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Planar maps

o A planar map is a finite, connected graph embedded in the
sphere in such a way that no two edges cross (except at a
common endpoint), considered up to orientation-preserving
homeomorphism.

o A planar map is a rooted type-I triangulation if all its faces
have degree 3 and it has a distinguished oriented edge. It may
contain multiple edges and loops.
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Random planar maps in a nutshell

Let .7, be the set of rooted type-I triangulations of the sphere with
n vertices, and T,(oo) be a uniform variable on .7,,. Geometric
properties of T,(o0) for n large?
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Let .7, be the set of rooted type-I triangulations of the sphere with
n vertices, and T,(oo) be a uniform variable on .7,,. Geometric
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o Exact enumeration results [Tutte],
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Random planar maps in a nutshell

Let .7, be the set of rooted type-I triangulations of the sphere with
n vertices, and T,(oo) be a uniform variable on .7,,. Geometric
properties of T,(o0) for n large?

o Exact enumeration results [Tutte],

o the distances in T,(c0) are of order n'/*

[~ Chassaing—Schaeffer],
o when the distances are renormalized, T,(c0) to a continuum
random metric space called the Brownian map [Le Gall],
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Random planar maps in a nutshell

Let .7, be the set of rooted type-I triangulations of the sphere with
n vertices, and T,(oo) be a uniform variable on .7,,. Geometric
properties of T,(o0) for n large?

o Exact enumeration results [Tutte],

o the distances in T,(c0) are of order n'/*

[~ Chassaing—Schaeffer],

o when the distances are renormalized, T,(c0) to a continuum
random metric space called the Brownian map [Le Gall],

o the Brownian map is homeomorphic to the sphere
[Le Gall-Paulin].
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A uniform triangulation of the sphere with 10 000 vertices
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How to sample a large uniform triangulation 7

o "Modern" tools : bijections with trees, peeling process.

o Back in the 80's : Monte Carlo methods : we look for a Markov
chain on .9}, for which the uniform measure is stationary.

@ A simple local operation on triangulations : flips.
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How to sample a large uniform triangulation 7

o "Modern" tools : bijections with trees, peeling process.

o Back in the 80's : Monte Carlo methods : we look for a Markov
chain on .9}, for which the uniform measure is stationary.

@ A simple local operation on triangulations : flips.

flip(t, e1)
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How to sample a large uniform triangulation 7
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How to sample a large uniform triangulation 7

o "Modern" tools : bijections with trees, peeling process.

o Back in the 80's : Monte Carlo methods : we look for a Markov
chain on .9}, for which the uniform measure is stationary.

@ A simple local operation on triangulations : flips.

€2

flip(t,e) =t
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A Markov chain on .7,

o We fix ty € .7, and take T,(0) = to.

o Conditionally on (T,(k))o<;< let ex be a uniform edge of
Th(k) and Tp(k + 1) = flip (Th(k), ex)-
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o The uniform measure on .7, is reversible for T,, thus
stationary.
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A Markov chain on .7,

o We fix ty € .7, and take T,(0) = to.

o Conditionally on (T,(k))o<;< let ex be a uniform edge of
Ta(k) and Tp(k + 1) = flip (Th(k), k).

o The uniform measure on .7, is reversible for T,, thus
stationary.

@ The chain T, is irreducible (the flip graph is connected
Wagner 36]) and aperiodic (non flippable edges), so it
converges to the uniform measure.
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A Markov chain on .7,

o We fix ty € .7, and take T,(0) = to.

o Conditionally on (T,(k))o<;< let ex be a uniform edge of
Th(k) and Tp(k + 1) = flip (Th(k), ex)-

o The uniform measure on .7, is reversible for T,, thus
stationary.

@ The chain T, is irreducible (the flip graph is connected
Wagner 36]) and aperiodic (non flippable edges), so it
converges to the uniform measure.

@ Question : how quick is the convergence ?
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Mixing time of T,

@ For n >3 and 0 < £ < 1 we define the mixing time tmix(e, n)
as the smallest k such that

- <
max max IP(Th(k) € A) —P(T,(0) € A)| <,

where we recall that T,(c0) is uniform on 7.
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Mixing time of T,

@ For n >3 and 0 < £ < 1 we define the mixing time tmix(e, n)
as the smallest k such that

- <
max max |P(Th(k) € A) =P (Tph(0) € A)| <e,

where we recall that T,(c0) is uniform on 7.

Theorem (B., 2016)

For all 0 < € < 1, there is a constant ¢ > 0 such that

tmix(g, n) > cn®/4,
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Sketch of proof

We will be interested in the existence of small separating cycles.
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Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (=~ Le Gall-Paulin, 2008)

Let £, = o(n'/*). Then, with probability going to 1 as n — oo,
there is no cycle in Tp(c0) of length at most ¢, that separates
Tn(00) in two parts, each of which contains at least 7 vertices.
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Theorem (=~ Le Gall-Paulin, 2008)

Let £, = o(n'/*). Then, with probability going to 1 as n — oo,
there is no cycle in Tp(c0) of length at most ¢, that separates
Tn(00) in two parts, each of which contains at least 7 vertices.

