On the mixing time of the flip walk on triangulations of the sphere

Thomas Budzinski

ENS Paris

Journées ALÉA 23 Mars 2017

Planar maps

Definitions

- A *planar map* is a finite, connected graph embedded in the sphere in such a way that no two edges cross (except at a common endpoint), considered up to orientation-preserving homeomorphism.
- A planar map is a *rooted type-I triangulation* if all its faces have degree 3 and it has a distinguished oriented edge. It may contain multiple edges and loops.

Planar maps

Definitions

- A *planar map* is a finite, connected graph embedded in the sphere in such a way that no two edges cross (except at a common endpoint), considered up to orientation-preserving homeomorphism.
- A planar map is a *rooted type-I triangulation* if all its faces have degree 3 and it has a distinguished oriented edge. It may contain multiple edges and loops.

• Exact enumeration results [Tutte],

- Exact enumeration results [Tutte],
- the distances in T_n(∞) are of order n^{1/4}
 [≈ Chassaing–Schaeffer],

- Exact enumeration results [Tutte],
- the distances in T_n(∞) are of order n^{1/4}
 [≈ Chassaing–Schaeffer],
- when the distances are renormalized, $T_n(\infty)$ to a continuum random metric space called the Brownian map [Le Gall],

- Exact enumeration results [Tutte],
- the distances in T_n(∞) are of order n^{1/4}
 [≈ Chassaing–Schaeffer],
- when the distances are renormalized, $T_n(\infty)$ to a continuum random metric space called the Brownian map [Le Gall],
- the Brownian map is homeomorphic to the sphere [Le Gall-Paulin].

A uniform triangulation of the sphere with 10 000 vertices

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_n for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

- We fix $t_0 \in \mathscr{T}_n$ and take $T_n(0) = t_0$.
- Conditionally on $(T_n(k))_{0 \le i \le k}$, let e_k be a uniform edge of $T_n(k)$ and $T_n(k+1) = \mathfrak{flip}(T_n(k), e_k)$.

- We fix $t_0 \in \mathscr{T}_n$ and take $T_n(0) = t_0$.
- Conditionally on $(T_n(k))_{0 \le i \le k}$, let e_k be a uniform edge of $T_n(k)$ and $T_n(k+1) = \mathfrak{flip}(T_n(k), e_k)$.
- The uniform measure on \mathcal{T}_n is reversible for T_n , thus stationary.

- We fix $t_0 \in \mathscr{T}_n$ and take $T_n(0) = t_0$.
- Conditionally on $(T_n(k))_{0 \le i \le k}$, let e_k be a uniform edge of $T_n(k)$ and $T_n(k+1) = \mathfrak{flip}(T_n(k), e_k)$.
- The uniform measure on \mathscr{T}_n is reversible for T_n , thus stationary.
- The chain *T_n* is irreducible (the flip graph is connected [Wagner 36]) and aperiodic (non flippable edges), so it converges to the uniform measure.

- We fix $t_0 \in \mathscr{T}_n$ and take $T_n(0) = t_0$.
- Conditionally on $(T_n(k))_{0 \le i \le k}$, let e_k be a uniform edge of $T_n(k)$ and $T_n(k+1) = \mathfrak{flip}(T_n(k), e_k)$.
- The uniform measure on \mathcal{T}_n is reversible for T_n , thus stationary.
- The chain *T_n* is irreducible (the flip graph is connected [Wagner 36]) and aperiodic (non flippable edges), so it converges to the uniform measure.
- Question : how quick is the convergence?

For n ≥ 3 and 0 < ε < 1 we define the mixing time t_{mix}(ε, n) as the smallest k such that

$$\max_{t_0 \in \mathscr{T}_n} \max_{A \subset \mathscr{T}_n} |\mathbb{P}(T_n(k) \in A) - \mathbb{P}(T_n(\infty) \in A)| \le \varepsilon,$$

where we recall that $T_n(\infty)$ is uniform on \mathscr{T}_n .

For n ≥ 3 and 0 < ε < 1 we define the mixing time t_{mix}(ε, n) as the smallest k such that

$$\max_{t_0 \in \mathscr{T}_n} \max_{A \subset \mathscr{T}_n} |\mathbb{P}(T_n(k) \in A) - \mathbb{P}(T_n(\infty) \in A)| \le \varepsilon,$$

where we recall that $T_n(\infty)$ is uniform on \mathscr{T}_n .

