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Configurations of Monic Polynomials

Consider your favorite monic polynomial P and draw:

Q its real antecedents, i.e. {z€ C: P(z) e R}
@ its imaginary antecedents, i.e. {z€ C: P(z) € iR}

N. Combe & V. Jugé Counting Signatures of Monic Polynomials



Configurations of Monic Polynomials

Consider your favorite monic polynomial P and draw:

Q its real antecedents, i.e. {z€ C: P(z) e R}
@ its imaginary antecedents, i.e. {z€ C: P(z) € iR}

P(X)=X3+2iX2 - X +1
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Configurations of Monic Polynomials

Consider your favorite monic polynomial P and draw:

Q its real antecedents, i.e. {z€ C: P(z) e R}
@ its imaginary antecedents, i.e. {z€ C: P(z) € iR}

P(X)=X3+2iX2 - X +1

@ Roots of P (with multiplicity)

@ Roots of P’ lying on the curves
© Asymptotic rays
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From Configurations to Signatures

Which configurations are isotopic to each other?
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From Configurations to Signatures

Which configurations are isotopic to each other?
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Which configurations are isotopic to each other?
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From Configurations to Signatures

Which configurations are isotopic to each other?
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From Configurations to Signatures

Which configurations are isotopic to each other?
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From Configurations to Signatures

Which configurations are isotopic to each other?
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From Configurations to Signatures

Which configurations are isotopic to each other?
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From Configurations to Signatures

Which configurations are isotopic to each other?
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From Configurations to Signatures

Which configurations are isotopic to each other?
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From Configurations to Signatures

Which configurations are isotopic to each other?
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From Configurations to Signatures

Which configurations are isotopic to each other?
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From Configurations to Signatures (a.k.a. Isotopy Classes)

Which configurations are isotopic to each other?

K€
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Signatures are used to compute cohomologies of braid groups
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An Abstract View of Signatures

Three necessary criteria for being a signature of degree d. ..

@ No cycle complex analysis and meromorphic functions
@ 2d bicolored edges alternating and starting from even edges
© 1-colored contact points with even valency = 0 (mod 2)

@ 2-colored contact points with alternating colors and valency = 0 (mod 4)
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An Abstract View of Signatures

Three necessary criteria for being a signature of degree d. ..

@ No cycle complex analysis and meromorphic functions
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@ 2-colored contact points with alternating colors and valency = 0 (mod 4)
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An Abstract View of Signatures

Three necessary criteria for being a signature of degree d. ..

@ No cycle complex analysis and meromorphic functions
@ 2d bicolored edges alternating and starting from even edges
© 1-colored contact points with even valency = 0 (mod 2)

@ 2-colored contact points with alternating colors and valency = 0 (mod 4)
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An Abstract View of Signatures

Three necessary criteria for being a signature of degree d. ..

@ No cycle complex analysis and meromorphic functions
@ 2d bicolored edges alternating and starting from even edges
© 1-colored contact points with even valency = 0 (mod 2)

@ 2-colored contact points with alternating colors and valency = 0 (mod 4)
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An Abstract View of Signatures

Three necessary criteria for being a signature of degree d...

@ No cycle complex analysis and meromorphic functions
@ 2d bicolored edges alternating and starting from even edges
© 1-colored contact points with even valency = 0 (mod 2)

@ 2-colored contact points with alternating colors and valency = 0 (mod 4)

13 14 15 16 17

4 )
12 |_ 18
11 \D 19
10 0 \/
9 1
8 2
==

7 6 5 4 3

N. Combe & V. Jugé Counting Signatures of Monic Polynomials



An Abstract View of Signatures

Three necessary criteria for being a signature of degree d...

@ No cycle complex analysis and meromorphic functions
@ 2d bicolored edges alternating and starting from even edges
© 1-colored contact points with even valency = 0 (mod 2)

@ 2-colored contact points with alternating colors and valency = 0 (mod 4)

Theorem (Norbert A’'Campo, 2017)

@ These criteria are sufficient for being a signature of degree d
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An Abstract View of Signatures

Three necessary criteria for being a signature of degree d. ..

