Orientations bipolaires et chemins tandem

Éric Fusy (CNRS/LIX) Travaux avec Mireille Bousquet-Mélou et Kilian Raschel

Journées Alea, 2017

Tandem walks

A tandem-walk is a walk in \mathbb{Z}^2 with step-set $\{N, W, SE\}$

in the plane \mathbb{Z}^2

in the half-plane $\{y \ge 0\}$

(after k steps, current y = #N - #SE, current x = #SE - #W)

Hook-length formula: for *n* of the form n = 3m + 2i + j we have $\begin{bmatrix} (i+1)(j+1)(i+j+2)n \end{bmatrix}$

$$q[n;i,j] = \frac{(i+1)(j+1)(i+j+2)n}{m!(m+i+1)!(m+i+j+2)!}$$

Algebraicity when the endpoint is free

Let
$$Q(t; x, y) = \sum_{n,i,j} q[n; i, j] t^n x^i y^j$$

Theorem: [Gouyou-Beauchamps'89], [Bousquet-Mélou,Mishna'10] Then Q(t, 1, 1) is the series counting Motzkin walks, \swarrow

i.e.,
$$Y \equiv t Q(t, 1, 1)$$
 satisfies $Y = t \cdot (1 + Y + Y^2)$

$$Y = t + t \cdot Y + t \cdot Y^{2}$$

Bijection with Motzkin walks [Gouyou-Beauchamps'89]

Young tableau of height ≤ 3

Bijection with Motzkin walks

[Gouyou-Beauchamps'89]

Bijection with Motzkin walks

[Gouyou-Beauchamps'89]

Bijection with Motzkin walks [Gouyou-Beauchamps'89]

2

8 11 2 5 9 11 3 6 13 10 Robinson 4 12 Schensted 8 Young tableau tandem walk in \mathbb{N}^2 involution of height ≤ 3 with no

with no nesting

Bijection with Motzkin walks

[Gouyou-Beauchamps'89]

Reformulation with half-plane tandem-walks There is a bijection between:

 \bullet tandem walks of length n staying in the quarter plane \mathbb{N}^2

⚠

• tandem walks of length n staying in the half-plane $\{y\geq 0\}$ and ending at y=0

Rk: The bijection preserves the number of SE steps

An extension of the walk model

General model:

step-set: • the SE step

• every step (-i, j) (with $i, j \ge 0$) level:= i + j

An extension of the walk model

General model:

There is **still a bijection** between:

- \bullet general tandem walks of length n in the quarter plane \mathbb{N}^2
- general tandem walks of length n in $\{y\geq 0\}$ ending at y=0

 \underline{Y}

level 3

level 2

level 1

 $\blacktriangleright \mathcal{X}$

• SE

The bijection **preserves** the number of SE-steps and the number of steps in each level $p\geq 1$

Bipolar and marked bipolar orientations

bipolar orientation:

(on planar maps)

= acyclic orientation

with a unique source ${\cal S}$ and a unique sink ${\cal N}$

with ${\cal S}, {\cal N}$ incident to the outer face

Bipolar and marked bipolar orientations

bipolar orientation:

(on planar maps) = acyclic orientation with a unique source Sand a unique sink Nwith S, N incident to the outer face

marked bipolar orientation:

Α'δ

indegree=1

Ø.

a marked vertex $A' \neq N$ on left boundary a marked vertex $A \neq S$ on right boundary

outdegree=1

The Kenyon et al. bijection

general tandem-walk (in \mathbb{Z}^2)

[Kenyon, Miller, Sheffield, Wilson'16]

marked bipolar orientation black vertex

step (-i,j)

SE step

inner face of degree i+j+2

bijection

The Kenyon et al. bijection

[Kenyon, Miller, Sheffield, Wilson'16]

• SE steps create a new black vertex

• steps (-i, j) create a new inner face (of degree i + j + 2)

Parameter-correspondence in the bijection

An involution on marked bipolar orientations

An involution on marked bipolar orientations

Effect of the involution on walks

Quarter plane walks \leftrightarrow half-plane walks ending at y = 0

• Specialize the involution at $\{L' = 0, \delta' = 0\}$

Quarter plane walks \leftrightarrow half-plane walks ending at y = 0

• Specialize the involution at $\{L' = 0, \delta' = 0\}$

• Specialize at $\{\delta' \leq a, L' \leq b\} \Rightarrow$ quarter plane walks starting at (a, b)