Let T}(0) and T2(0) be two independent uniform triangulations of
a 1-gon with J inner vertices each, and T,(0) the gluing of T}(0)
and T?2(0) along their boundary.
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Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (=~ Le Gall-Paulin, 2008)

Let £, = o(n'/*). Then, with probability going to 1 as n — oo,
there is no cycle in Tp(c0) of length at most ¢, that separates
Tn(00) in two parts, each of which contains at least 7 vertices.

Let T}(0) and T2(0) be two independent uniform triangulations of
a 1-gon with J inner vertices each, and T,(0) the gluing of T}(0)
and T?2(0) along their boundary. It is enough to prove

Proposition

Let k, = o(n/*). There is a cycle v in T,(k,) of length o(n'/*) in
probability that separates T,(k,) in two parts, each of which
contains at least 7 vertices.
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Exploration of T,(k)

T5(0) Perimeter :
Pa(0) =1

Explored volume :
Vo(0) =1

exploration steps :
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Exploration of T,(k)

T5(1) Perimeter :
Pa(1) =1

Explored volume :
Vo(1) =1

exploration steps :
1
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Exploration of T,(k)

T5(2) Perimeter :
Pa(2) =2

Explored volume :
Vo(2) =2

exploration steps :
1
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Exploration of T,(k)

T5(2) Perimeter :
Pa(2) =2
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Exploration of T,(k)

T5(3) Perimeter :
Pa(3) =2

Explored volume :
Vo(3) =2

exploration steps :
1
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Exploration of T,(k)

T5(3) Perimeter :
Pa(3) =2

Explored volume :
Vo(3) =2

exploration steps :

1
3
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Exploration of T,(k)

T, (4) Perimeter :
Pa(4) =3

Explored volume :
Vo(4) =3

exploration steps :

1
3
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T, (4) Perimeter :
Pa(4) =3

Explored volume :
Vo(4) =3

exploration steps :

1
3

Thomas Budzinski Flips on triangulations of the sphere



Exploration of T,(k)

T5(5) Perimeter :
Pa(5) =3

Explored volume :
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Exploration of T,(k)

T5(5) Perimeter :
Pa(5) =3

Explored volume :
Vo(5) =3

exploration steps :

1
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5
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Exploration of T,(k)

T, (6) Perimeter :
Pa(6) = 4

Explored volume :
V,(6) =4

exploration steps :

1
3
5
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Exploration of T,(k)

T2 (7) Perimeter :
Pa(7) = 4

Explored volume :
Vo(7) =4

exploration steps :

1
3
5

Thomas Budzinski Flips on triangulations of the sphere



Exploration of T,(k)

T2 (7) Perimeter :
Pa(7) = 4

Explored volume :
Vo(7) =4

exploration steps :
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Exploration of T,(k)

T2 (7) Perimeter :
Pa(7) = 4

Explored volume :
Vo(7) =4

exploration steps :
1

3
5
7
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Exploration of T,(k)

T(8) Perimeter :
Pa(8) =5

Explored volume :
Va(8) =5

)

exploration steps :
1

3
5
7
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Exploration of T,(k)

T(8) Perimeter :
Pa(8) =5

Explored volume :
Va(8) =5

/

exploration steps :
1

3
5
7
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Exploration of T,(k)

Perimeter :
Pa(8) =5
Explored volume :
Va(8) =5

exploration steps :

O~NOT W
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Exploration of T,(k)

Perimeter :
Pa(8) =5
Explored volume :
Va(8) =5

exploration steps :

O~NOT W
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Exploration of T,(k)

T5(9) Perimeter :
Pa(9) = 4

Explored volume :
Va(9) =6

| exploration steps :

O~NOT W
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Exploration of T,(k)

T5(9) Perimeter :
Pa(9) = 4

Explored volume :
Va(9) =6

| exploration steps :

O~NOT W

Thomas Budzinski Flips on triangulations of the sphere



Exploration of T,(k)

T5(10) Perimeter :
P,(10) =4
Explored volume :

V,(10) = 6

O~NOT W
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Exploration of T,(k)

Ty(11) Perimeter :
P,(11) =4
Explored volume :

V,(11) =6

| exploration steps :

O~NOT W
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Exploration of T,(k)

Ty(11) Perimeter :
P,(11) =4
Explored volume :

V,(11) =6

| exploration steps :

O~NOT W
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Exploration of T,(k)

Ty(11) Perimeter :
P,(11) =4
Explored volume :
Vo(11) =6
\\ exploration steps :
1
3
5
7
8
11
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Exploration of T,(k)

T7(12) Perimeter :
P,(12) =5
Explored volume :
Va(12) = 7
\\ exploration steps :
1
3
5
7
8
11
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Exploration of T,(k)

