Colored triangulations and edge-colored graphs

A color-i edge encodes the gluing of two color-i “faces” (D-1
simplices) in the unique possible way
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3D triangulation
with boundary :

An octahedron,
or bipyramid...
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2 — Colored triangulations and edge-colored graphs

D-dimensional colored
triangulation of an orientable <4mm)
pseudo-manifold

Regular bipartite (D+1)-edge-
colored graph

( Pezzana, Ferri, Gagliardi, Casali, Grasselli, Cristofori... ‘74 until now )
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Dictionary :

3
3
triangulation <-> dual graph
0 O
D-simplex <-> vertex
(D-1) simplex <-> edge 3
3

(D-2) simplex <-> two-colored cycle

(D-k) simplex <-> sub-graph with k colors only
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Dictionary :

triangulation <-> dual graph

D-simplex <-> vertex

(D-1) simplex <-> edge

(D-2) simplex <-> two-colored cycle

Edges of the
(D-k) simplex <-> sub-graph with k colors only triangulation



2 — Colored triangulations and edge-colored graphs

Dictionary :

triangulation <-> dual graph

D-simplex <-> vertex

(D-1) simplex <-> edge

(D-2) simplex <-> two-colored cycle

Vertex of the
(D-k) simplex <-> sub-graph with k colors only triangulation



2 — Colored triangulations and edge-colored graphs

We are interested in configurations with maximal number of (D-2)
simplices at fixed number of D-simplices.

- D=2 : maximal # vertices, fixed # triangles
- minimize the genus

- D=3 : maximal # edges, fixed # tetrahedra

Dual picture : graphs that maximize the number of two-colored cycles at
fixed number of vertices.

- « maximal graphs »
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D(D — 1)
Colored triangulations verify np_2 < D + 1 np
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D(D — 1)

Colored triangulations verify np_2 < D + 1 np

Maximal triangulations: D=2

F
V:2+§ <= g=0

—> planar triangulations

1 3 _%<256

— | n’y_z)\c_”
27

> y=—=

2 Continuum limit = brownian map




2 — Colored triangulations and edge-colored graphs

D(D — 1)

Colored triangulations verify np_2 < D + 1 np

Maximal triangulations: D>2

They are called melonic graphs




2 — Colored triangulations and edge-colored graphs

D(D — 1)
Colored triangulations verify np_2 < D + 1 np

Maximal triangulations: D>2

2
They are called melonic graphs \/

Tree-like structure

1 2
- ’Y—§

Continuum limit = continuous random tree
...not a good space-time candidate...
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3 — Generalized p-angulations

p-angulation in 2D

Maximize the number of vertices at fixed
number of p-gons

p—2 1
Tlvertices <2+ Tnp—gons

— Selects planar p-angulations,
as before for triangulations

— Universality (critical exponent, continuum limit...)

hexangulation, locally
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p-angulation in higher dimension
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3 — Generalized p-angulations

Gluings of building blocks with p external faces of color 0 in dimension D

e.g.:

8-angulation in 3D
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3 — Generalized p-angulations

Gluings of building blocks with p external faces of color 0 in dimension D

Boundary admits a
colored triangulation




3 — Generalized p-angulations

2

Colored triangulation of the Topological cone with
boundary (dim D-1) colored facets (dim D)



3 — Generalized p-angulations

Building block Triangulation of its boundary
(size p, dim D) (p vertices, dim D-1)

QO
O K

spherical boundary toroidal boundary




3 — Generalized p-angulations

Dual picture

An edge of color 0 (dashed) identifies two faces (D-1 simplices) of color O

e.g.:

8-angulation in 3D

— 4-colored graph




3 — Generalized p-angulations

D(D — 1)

N.B : building blocks made of D-simplices = np—_2 < D + 1 np

always true but not saturated!! and finite # gluings per order (Gurau-Schaeffer)

- Find smallest a suchthat np_o < D + anp

and = is saturated by infinite # of gluings
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Building blocks '02 — 7
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Bijection with
combinatorial maps




4 — Generalized quadrangulations in 4D

Bi-colored cycles are faces around one-colored sub-map

34

34

Maximize the sum of faces of one-colored sub-maps
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4 — Generalized quadrangulations in 4D

The sharp bounds are

1

S
Gluings of n . Np_o < 4 + STLD Maximal config.
e o are TREES
- np_o < 4 _I_ §nD Maximal config.
Gluings of 1 : e ) are PLANAR
>

2

Maximal gluings have the topology of the 4-sphere

5,
Gluings of both : Np_o < 4 + in%l -+ 37I4D




And maximal Configs : Planar,and |+ are bridges

Generating function : F(t, )\) — Z 75E(J\4))\E4(Z\4)

M max.
1
A>3 0 Feai(N)+h(N)Va(h) —t+ - Tree regime ’725
A<3 1 F e as(N) 4+ ba(N)(ta() — 0) + ca(W) (t(A) — )2 +
1
Planar regime 7y = ——
2
16 128 3
A=3 : F~_— 1 "(Z _pHn23...
9 i 35/3 (64 A N = 1 Proliferation of baby

3 universes



4 — Generalized quadrangulations in 4D

= In D=2, the critical behavior of maximal maps does not depend
on the discretization of the boundary p, it is universal