Theorem (B., 2016)

For all $0 < \varepsilon < 1$, there is a constant c > 0 such that

 $t_{mix}(\varepsilon,n) \ge cn^{5/4}.$

We will be interested in the existence of small separating cycles.

Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (\approx Le Gall–Paulin, 2008)

Let $\ell_n = o(n^{1/4})$. Then, with probability going to 1 as $n \to +\infty$, there is no cycle in $T_n(\infty)$ of length at most ℓ_n that separates $T_n(\infty)$ in two parts, each of which contains at least $\frac{n}{4}$ vertices.

We will be interested in the existence of small separating cycles.

Theorem (\approx Le Gall–Paulin, 2008)

Let $\ell_n = o(n^{1/4})$. Then, with probability going to 1 as $n \to +\infty$, there is no cycle in $T_n(\infty)$ of length at most ℓ_n that separates $T_n(\infty)$ in two parts, each of which contains at least $\frac{n}{4}$ vertices.

Let $T_n^1(0)$ and $T_n^2(0)$ be two independent uniform triangulations of a 1-gon with $\frac{n}{2}$ inner vertices each, and $T_n(0)$ the gluing of $T_n^1(0)$ and $T_n^2(0)$ along their boundary.

We will be interested in the existence of small separating cycles.

Theorem (\approx Le Gall–Paulin, 2008)

Let $\ell_n = o(n^{1/4})$. Then, with probability going to 1 as $n \to +\infty$, there is no cycle in $T_n(\infty)$ of length at most ℓ_n that separates $T_n(\infty)$ in two parts, each of which contains at least $\frac{n}{4}$ vertices.

Let $T_n^1(0)$ and $T_n^2(0)$ be two independent uniform triangulations of a 1-gon with $\frac{n}{2}$ inner vertices each, and $T_n(0)$ the gluing of $T_n^1(0)$ and $T_n^2(0)$ along their boundary. It is enough to prove

Proposition

Let $k_n = o(n^{5/4})$. There is a cycle γ in $T_n(k_n)$ of length $o(n^{1/4})$ in probability that separates $T_n(k_n)$ in two parts, each of which contains at least $\frac{n}{4}$ vertices.

Perimeter : $\widetilde{P}_n(0) = 1$ Explored volume : $\widetilde{V}_n(0) = 1$

Perimeter : $\widetilde{P}_n(0) = 1$ Explored volume : $\widetilde{V}_n(0) = 1$

Perimeter : $\widetilde{P}_n(1) = 1$ Explored volume : $\widetilde{V}_n(1) = 1$

Perimeter : $\widetilde{P}_n(1) = 1$ Explored volume : $\widetilde{V}_n(1) = 1$

Perimeter : $\widetilde{P}_n(1) = 1$ Explored volume : $\widetilde{V}_n(1) = 1$

Perimeter : $\widetilde{P}_n(2) = 2$ Explored volume : $\widetilde{V}_n(2) = 2$

Perimeter : $\widetilde{P}_n(2) = 2$ Explored volume : $\widetilde{V}_n(2) = 2$

Perimeter : $\widetilde{P}_n(3) = 2$ Explored volume : $\widetilde{V}_n(3) = 2$

Perimeter : $\widetilde{P}_n(3) = 2$ Explored volume : $\widetilde{V}_n(3) = 2$

Perimeter : $\widetilde{P}_n(3) = 2$ Explored volume : $\widetilde{V}_n(3) = 2$

Perimeter : $\widetilde{P}_n(4) = 3$ Explored volume : $\widetilde{V}_n(4) = 3$

Perimeter : $\widetilde{P}_n(4) = 3$ Explored volume : $\widetilde{V}_n(4) = 3$

Perimeter : $\widetilde{P}_n(5) = 3$ Explored volume : $\widetilde{V}_n(5) = 3$

Perimeter : $\widetilde{P}_n(5) = 3$ Explored volume : $\widetilde{V}_n(5) = 3$

Perimeter : $\widetilde{P}_n(5) = 3$ Explored volume : $\widetilde{V}_n(5) = 3$

Perimeter : $\widetilde{P}_n(6) = 4$ Explored volume : $\widetilde{V}_n(6) = 4$

Perimeter : $\widetilde{P}_n(6) = 4$ Explored volume : $\widetilde{V}_n(6) = 4$

Perimeter : $\widetilde{P}_n(7) = 4$ Explored volume : $\widetilde{V}_n(7) = 4$

Perimeter : $\widetilde{P}_n(7) = 4$ Explored volume : $\widetilde{V}_n(7) = 4$

Perimeter : $\widetilde{P}_n(7) = 4$ Explored volume : $\widetilde{V}_n(7) = 4$

exploration steps :