Let Q(t) be the generating function of general tandem-walks in \mathbb{N}^2 • counted w.r.t. the length (variable t)

• with a weight z_i for each "face-step" of level i

Then $Y \equiv t Q(t)$ is given by $Y = t \cdot (1 + w_0 Y + w_1 Y^2 + w_2 Y^3 + \cdots)$ where $w_i = z_i + z_{i+1} + z_{i+2} + \cdots$

Let Q(t) be the generating function of general tandem-walks in \mathbb{N}^2 • counted w.r.t. the length (variable t) • with a weight z_i for each "face-step" of level i

Then $Y \equiv t Q(t)$ is given by $Y = t \cdot (1 + w_0 Y + w_1 Y^2 + w_2 Y^3 + \cdots)$ where $w_i = z_i + z_{i+1} + z_{i+2} + \cdots$

Let Q(t) be the generating function of general tandem-walks in \mathbb{N}^2 • counted w.r.t. the length (variable t) • with a weight z_i for each "face-step" of level i

Then $Y \equiv t Q(t)$ is given by $Y = t \cdot (1 + w_0 Y + w_1 Y^2 + w_2 Y^3 + \cdots)$ where $w_i = z_i + z_{i+1} + z_{i+2} + \cdots$

Rk: alternative proof (earlier!) with obstinate kernel method

Let Q(t) be the generating function of general tandem-walks in \mathbb{N}^2 • counted w.r.t. the length (variable t) • with a weight z_i for each "face-step" of level i

Then $Y \equiv t Q(t)$ is given by $Y = t \cdot (1 + w_0 Y + w_1 Y^2 + w_2 Y^3 + \cdots)$ where $w_i = z_i + z_{i+1} + z_{i+2} + \cdots$

Rk: alternative proof (earlier!) with obstinate kernel method

Rk: Let $Q^{(a,b)}(t) := \mathsf{GF}$ of general tandem walks in \mathbb{N}^2 starting at (a,b)Then $t Q^{(a,b)}(t) = \mathsf{explicit}$ polynomial in Y (with positive coefficients)

Quarter plane walks ending at (i, 0)

The series $F_i(t) := \sum_n q[n; i, 0]t^n$ counts bipolar orientation of the form

with t for # edges, and weight z_r for each inner face of degree $0 \le r \le p$

Quarter plane walks ending at (i, 0)

The series $F_i(t) := \sum_n q[n; i, 0]t^n$ counts bipolar orientation of the form

with t for # edges, and weight z_r for each inner face of degree $0 \le r \le p$

Asymptotic enumeration $q[n; i, 0] \sim_{n \to \infty} C_i \cdot \gamma^n \cdot n^{-4}$ where $C_i = c \cdot \alpha^i (i+1)(i+2)$ from [Denisov-Wachtel'11] **Rk:** For undirected rooted maps $M[n; i] \sim_{n \to \infty} C_i \cdot \gamma^n \cdot n^{-5/2}$ where $C_i = c \cdot \alpha^i 4^{-i} i {2i \choose i}$ (with applications to peeling)

Quarter plane walks ending at (i, 0)

The series $F_i(t) := \sum_n q[n; i, 0]t^n$ counts bipolar orientation of the form

with t for # edges, and weight z_r for each inner face of degree $0 \le r \le p$

Asymptotic enumeration $q[n; i, 0] \sim_{n \to \infty} C_i \cdot \gamma^n \cdot n^{-4}$ where $C_i = c \cdot \alpha^i (i+1)(i+2)$ from [Denisov-Wachtel'11] **Rk:** For undirected rooted maps $M[n; i] \sim_{n \to \infty} C_i \cdot \gamma^n \cdot n^{-5/2}$ where $C_i = c \cdot \alpha^i 4^{-i} i {2i \choose i}$ (with applications to peeling) Exact enumeration Let $H_i(t) = \mathsf{GF}$ of $\sum_{i=1}^{p} (r+1)z_iH_{i+2}(t) + \sum_{r=0}^{p} (r+1)z_iH_{i+r+2}(t)$ Proof using obstinate kernel method or from Kenyon et al. + local operations