T7(12) Perimeter :
P,(12) =5
Explored volume :
Va(12) = 7
\\ exploration steps :
1
3
5
7
8
11
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Exploration of T,(k)

Perimeter :

T,(12)
P,(12) =5
Explored volume :
Vo(12) =7

\\ exploration steps :

=
N R ONOCTW =

Flips on triangulations of the sphere
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Exploration of T,(k)

Perimeter :

T,(12)
P,(12) =5
Explored volume :
Vo(12) =7

\\ exploration steps :

=
N R ONOCTW =

Flips on triangulations of the sphere
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Exploration of T,(k)

T1(13) Perimeter :
P,(13) =3
Explored volume :

Vo(13) = 7

/

exploration steps :

=
N R ONOCTW =

Flips on triangulations of the sphere

Thomas Budzinski



Peeling estimates

For all k > 0, conditionally on (T}(i))o<i<k, the triangulation
T2(k) is a uniform triangulation with a boundary of length
|OTL(k)| and n — | TX(k)| inner vertices.
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Peeling estimates

For all k > 0, conditionally on (T}(i))o<i<k, the triangulation
T2(k) is a uniform triangulation with a boundary of length
|OTL(k)| and n — | TX(k)| inner vertices.

o Consequence : the perimeter and volume of the red region
have the same transitions as for a fixed uniform triangulation.
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Peeling estimates

For all k > 0, conditionally on (T}(i))o<i<k, the triangulation
T2(k) is a uniform triangulation with a boundary of length
|OTL(k)| and n — | TX(k)| inner vertices.

o Consequence : the perimeter and volume of the red region
have the same transitions as for a fixed uniform triangulation.

e We write 7; for the times at which an exploration step is
performed. Let P,(j) = Pn(7;) and V,(j) = V().
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Peeling estimates

For all k > 0, conditionally on (T}(i))o<i<k, the triangulation
T2(k) is a uniform triangulation with a boundary of length
|OTL(k)| and n — | TX(k)| inner vertices.

o Consequence : the perimeter and volume of the red region
have the same transitions as for a fixed uniform triangulation.

e We write 7; for the times at which an exploration step is
performed. Let P,(j) = 5,,(7']) and V,(j) = \7n(7'j).

o We have P,(j) ~ j2/3 and V,(j) ~ j*/3 as long as j < n3/*
[Curien—Le Gall].
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Time change estimates

Conditionally on (P,, V,), the 7j11 — 7; are independent and

. Pa(i)
geometric with parameters 37, so for ¢ > 0 small,

3/4
en
— n x en3/*

3n—06
E[7.,3/4|Pn] = — > =en’*?,
welPl =2 B T

so after k, = o(n5/4) flips, the number of exploration steps
performed is o(n3/4).
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Time change estimates

Conditionally on (P,, V,), the 7j11 — 7; are independent and

Pn(i)
3n—6"'

geometric with parameters so for ¢ > 0 small,

en’ 4 3/4

nXxXen
n3/4|Pn] Z \/ﬁ :€n5/47

so after k, = o(n5/4) flips, the number of exploration steps
performed is o(n3/4). Hence,

Pa(kn) = Pa(0(n®**)) = o(v/n),

Va(kn) = Via(o(n®*)) = o(n).
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Time change estimates

Conditionally on (P,, V,), the 7j11 — 7; are independent and

geometric with parameters 5{;’(_'% so for ¢ > 0 small,
e/t o 3/4

3n—06 nxen
E[7.3/4|Pn] = N > =en’”,
wlPl =2 By 2

so after k, = o(n5/4) flips, the number of exploration steps
performed is o(n3/4). Hence,

Pa(kn) = Pa(o(n**)) = o(/n),
Va(kn) = Via(o(n®*)) = o(n).

We can find a separating cycle of length 1/ P,(kn) = o(n'/*) in
T2(kn) [Krikun].
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Is the lower bound sharp?

o Back-of-the-enveloppe computation :
e in a typical triangulation, the distance between two typical
vertices x and y is ~ n'/%.
o The probability that a flip hits a geodesic is ~ n~
o The distance between x and y changes ~ kn—3/* times before

time k.
o If d(x,y) evolves roughly like a random walk, it varies of

~ Vkn=3/4 = n'/* for k = n5/*.

3/4.
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Is the lower bound sharp?

o Back-of-the-enveloppe computation :
e in a typical triangulation, the distance between two typical
vertices x and y is ~ n/4.
o The probability that a flip hits a geodesic is ~ n~
o The distance between x and y changes ~ kn—3/* times before
time k.
o If d(x,y) evolves roughly like a random walk, it varies of

~ Vkn=3/% = nt/* for k = n®/*.
o For triangulations of a convex polygon (no inner vertices), the
lower bound n3/2 is believed to be sharp but the best known
upper bound is n® [McShine—Tetali].

3/4.

o Prove that the mixing time is polynomial ?
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