= In D=4, the critical behavior of maximal configurations
is NOT universal

it depends on the details of the triangulation of the boundary



This is rather easy (size 4 2 combinatorial maps)

Can we do bigger building blocks with any triangulated boundary??
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Building blocks

1
3 3
1
2 2 2 2
1

Gluings of octahedra
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Proofs also rely on a bijection (with “stuffed” hyper-maps)



5 — Gluings of octahedra

Building blocks

Gluings

L/
PN

I
l
Q 1
1
1
1
!
1
/
‘ /



5 — Gluings of octahedra

And 3D gluings of octahedra verify (w.r.t. their constituting tetrahedra)

Nedges < 2 + gntetrahedra

Compare with 3D gluings of melonic 8-gons Nedges <3+ intetrahedra



5 — Gluings of octahedra

Maximal triangulations are in bijection with a family of trees.

The generating function of maximal maps with one marked corner is s.t.

G(z) =1432G(2)* > G(z):4_\/2048( ) Z>+

3 243 \ 256

Maximal triangulations are shown to have the topology of the 3-sphere.
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Conclusions

Colored triangulations provide a good framework for combinatorics

Bijection which generalizes Tutte’s bijection for any D-dimensional p-angulation
(Bonzom, LL, Rivasseau 2015)

It precisely represents topologies by superposed hyper-maps

Maximal configurations exhibit different critical behaviors (# 2D)

A lot to be explored!



What next?

1 - Are there building blocks s.t. 7 p_—_2 isa non linear function of 7L for
maximal gluings?

(Possible candidate in D=6)

2 - Can we exhibit building blocks with more interesting maximal maps?

3 - Exact counting of gluings of a single building block (= Unicellular maps)

(Harer-Zagier formula ? Chapuy’s identity ?)

4 - Gluings of building blocks with colored faces and no internal structure

N
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4 — Generalized quadrangulations in 4D

1 1
Building blocks '02 — 7
4 4 S 4 4 S 34
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4 — Generalized quadrangulations in 4D

These results can be extended to blocks of any size, in any even dimension :

“Necklaces” + “Melonic” graphs

(and their
connected t
sums)
1
Np—o §4—|—2(1—|—§)np np_o <4+ 3np




4 — Gluings of octahedra

Building blocks 1

(hyper-edge with internal structure)




5 — Gluings of octahedra

3 3
Building blocks !
2 2 2 2 9
1
3 1 3

Bicolored cycles 03

7
< (O8] o<
\\m’




2 — Bijection with hypermaps

Edge in triangulation
<-> Two-colored cycle in graph
<-> Face around combinatorial map of single color

2 1
1
; 2
1 1
2 1
2



2 — Bijection with hypermaps

Edge in triangulation
<-> Two-colored cycle in graph
<-> Face around combinatorial map of single color

@
.

Color 1 : 5 faces Color 2 : 3 faces

Color 3 : 5 faces



3 — Maximal gluings of octahedra

Maximizing maps :
(more complicated than for quadrangulations... see V. Bonzom & L.L 2016)

- Planar

—> Each blue sector locally s.t.

12 12

12 j 12



2 — Bijection with stuffed Walsh maps

Building block :




2 — Bijection with stuffed Walsh maps
Glue building blocks together?

< Cycles that alternate edges of color 0 and 3




2 — Bijection with stuffed Walsh maps
Glue building blocks together?

< Cycles that alternate edges of color 0 and 3

] \ 12

| 12
.' 3
| é 12

12

\ // 12
3 )/
m Color 3 edge = half an edge around

a black vertex



2 — Bijection with stuffed Walsh maps
Glue building blocks together?

< Cycles that alternate edges of color 0 and 3




2 — Bijection with stuffed Walsh maps

Color 3 edge = two half edges : one around a blue sector, one around a black
vertex.

- contract them to form an edge!




2 — Bijection with stuffed Walsh maps

Color 3 edge = two half edges : one around a blue sector, one around a black
vertex.

- contract them to form an edge!




3 — Maximal gluings of octahedra

13 3 13 23 3 23

13 3 13 23 3 23



w2

w2

5 — Gluings of octahedra
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5 — Gluings of octahedra

These results generalize to the infinite family of bi-pyramids (and connected
sums)

Compare with 3D gluings of melonic p-gons 7Medges <3+ intetrahedra



typeof p-gon | D | size sharp bound critical exponent
p— 2
2D p-gon (=°) 2 p Nyertices = 2 Tnp—gons -1/2
DD -1
\v/ even np—2 <D + ( 1 )nD
“melonic” (eo) (Gurau) 1/2
3 even Nedges < 3+ §ntetrahedra
4 | even np_s <44 3np
“necklaces” | even | even 1 /
np—2 <4+4+2(14+ -)np
(o) ( p) -1/2
(Bonzom, Delepouve, Rivasseau, 2015)
- even _ 1 -
4-gons 4 . (D(D4 1) oD 41 a))nD 1/2,-1/2,1/3
3 6 B. or Ks5: nedges S 3 + Ntetra 1/2
6-gons
(Bonzom & L.L, 2015)
4 6 | Various 1/2,-1/2,1/3
(L.L & J. Thirigen, IP)
Bi-pyramids 3 1
p&(/oo) 3 3 Nedges S 3 + (5 — %)ntetrahedra 1/2

(Bonzom & L.L, 2016)
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