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The model Biochemical Reactions
Math: de
The C

Reference Model

@ Biochemical reactions p p
1 2 3
2Ry 2 Ry, D(+Ry) = DRy, D(+Ry) = DR;,
Ky
DR, (+R») = DRyRy, DRy + P X DRy + P+ Ry, Ry ¢ .
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The model

Reference Model

@ Biochemical reactions p p
2 3
2R, = Ry, D (+Ry) = DRy, D (+Ry) = DR,
Ky
DR, (+R») = DRyRy, DRy + P X DRy + P+ Ry, Ry ¢ .
@ Groups of reaction
trend : DNA mechanism of the host E-Coli (D, DRy, DR5, DRy RQ)T
Ki K
update : 2R} = Ry, Ry -2
rare : DRy + P Ky DRy, + P+ rRy
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The model

Reference Model

@ Biochemical reactions p p
1 2 3
2Ry 2 Ry, D(+Ry) = DRy, D(+Ry) = DR;,
Ky
DR, (+R») = DRyRy, DRy + P X DRy + P+ Ry, Ry ¢ .

@ Groups of reaction
trend : DNA mechanism of the host E-Coli (D, DRy, DR5, DRy RQ)T

K Ky
update : 2R = Ry, Ry —
rare : DRy + P Ky DRy, + P+ rRy

@ Some mathematical models (di, do, d3, da, x1, x2) :
pure jump, 2-scale PDMP, Marked-point, discrete model
Reaction speeds can be "chosen".
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The model Biochemical Reactions
Mathematical Model
The Questions

@ At time n, trend (DNA occupation) is L,
Eg IfL,=D: D2 DRy, D% DRy
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The model

@ At time n, trend (DNA occupation) is L,
Eg IfL,=D: D2 DRy, D% DRy

o If Ly, =Dthen L,11 = { with proportional probability
ko

ko+k
2 ks

ko+k3

DR,
DR}
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The model Biochemical ions
Mathematical Model
The Questions

@ At time n, trend (DNA occupation) is L,
Eg IfL,=D: D2 DRy, D% DRy

o If Ly, =Dthen L,11 = { ggﬁ with proportional probability
2

ko
ko+k:
2k3 3
ko+ks

@ In general, since only one type of occupation, one gets basis vectors
e1 (D), & (DRy) ... e
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The model Biochemical ions
Mathematical Model
The Questions

@ At time n, trend (DNA occupation) is L,
Eg IfL,=D: D2 DRy, D% DRy

o If Ly, =Dthen L,11 = { with proportional probability

ko
{ /nglg
Ko tks
@ In general, since only one type of occupation, one gets basis vectors
e1 (D), & (DRy) ... e
o Take AM; 1 = L1 — "average” (in fact E [Lyy1/Fn))
To make it simple, assume L, is completely independent of L,
and has 0—mean
AMpy1 = Lpya

DR,
DR}
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The model Biochemical tions
Mathematical Model

The Questions

K1
o 2R, = Ry, R, ¢
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The model Biochemical Reactions
Mathematical Model
The Questions

K1
0 2R, = Ry, R| ¢

@ continuous with choice of speed (u) :
x| = —ky (u)x¢ — kg (u) x1 + k_1 (u) x2
Xy = ky (u)x? — k-1 (u) x
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The model

K1
0 2R, = Ry, R| ¢

@ continuous with choice of speed (u) :
x| = —ky (u)x¢ — kg (u) x1 + k_1 (u) x2
Xy = ky (u)x? — k-1 (u) x

@ linearized
x| = =2k Ix;Txq — ksqxl + k%o + bl -u
Xy =2k x(Tx1 — k% x0 + b2 - u
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The model

K1
2R, = Ry, R ¢

continuous with choice of speed (u) :

x| = —ky (u)x¢ — kg (u) x1 + k_1 (u) x2
Xy = ky (u)x? — k-1 (u) x

linearized

x{ = —2k;Ix ele — ksqxl + k%o + bl -u

X2 = 2/(1 X1 I — kiqlxz +b%-u
or, again dX*" = [A(ys) X&' + Bsus] ds
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The model

K1
2R, = Ry, R ¢

continuous with choice of speed (u) :

x| = —ky (u)x¢ — kg (u) x1 + k_1 (u) x2
Xy = ky (u)x? — k-1 (u) x

linearized

x{ = —2k;Ix ele — ksqxl + k%o + bl -u
X2 = 2/(1 X1 I — kiqlxz +b%-u

or, again dX*" = [A(ys) X&' + Bsus] ds

discrete = Ap (w) X5 + Bupy1

n+l -
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The model

Rare (and Synthesis)

K.
o |D(_tRe ) = DRy, | DRy+P X DRy + P+ R ].
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The model Biochemical ions
Mathematical Model
The Questions

Rare (and Synthesis)

DR, + P ﬁDR2+P+.

