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Reference Model

Biochemical reactions

2R1
K1
� R2, D (+R2)

K2
� DR2, D (+R2)

K3
� DR∗2 ,

DR2 (+R2)
K4
� DR2R2, DR2 + P

Kt→ DR2 + P + rR1, R1
Kd→ .

Groups of reaction
trend : DNA mechanism of the host E-Coli (D,DR2,DR∗2 ,DR2R2)

T

update : 2R1
K1
� R2, R1

Kd→
rare : DR2 + P

Kt→ DR2 + P + rR1
Some mathematical models (d1, d2, d3, d4, x1, x2) :
pure jump, 2-scale PDMP, Marked-point, discrete model
Reaction speeds can be "chosen".
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Trend

At time n, trend (DNA occupation) is Ln

E.g. If Ln = D : D
k2→ DR2, D

k3→ DR∗2

If Ln = D then Ln+1 =
{
DR2
DR∗2

with proportional probability{
k2

k2+k3
k3

k2+k3
In general, since only one type of occupation, one gets basis vectors
e1 (D), e2 (DR2) ... ep
Take ∆Mn+1 = Ln+1 − ”average” (in fact E [Ln+1/Fn ])
To make it simple, assume Ln+1 is completely independent of Ln
and has 0−mean
∆Mn+1 = Ln+1
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Update

2R1
K1
� R2, R1

Kd→

continuous with choice of speed (u) :
x ′1 = −k1 (u) x21 − kd (u) x1 + k−1 (u) x2
x ′2 = k1 (u) x

2
1 − k−1 (u) x2

linearized
x ′1 = −2k

eq
1 x

eq
1 x1 − k

eq
d x1 + k

eq
−1x2 + b

1 · u
x ′2 = 2k

eq
1 x

eq
1 x1 − k

eq
−1x2 + b

2 · u
or, again dX x ,us = [A (γs )X

x ,u
s + Bsus ] ds

discrete X x ,un+1 = An (ω)X
x ,u
n + Bun+1
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Rare (and Synthesis)

[
D
(
+R2

) K2
� DR2,

]
DR2 + P

Kt→ DR2 + P+ rR1 .

discrete(
x1,n+1
x2,n+1

)
=

(
x1,n
x2,n

)
+

(
0 r
0 0

)(
x1,n
x2,n

)
Continuous f (config. DNA γ, reaction speeds u, fast variable X )
dX x ,us = [A (γs )X

x ,u
s + Bsus ] ds +

∫
E C (γs−, θ)X

x ,u
s− q̃ (dθds)

Discrete
X x ,un+1 = An (ω)X

x ,u
n + Bun+1 +∑pi=1 〈∆Mn+1, ei 〉Ci ,n (ω)X

x ,u
n

The "expected" behavior is similar ... (is it ?)
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The Questions

For the reference model, one has bistability
E.g. lytic : for some choice of speeds, lysis occurs (say at time T or
N) i.e. XT = 0 (or, more general XT =target).

from arbitrary x to "almost" 0

from arbitrary x exactly to 0

from arbitrary x exactly/almost to any "possible" target
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A Hint to the Metric

In deterministic update
X x ,un+1 = AX

x ,u
n + Bun+1.

"the dual" YN=y , Y
N ,y
n := ATY N ,yn+1

〈XN ,YN 〉 =
〈
x ,Y N ,y0

〉
+
N−1
∑
n=0

[〈
un+1,BTY

N ,y
n+1

〉]
.

In order for X x ,uN = 0, whenever all BTY N ,ξn+1 = 0, should have

Y N ,y0 = 0

If "reversible" dynamics, Yn+1 =
(
AT
)−1

Yn

BT
(
AT
)−k

y0 = 0 for all k ≤ N should imply y0 = 0.
controllability to 0 iff metric

(
·2
)

y 7→ yT
[

∑Nk=1 A
−kBBT

(
AT
)−k]

y

(in continuous case, application to power electronic actuator
placement Summers, Cortesi, Lygeros ’14)
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Towards Riccati-like Formulation

Recall that
X x ,un+1 = An (ω)X

x ,u
n + Bun+1 +∑pi=1 〈∆Mn+1, ei 〉Ci ,n (ω)X

x ,u
n

Let us look at ∑Nk=1 A
−kBBT

(
AT
)−k

Recursively computed as PN = BBT ,

Pn = A−1
(
pn+1 + BBT

) (
AT
)−1

How to deal with non-homogeneity (dependence on n) ?