@ No cycle complex analysis and meromorphic functions
@ 2d bicolored edges alternating and starting from even edges
© 1-colored contact points with even valency = 0 (mod 2)

@ 2-colored contact points with alternating colors and valency = 0 (mod 4)

Theorem (Norbert A’'Campo, 2017)
@ These criteria are sufficient for being a signature of degree d
@ Each signature induces a submanifold of polynomials

© They form a CW-complex (~ polytope).
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An Abstract View of Signatures

Three necessary criteria for being a signature of degree d. ..

@ No cycle complex analysis and meromorphic functions
@ 2d bicolored edges alternating and starting from even edges
© 1-colored contact points with even valency = 0 (mod 2)

@ 2-colored contact points with alternating colors and valency = 0 (mod 4)

Theorem (Norbert A’'Campo, 2017)
@ These criteria are sufficient for being a signature of degree d
@ Each signature induces a submanifold of polynomials

© They form a CW-complex (~ polytope).

How many faces does the complex have?
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Counting Which Signatures?

Three parameters of interest
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Counting Which Signatures?

Three parameters of interest

© Degree of the polynomial d = L4tedges
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Counting Which Signatures?

Three parameters of interest

© Degree of the polynomial d = L4tedges
@ Root default of the polynomial r = d — #roots
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Counting Which Signatures?

Three parameters of interest

© Degree of the polynomial d = L4tedges
@ Root default of the polynomial r = d — #roots
© Codimension of the signature manifold c =2r+ > local codim.
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Counting Which Signatures?

Three parameters of interest

© Degree of the polynomial d = L4tedges
@ Root default of the polynomial r = d — #roots
© Codimension of the signature manifold c =2r+ > local codim.

How many signatures with parameters (c,d, r) are there?
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Counting Signatures: First Steps

Evaluating s. 4, = #{signatures with parameters (c,d,r)}
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Counting Signatures: First Steps

Evaluating s. 4, = #{signatures with parameters (c,d,r)}

Recursion Formula for Facets

S0,d+1,0 = Z S0,d1,0 X S0,d»,0 X S0,d3,0 X S0,ds,0
di+da+d3+dy=d
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Counting Signatures: First Steps

Evaluating s. 4, = #{signatures with parameters (c,d,r)}

Recursion Formula for Facets

S0,d+1,0 = Z S0,d1,0 X S0,d»,0 X S0,d3,0 X S0,ds,0
di+do+d3+ds=d

Proof:
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Counting Signatures: First Steps

Evaluating s. 4, = #{signatures with parameters (c,d,r)}

Recursion Formula for Facets

S0,d+1,0 = Z S0,d1,0 X S0,d»,0 X S0,d3,0 X S0,ds,0
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Counting Signatures: First Steps

Evaluating s. 4, = #{signatures with parameters (c,d,r)}

Recursion Formula for Facets

S0,d+1,0 = Z S0,d1,0 X S0,d»,0 X S0,d3,0 X S0,ds,0
di+do+d3+ds=d
Proof:
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Counting Signatures: First Steps

Evaluating s. 4, = #{signatures with parameters (c,d,r)}

Recursion Formula for Facets

S0,d+1,0 = Z S0,d1,0 X S0,d»,0 X S0,d3,0 X S0,ds,0
di+da+d3+dy=d

Counting Facets with Fuss-Catalan Numbers (A’Campo 17)

. _ 1 (4d
0.d.0 = 3511\ d
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Counting Signatures: First Steps

Evaluating s. 4, = #{signatures with parameters (c,d,r)}

Recursion Formula for Facets

S0,d+1,0 = Z S0,d1,0 X S0,d»,0 X S0,d3,0 X S0,ds,0
di+da+d3+dy=d

Counting Facets with Fuss-Catalan Numbers (A’Campo 17)

. _ 1 (4d
0.d.0 = 3511\ d

= What next?
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y sc.q.,xy9z"
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y.sc.q,xy9z"
@ Canonical splitting
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y.sc.q,xy9z"

@ Canonical splitting
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y.sc.q,xy9z"
@ Canonical splitting
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y.sc.q,xy9z"
@ Canonical splitting
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y.sc.q,xy9z"

@ Canonical splitting
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y.sc.q,xy9z"
@ Canonical splitting
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y.sc.q,xy9z"
@ Canonical splitting
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y.sc.q,xy9z"
@ Canonical splitting
© Recursive decomposition
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Counting Signatures: Some Tools