D( +R) ) = DRy,

@ discrete

() -(2)+ () (20
X2,n+1 X2.n 0 0 X2.n
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The model

Rare (and Synthesis)

DR, + P ﬁDR2+P+.

D( R ) gDRQ,

@ discrete
(- (20)- 6 ) (x)
X2,n4+1 X2,n 0 0 X2.n

e Continuous f (config. DNA 1, reaction speeds u, fast variable X)
dX3 = [A(ys) XY + Bsus) ds + [ C (vs—,0) X22"q (dBds)
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The model

Rare (and Synthesis)

DR, + P ﬁDR2+P+.

D( R ) gDRQ,

@ discrete
(- ()G o))
X2,n4+1 X2,n 00 X2,n
e Continuous f (config. DNA 1, reaction speeds u, fast variable X)
dX3 = [A(ys) XY + Bsus) ds + [ C (vs—,0) X22"q (dBds)

@ Discrete
X,);jrul = Ap ((/J) Xpt + Bupy1 + 2?21 <AMn+11 ei> Ci,n (w) Xq!
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The model

Rare (and Synthesis)

DR, + P ﬁDR2+P+.

D( R ) gDRQ,

discrete
(- ()G o))
X2,n4+1 X2,n 00 X2,n
Continuous f (config. DNA 1, reaction speeds u, fast variable X)
dX3 = [A(ys) XY + Bsus) ds + [ C (vs—,0) X22"q (dBds)

@ Discrete

Xoot = An (W) X3 + Bupy1 + X501 (MM, €) G (w) X3!

The "expected" behavior is similar ... (is it ?)
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The model

The Questions

The Questions

@ For the reference model, one has bistability
E.g. lytic : for some choice of speeds, lysis occurs (say at time T or
N) i.e. X7 =0 (or, more general X7 =target).

e from arbitrary x to "almost" 0

e from arbitrary x exactly to 0

e from arbitrary x exactly/almost to any "possible" target
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Controllabilities
Main Theoretical

Outline

© Controllabilities
@ Metric By Observability
@ Riccati Formulation of the Metric
@ Main Theoretical Results
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Controllabilities

A Hint to the Metric

@ In deterministic update
ol = AXyY + Bupyg.

n+1
o "the dual" Yy=y, Y,V := AT YV
N—1
N, N,
Xy, Yn) = <x, % y>+ 3 [<un+1,BTYn+{>} .
n=0
@ In order for X;\(I'” = 0, whenever all BTYn’\ﬁ = 0, should have

Y, =0
o If "reversible" dynamics, Y, 1 = (AT>71 Yn

BT (AT)_k yo = 0 for all k < N should imply y5 = 0.
@ controllability to 0 iff metric (2)

y—=yT [ny_l AkBBT (AT)k] y

@ (in continuous case, application to power electronic actuator
placement Summers, Cortesi, Lygeros '14)
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Controllabilities Ric o e
HmH retical Results

Towards Riccati-like Formulation

° Recall that
,-,+1 = An ( ) r)7(’u + Bun+1 + Z?:l <AMn+lv ei> Ci,n ((U) r>1<’u

o Let us look at Y)_; A¥BBT (AT)
Recursively computed as Py = BBT,
P, = AL (pnﬂ + BBT> (AT)_

@ How to deal with non-homogeneity (dependence on n)?
Well ... P, = A-1 (P,,H + BBT) (A,,T)7

@ How to deal with with stochasticity 7
Problem : too much information in p,41 which is not available at
time n
Solution : decompose P,11 in what is known at time n and some
random variation

Couple (p. q) .
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Metric By Observability
Controllabilities Riccati Formulation of the Metric
Main Theoretical Results

Riccati-like Formulation

@ Set ppi1 = "average’
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Metric By Observability
Controllabilities Riccati Formulation of the Metric
Main Theoretical Results

Riccati-like Formulation

@ Set ppi1 = "average’

® Phi1 —pny1 ®an
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Metric By
Controllabilities Riccati Fol
Main Theoretical Results

Riccati-like Formulation

@ Set ppi1 = "average’

® Phi1 —pny1 ®an

° Pp= A;1 (Pn+1 + BBT) {Aﬂ N
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Metric By
Controllabilities Riccati Fol
Main Theoretical Results

Riccati-like Formulation

Set p,11 = "average”

Pnt1 — Pn+1 = qn
Pn = A;1 (Pn+1 + BBT) {Aﬂ N

o Is it over? Well ... NO :
P, has some noise, and so does the process = some correction
(covariance) term

Dan Goreac Controllability Metrics in Markov Decision Linear Models of Gene Networks



Controllabilities
Main Theor al Results

Riccati-like Formulation

Set p,11 = "average”

Pnt1 — Pn+1 = qn
Pn = A;1 (Pn+1 + BBT) {Aﬂ N

o Is it over? Well ... NO :
P, has some noise, and so does the process = some correction
(covariance) term