Well ... Pn = A−1n
(
Pn+1 + BBT

) (
ATn
)−1

How to deal with with stochasticity ?
Problem : too much information in pn+1 which is not available at
time n
Solution : decompose Pn+1 in what is known at time n and some
random variation
Couple (p, q) .
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Riccati-like Formulation

Set pn+1 = ”average”

Pn+1 − pn+1 ≈ qn

Pn = A−1n
(
pn+1 + BBT

) [
ATn
]−1

Is it over ? Well ... NO :
Pn has some noise, and so does the process ⇒ some correction
(covariance) term

One "corrects" by substracting "horrible terms" −αTn η−1n αn

αn := −qn×bruit2 ×
[
ATn
]−1

ηn := qn×bruit3 + bruit2 × pn+1
Problem ηn is only semi-positive definite.

Solution : penalize by adding εI
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Horrible Terms (you may look away for 2 minutes)

In fact, P ε
n+1 = E

[
P ε
n+1/Fn

]︸ ︷︷ ︸
p

+Qε
ndiag (∆Mn+1)︸ ︷︷ ︸

q

,

P ε
n = A

−1
n

(
E
[
P ε
n+1/Fn

]
+ BBT

) [
ATn
]−1
− αTn,εη

−1
n,ε αn,ε,

αjn,ε := −Qε
nE
[〈

∆Mn+1, ej
〉
diag (∆Mn+1) /Fn

] [
ATn
]−1

ηj ,kn,ε :=
εδj ,k Im×m +

1
2Q

ε
nE
[
〈∆Mn+1, ek 〉

〈
∆Mn+1, ej

〉
diag (∆Mn+1) /Fn

]
+ 12E

[
〈∆Mn+1, ek 〉

〈
∆Mn+1, ej

〉
(diag (∆Mn+1))

T /Fn
]
(Qε
n)
T

+E
[
〈∆Mn+1, ek 〉

〈
∆Mn+1, ej

〉
/Fn

]
E
[
P ε
n+1/Fn

]
If C is present, even more "horrible terms" α, η.

JUST A,B condition does not suffi ce R©
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Theorem

i. System is controllable to 0 ⇔ almost to 0⇔ lim inf
ε→0+

P ε
0 � 0 (positive

definite).
ii. The norm is ‖y0‖2ctrl = lim inf

ε→0

〈
P ε
0y0, y0

〉
.

Existence results :
iii. If An , Cn are non-random, ∃P ε ≥ 0 (explicit).
iv. If Cn = 0, ∃P ε ≥ 0 (explicit).
v. continuous and discrete conditions are NOT the same.
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Scenarios, Effi ciency

Several (r) scenarios (Bi )i∈{1,..,r} : ‖·‖ctrl , B

‖B‖specctrl := infy 6=0
‖y ‖ctrl ,B
‖y ‖

‖B‖rankctrl := Rank
(
lim inf

ε→0
P ε
0 (B)

)
controllable using B ⇔ ‖B‖specctrl > 0 ⇔ ‖B‖

rank
ctrl = m.

Definitions

1)I is minimal spectral-effi cient intervention :
(i) ‖B (I)‖specctrl > 0 ;
(ii) ∀J ⊂ {1, ...r}, |J | < |I| , one has ‖B (J )‖specctrl = 0;
(iii) ∀J ⊂ {1, ...r}, |J | = |I| , one has ‖B (J )‖specctrl ≤ ‖B (I)‖

spec
ctrl .

2) I is minimal rank-effi cient intervention :
(i) ‖B (I)‖rankctrl = m;

(ii) ∀J ⊂ {1, ...r}, |J | < |I| , one has ‖B (J )‖rankctrl < m.

Dan Goreac Controllability Metrics in Markov Decision Linear Models of Gene Networks



The model
Controllabilities

Minimal Intervention

Optimization Problems
Back to Lambda

Optimization Problems

maxI⊂{1,...r}
|I|=k

‖B (I)‖ctrl , 1 ≤ k ≤ r ,

rank-based set functions are submodular (Lovasz ’83) :
f (S1 ∩ S2) + f (S1 ∪ S2) ≤ f (S1) + f (S2)
submodularity is "a combinatorial analogue of concavity"
(Nemhauser ’78)
problem is NP-hard BUT a greedy approach provides good results.

SO : use ‖·‖rankctrl and greedy heuristic ⇒ minimal k
then, use ‖·‖specctrl for such k.
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Back to the Initial Model

X x ,un+1 = An (ω)X
x ,u
n + Bun+1 +∑pi=1 〈∆Mn+1, ei 〉Ci ,n (ω)X

x ,u
n

A =
( 1

4
1
2

1
4

3
4

)
, C2 =

(
0 r
0 0

)
b1 =

(
0
1

)
, respectively b2 =

(
1
1

)
direct control on dimer fails to work

one needs SIMULTANEOUS control on monomer/dimer
BUT altering ONE external factor suffi ces.
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Thank you for your patience !
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