Perimeter : $\widetilde{P}_n(8) = 5$ Explored volume : $\widetilde{V}_n(8) = 5$

exploration steps :

Perimeter : $\widetilde{P}_n(8) = 5$ Explored volume : $\widetilde{V}_n(8) = 5$

exploration steps :

Perimeter : $\widetilde{P}_n(8) = 5$ Explored volume : $\widetilde{V}_n(8) = 5$

exploration steps :

Perimeter : $\widetilde{P}_n(8) = 5$ Explored volume : $\widetilde{V}_n(8) = 5$

exploration steps :

Perimeter : $\widetilde{P}_n(9) = 4$ Explored volume : $\widetilde{V}_n(9) = 6$

exploration steps :

Perimeter : $\widetilde{P}_n(9) = 4$ Explored volume : $\widetilde{V}_n(9) = 6$

exploration steps :

Perimeter : $\widetilde{P}_n(10) = 4$ Explored volume : $\widetilde{V}_n(10) = 6$

exploration steps :

Perimeter : $\widetilde{P}_n(11) = 4$ Explored volume : $\widetilde{V}_n(11) = 6$

exploration steps :

Perimeter : $\widetilde{P}_n(11) = 4$ Explored volume : $\widetilde{V}_n(11) = 6$

exploration steps :


```
Perimeter :

\widetilde{P}_n(11) = 4

Explored volume :

\widetilde{V}_n(11) = 6
```

exploration steps :

Perimeter : $\widetilde{P}_n(12) = 5$ Explored volume : $\widetilde{V}_n(12) = 7$

exploration steps :

Perimeter : $\widetilde{P}_n(12) = 5$ Explored volume : $\widetilde{V}_n(12) = 7$

exploration steps :

Perimeter : $\widetilde{P}_n(12) = 5$ Explored volume : $\widetilde{V}_n(12) = 7$

exploration steps :

Perimeter : $\widetilde{P}_n(12) = 5$ Explored volume : $\widetilde{V}_n(12) = 7$

exploration steps :

Perimeter : $\widetilde{P}_n(13) = 3$ Explored volume : $\widetilde{V}_n(13) = 7$

exploration steps :

For all $k \ge 0$, conditionally on $(T_n^1(i))_{0\le i\le k}$, the triangulation $T_n^2(k)$ is a uniform triangulation with a boundary of length $|\partial T_n^1(k)|$ and $n - |T_n^1(k)|$ inner vertices.

For all $k \ge 0$, conditionally on $(T_n^1(i))_{0\le i\le k}$, the triangulation $T_n^2(k)$ is a uniform triangulation with a boundary of length $|\partial T_n^1(k)|$ and $n - |T_n^1(k)|$ inner vertices.

• Consequence : the perimeter and volume of the red region have the same transitions as for a fixed uniform triangulation.

For all $k \ge 0$, conditionally on $(T_n^1(i))_{0\le i\le k}$, the triangulation $T_n^2(k)$ is a uniform triangulation with a boundary of length $|\partial T_n^1(k)|$ and $n - |T_n^1(k)|$ inner vertices.

- Consequence : the perimeter and volume of the red region have the same transitions as for a fixed uniform triangulation.
- We write τ_j for the times at which an exploration step is performed. Let $P_n(j) = \widetilde{P}_n(\tau_j)$ and $V_n(j) = \widetilde{V}_n(\tau_j)$.

For all $k \ge 0$, conditionally on $(T_n^1(i))_{0\le i\le k}$, the triangulation $T_n^2(k)$ is a uniform triangulation with a boundary of length $|\partial T_n^1(k)|$ and $n - |T_n^1(k)|$ inner vertices.