Strategy: Use recursion formula and generating functions

© Generating function S(x,y,z) = Y.sc.q,xy9z"
@ Canonical splitting
© Recursive decomposition
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Counting Signatures: Some More Tools

@ Variant of signatures: contact signatures
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Counting Signatures: Some More Tools

@ Variant of signatures: contact signatures
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Counting Signatures: Some More Tools

@ Variant of signatures: contact signatures

with generating series C(x, y, z)
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Counting Signatures: Some More Tools

@ Variant of signatures: contact signatures
with generating series C(x, y, z)

@ Another variant of signatures with generating series D(x, y, z)
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Counting Signatures: The End is Near

Three algebraic equations (using bijective proofs)

S =1+yC*(1—x%yzC*
C=DS
D =1+ xyC*D?/(1 — x*yC*D)
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Counting Signatures: The End is Near

Three algebraic equations (using bijective proofs)

S =1+yC*(1—x%yzC*
C=DS
D =1+ xyC*D?/(1 — x*yC*D)

Theorem
The generating function S(x, y, z) is algebraic! J
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Counting Signatures: The End is Near

Three algebraic equations (using bijective proofs)

S=1+yC*/(1 - x?yzC*
C=DS
D =1+ xyC*D?/(1 — x*yC*D)

Theorem
The generating function S(x, y, z) is algebraic! J

and its minimal polynomial is not so nice. ..
xHx + 1)+ 8*yv (x* = x® + dux(x* + xPv + v2) — (x> +v?)2 + 8*®) =0
with v = x?z + 1/(S - 1).



Counting Signatures Efficiently

Three ideas for computing s 4

@ Using directly the minimal polynomial of S Did not work ®
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Counting Signatures Efficiently

Three ideas for computing s 4

@ Using directly the minimal polynomial of S Did not work ®
@ Finding a linear DE satisfied by S Size overflow ®
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Counting Signatures Efficiently

Three ideas for computing s. 4 ,

@ Using directly the minimal polynomial of S Did not work ®
@ Finding a linear DE satisfied by S Size overflow ®
© Using the 3 equations! Makes the job ®

S=1+yC*/(1 - x?yzC*"
C=DS
D =1+ xyC*D?/(1 — x*yC*D)
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Counting Signatures Efficiently

Three ideas for computing s. 4 ,

@ Using directly the minimal polynomial of S Did not work ®
@ Finding a linear DE satisfied by S Size overflow ®
© Using the 3 equations! Makes the job ®

S =1+ yC* — x2yzC* + x?yzS8C*
C=DS
D = 1+ xyC*D? — x?yC*D + x2yC*D?
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Counting Signatures Efficiently

Three ideas for computing s. 4 ,

@ Using directly the minimal polynomial of S Did not work ®
@ Finding a linear DE satisfied by S Size overflow ®
© Using the 3 equations! Makes the job ®

S =1+ yC* — x2yzC* + x?yzS8C*
C=DS
D = 1+ xyC*D? — x?yC*D + x2yC*D?

Two more lemmas: s¢c g, >0=2r < c <2d
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Counting Signatures Efficiently

Three ideas for computing s. 4 ,

@ Using directly the minimal polynomial of S Did not work ®
@ Finding a linear DE satisfied by S Size overflow ®
© Using the 3 equations! Makes the job ®

S =1+ yC* — x2yzC* + x?yzS8C*
C=DS
D = 1+ xyC*D? — x?yC*D + x2yC*D?

Two more lemmas: s¢ 4, > 0= 2r < ¢ < 2d and s. 4, < 30971
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Counting Signatures Efficiently

Three ideas for computing s. 4 ,

@ Using directly the minimal polynomial of S Did not work ®
@ Finding a linear DE satisfied by S Size overflow ®
© Using the 3 equations! Makes the job ®

S =1+ yC* — x2yzC* + x?yzS8C*
C=DS
D = 1+ xyC*D? — x?yC*D + x2yC*D?