@ One "corrects" by substracting "horrible terms" —tx,,T;y;locn
Kp = —q,,><bruit‘2 X {AZ—]

n := qn X bruit3 + bruit?> x p,1
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Controllabilities
Main Theoretical Results

Riccati-like Formulation

Set p,11 = "average”

Pnt1 — Pn+1 = qn
Pn = A;1 (Pn+1 + BBT) {Aﬂ N

o Is it over? Well ... NO :
P, has some noise, and so does the process = some correction
(covariance) term

@ One "corrects" by substracting "horrible terms" —tx,,T;y;locn
Kp = —q,,><bruit‘2 X {AZ—]

n := qn X bruit3 + bruit?> x p,1

Problem 7, is only semi-positive definite.
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Controllabilities
Main Theoretical Results

Riccati-like Formulation

Set p,11 = "average”

Pnt1 — Pn+1 = qn
Pn = A;1 (Pn+1 + BBT) {Aﬂ N

o Is it over? Well ... NO :
P, has some noise, and so does the process = some correction
(covariance) term

@ One "corrects" by substracting "horrible terms" —tx,,T;y;locn
Kp = —q,,><bruit‘2 X {AZ—]

n := qn X bruit3 + bruit?> x p,1

Problem 7, is only semi-positive definite.

Solution : penalize by adding e/
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Metric B ility
Controllabilities Riccati of the Metric
Main Theoretical Results

Horrible Terms (you may look away for 2 minutes)

o Infact, P; ; =E [Pf,H /]—",,] + Q5 diag (AMp11),
p q

-1
° Ph=A." (IE [P 1/ Fn] + BBT) {Aﬂ — ] el i ln e,

o whei= —Q5E [(AMyi1, ¢) diag (AMys1) / 7] [A]]

° ;7{,{; =
&0} klmxm + 3 QSE [(AMpi1, ex) (AMyi1, €) diag (AMpi1) / Fn)
+3E [(AMn 1, e) (AMp1, ¢)) (diag (AMy41)) "/ Fa] (Q5)T
+E [(AMp i1, &) (AMni1, €7) / Fn] E [Ph g/ Fn)

o If C is present, even more "horrible terms" a, 7.

e JUST A,B condition does not suffice R
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Controllabilities

Theorem

i. System is controllable to 0 < almost to 0 < Iim(i)r_Lng > 0 (positive
E—
definite).
ii. The norm is ||y0||§tr, = lim i(r)lf (P§y0.y0) -
£E—
Existence results :
iii. If An, Cp are non-random, 3P* > 0 (explicit).
iv. If Cp =0, AP% > 0 (explicit).
v. continuous and discrete conditions are NOT the same.
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Minimal Intervention

Outline

e Minimal Intervention
@ Optimization Problems
@ Back to Lambda
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Optimization Problems
Back to Lambda
Minimal Intervention > 1mbaa

Scenarios, Efficiency

o Several (r) scenarios (B;)ie1,..r} ¢ |l
ctrl,

° HB”SPE’C = inf, 4 I llcen, B

ctrl Iy
1815 1= Rank (imipt5 (8))
e controllable using B < [|B||??%" >0 < ||B|\£if,k =m

Definitions

)I is minimal spectral—efficient intervention :

M) 1B@ON%T >
(,. ) VT C{1,..r}, |j| < |Z|, one has ||B(J )||5’;relc =

(i) VT {1, ..r}, |T| = |Z|, one has ||B(T) |25 < ||B (D125 -
2) 7 is minimal rank-efficient intervention :
k
) 1B (D)llcn =

ctrl —

(i) VT c{1,..r}, |T| < |Z|, one has ||B(\7)||f;7,k < m.
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Optimization Problems

Back to Lambda
Minimal Intervention > Hmods

Optimization Problems

@ MaXzc{1,..r} ”B (I)”ctr/' l<k<r,
IZ1=k
@ rank-based set functions are submodular (Lovasz '83) :
f(SINS)+F(S1US) <f(S1)+1(S)
@ submodularity is "a combinatorial analogue of concavity"
(Nemhauser '78)
problem is NP-hard BUT a greedy approach provides good results.

@ SO : use ||-||rank and greedy heuristic = minimal k

Llc
then, use ||-||>25° for such k.

ctrl
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Optimization Problems

Minimal Intervention [eels @ lenmiaih

Back to the Initial Model

° X:_"'_ul = A, (w)X + Bupy1 +ZI 1 (AMpy1, e,> Cin (w) Xy
11 0 r

(1 3)e(00)

by = ( (1) > , respectively by = ( i >

direct control on dimer fails to work

one needs SIMULTANEOUS control on monomer/dimer
BUT altering ONE external factor suffices.
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Optimi: Problems

Back to Lambda

Minimal Intervention

Thank you for your patience !
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