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Introductory example :
Narayana numbers
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Number of Dyck paths of length 2n with p peaks.
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A bijection between plane binary trees with n leaves and
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Tracking an interesting parameter :

Number of left leaves e Number of peaks



Introductory example :
Narayana numbers

A bijective proof of Narayana numbers symmetry:
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Generalisation :
Peaks of the pairs of non-crossing Dyck paths




Generalisation :
Peaks of the pairs of non-crossing Dyck paths

Let N(n,p,q) be the number of pairs of non-crossing Dyck
paths of length 2n with p upper peaks and ¢ lower peaks.
Then: N(n,p,q) = N(n,n—qg+1,n—p+1)
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Can this be further generalized?

Let N(n,p;...px) be the number of k-tuples of non-crossing
Dyck paths of length 2n with p, peaks on the i-th paths from
the top.

Do we have: N(n,p1...px) = N(n,n —pr +1..n—p1 +1)7
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A result on walks in the plane



A result on walks in the plane

At given size, there are as many walks in the first octant
that end on the z-axis than excursions in the quarter plane.
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A result on walks in the plane




A look at another problem
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Another result to prove a conjecture

There exists an explicit involution on pairs of non-crossing
Dyck paths that preserves the size and the number of
upper peaks, while exchanging the number of lower steps
leaving the axis and the number of common up-steps.
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Another result to prove a conjecture
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Extending this last result to triples of paths
making use of plane bipolare orientations
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Extending this last result to triples of paths
making use of plane bipolare orientations

|

There exists an explicit involution on triples of
non-crossing lattice paths that preserves the size, the
number of upper peaks, and the number of lower valleys,
while exchanging the number higher horizontal contacts
and the number of lower horizontal contacts.
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Plane bipolar orientations
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