Two more lemmas: s¢ 4, > 0= 2r < ¢ < 2d and s. 4, < 30971

Corollary
The family of coefficients (s¢ 4.)c<c,d<D,r<r can be computed in time
O(min{C, D, R}*> min{C, D}°D*).
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© Asymptotic Estimations
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What if d — +o07

Problem: Fix c and r and evaluate lims. 4, when d — 40
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What if d — +o07

Problem: Fix c and r and evaluate lims. 4, when d — 40
Two ideas:

@ Singularity analysis of S Difficult ®

(Several branches in multivariate environment)
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What if d — +o07

Problem: Fix c and r and evaluate lims. 4, when d — 40

Two ideas:
@ Singularity analysis of S Difficult ®
@ Study a class of typical signatures! Successful ®
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What if d — +o07

Problem: Fix c and r and evaluate lims. 4, when d — 40

Two ideas:
@ Singularity analysis of S Difficult ®
@ Study a class of typical signatures! Successful ®

(Each component has at most 1 contact point, of small valency)
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What if d — +o07

Problem: Fix c and r and evaluate lims. 4, when d — 40

Two ideas:
@ Singularity analysis of S Difficult ®
@ Study a class of typical signatures! Successful ®

(Each component has at most 1 contact point, of small valency)
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Counting Typical Signatures (1/2)

Another generating function: T (x,y,z) = Y tcd ,xy9z"

Lemma #4 J

T =1+ yT*+ 4xy>T8 + x%y%2T58.

(" )

G J
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Counting Typical Signatures (1/2)

Another generating function: T (x,y,z) = Y tcd ,xy9z"

Lemma #4

T =1+ yT*+ 4xy?T8 + x%y%2T58. J
Proof:
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Counting Typical Signatures (1/2)

Another generating function: T (x,y,z) = Y tcd ,xy9z"

Lemma #4

T =1+ yT*+ 4xy°T® + x>y22T8. J
Proof:
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Counting Typical Signatures (1/2)

Another generating function: T (x,y,z) = Y tcd ,xy9z"

Lemma #4

T =1+yT*+ 4xy*T® + x2y%2T8.
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Counting Typical Signatures (1/2)

Another generating function: T (x,y,z) = Y tcd ,xy9z"

Lemma #4
T =1+ yT*+4x/°T° + x2y%2T°. J

Proof:
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Counting Typical Signatures (1/2)

Another generating function: T (x,y,z) = Y tcd ,xy9z"

Lemma #4

T =1+yT*+ 4xy*T® + x2y%2T8.

Proof:
4 )
©
0
®©
® @
\_ ® Q)

N. Combe & V. Jugé

Counting Signatures of Monic Polynomials



Counting Typical Signatures (1/2)

r

Another generating function: T(x,y,z) = D tcq,xy9z

Lemma #4
T =1+yT*+ 4xy*T® + x2y%2T8. J

Proof:
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Counting Typical Signatures (1/2)

Another generating function: T (x,y,z) = Y tcd ,xy9z"

Lemma #4

T =1+yT*+4xy*T® + xy22T5. J
Proof:
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Counting Typical Signatures (2/2)

Algebraic equation with triangular system of variables

T =1+ yT*+ 4xy?T8 + x?y22758.
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Lagrange Inversion (with 3 variables)

Algebraic equation with triangular system of variables

T =1+ yT*+ 4xy?T8 + x?y22758.
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Lagrange Inversion (with 3 variables)

Algebraic equation with triangular system of variables
T =1+ yT*+ 4xy®T8 + x?y2278.

Exact and asymptotic evaluations

Lesor - 1gsoc o - 4572 ( 4d )
tc,d,r =

c+3d—-r+1 c—2r,d—2c—2r,r,c+3d—r

1c>or 2 4c 30 44 c—r—3/2
tedgr~—"— A/ —— — — = -d
Sl (e—2r)! N 27w 3¢ 167 33
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Typical Signatures are Typical an N

Main tool: Reducing a signature o

Proof: with C components: :|

o Fill the regions (at most 8¢) ? ?
o Place the C components

@ Non-typical s C<c—r—1 § [ E 1

Fixing ¢ = finite number of reductions

Bounding lemma

At most O (dc_’_5/2 . %) signatures reduce to a non-typical signature o.

Theorem

1 2 4¢ ro 44d
scd,NtcdrNLzr.\/:._,:s_, . dc—r=3/2
,d, ,dy I‘l(C . 2r)! 277T 3C 16r 33d
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Conclusion

We still need to. ..
@ Look for more efficient algorithms or closed-form formulee

@ Study the distribution of ¢, r and (c, r) for large values of d
© Ask you for other ideas and

Thank you!
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Lemma #3
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