- Consequence : the perimeter and volume of the red region have the same transitions as for a fixed uniform triangulation.
- We write τ_j for the times at which an exploration step is performed. Let $P_n(j) = \widetilde{P}_n(\tau_j)$ and $V_n(j) = \widetilde{V}_n(\tau_j)$.
- We have $P_n(j) \approx j^{2/3}$ and $V_n(j) \approx j^{4/3}$ as long as $j \ll n^{3/4}$ [Curien–Le Gall].

Time change estimates

Conditionally on (P_n, V_n) , the $\tau_{i+1} - \tau_i$ are independent and geometric with parameters $\frac{P_n(i)}{3n-6}$, so for $\varepsilon > 0$ small,

$$\mathbb{E}\left[\tau_{\varepsilon n^{3/4}}|P_n\right] = \sum_{i=1}^{\varepsilon n^{3/4}} \frac{3n-6}{P_n(i)} > \frac{n \times \varepsilon n^{3/4}}{\sqrt{n}} = \varepsilon n^{5/4},$$

so after $k_n = o(n^{5/4})$ flips, the number of exploration steps performed is $o(n^{3/4})$.

Time change estimates

Conditionally on (P_n, V_n) , the $\tau_{i+1} - \tau_i$ are independent and geometric with parameters $\frac{P_n(i)}{3n-6}$, so for $\varepsilon > 0$ small,

$$\mathbb{E}\left[\tau_{\varepsilon n^{3/4}}|P_n\right] = \sum_{i=1}^{\varepsilon n^{3/4}} \frac{3n-6}{P_n(i)} > \frac{n \times \varepsilon n^{3/4}}{\sqrt{n}} = \varepsilon n^{5/4},$$

so after $k_n = o(n^{5/4})$ flips, the number of exploration steps performed is $o(n^{3/4})$. Hence,

$$\widetilde{P}_n(k_n) = P_n(o(n^{3/4})) = o(\sqrt{n}),$$
$$\widetilde{V}_n(k_n) = V_n(o(n^{3/4})) = o(n).$$

Time change estimates

Conditionally on (P_n, V_n) , the $\tau_{i+1} - \tau_i$ are independent and geometric with parameters $\frac{P_n(i)}{3n-6}$, so for $\varepsilon > 0$ small,

$$\mathbb{E}\left[\tau_{\varepsilon n^{3/4}}|P_n\right] = \sum_{i=1}^{\varepsilon n^{3/4}} \frac{3n-6}{P_n(i)} > \frac{n \times \varepsilon n^{3/4}}{\sqrt{n}} = \varepsilon n^{5/4},$$

so after $k_n = o(n^{5/4})$ flips, the number of exploration steps performed is $o(n^{3/4})$. Hence,

$$\widetilde{P}_n(k_n) = P_n(o(n^{3/4})) = o(\sqrt{n}),$$

 $\widetilde{V}_n(k_n) = V_n(o(n^{3/4})) = o(n).$

We can find a separating cycle of length $\sqrt{\widetilde{P}_n(k_n)} = o(n^{1/4})$ in $T_n^2(k_n)$ [Krikun].
Is the lower bound sharp?

- Back-of-the-enveloppe computation :
 - in a typical triangulation, the distance between two typical vertices x and y is $\approx n^{1/4}$.
 - The probability that a flip hits a geodesic is $\approx n^{-3/4}$.
 - The distance between x and y changes ≈ kn^{-3/4} times before time k.
 - If d(x, y) evolves roughly like a random walk, it varies of $\approx \sqrt{kn^{-3/4}} = n^{1/4}$ for $k = n^{5/4}$.

Is the lower bound sharp?

- Back-of-the-enveloppe computation :
 - in a typical triangulation, the distance between two typical vertices x and y is $\approx n^{1/4}$.
 - The probability that a flip hits a geodesic is $\approx n^{-3/4}$.
 - The distance between x and y changes ≈ kn^{-3/4} times before time k.
 - If d(x, y) evolves roughly like a random walk, it varies of $\approx \sqrt{kn^{-3/4}} = n^{1/4}$ for $k = n^{5/4}$.
- For triangulations of a convex polygon (no inner vertices), the lower bound $n^{3/2}$ is believed to be sharp but the best known upper bound is n^5 [McShine-Tetali].
- Prove that the mixing time is polynomial?

 $\mathcal{MERCI}!$