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Motivations (1/2)

p q

a
b

c

Automata are omni-present in computer science.

Given a regular language, it is natural to ask

• what does a typical word of a fixed length n look like ?

• what does an infinite typical word look like ?

The literature provides answer based on

• Uniform sampling (from combinatorics);

• Maximal entropy measure (from information & ergodic theory)

when a deterministic finite state automaton (DFA) recognising the
language is provided.

These methods are polynomial in the size of the given DFA. 2/25
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Motivations (2/2)

Automata in verification of concurrent systems

• Computational systems (software or hardware) are often
composed of several components that interact together;

• Networks of automata are an elegant and useful framework to
model concurrent systems;

• The associated product automaton A = A1 × · · · × AK is of
exponential size |A| = |A1| × · · · × |AK |.

In this talk we will see how to do

• uniform sampling of words of a given length;

• sampling according to the maximal entropy measure;

for a network of DFAs in a compositional fashion.

A previous work on the subject by [Denise et al., STTT 2012] gives
applications to model based testing. 3/25
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Monolithic methods of sampling for a single DFA (a recap)

Compositional methods of sampling for Network of DFAs

Conclusion and perspective
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Uniform sampling of words of an automaton (1/3).

Fixed length. Recursive Method.
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Languages Lp,k → Cardinalities |Lp,k | → Probabilities pk(p
b
−→ q) =

|Lq,n−k|

|Lp,n−k+1|

Lp,k = aLp,k−1 ∪ bLq,k−1; Lq,k = cLp,k−1.

|Lp,k | = |Lp,k−1|+ |Lq,k−1|; |Lq,k | = |Lp,k−1|.
(

|Lp,k |
|Lq,k |

)

= M

(
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|Lq,k−1|

)

= M
k

(

1
1

)

with M =

(

1 1
1 0

)
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Uniform sampling of words of an automaton (2/3).

Random length. Boltzmann Sampling [Duchon, Flajolet, Louchard, Schaeffer, ICALP’02].
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• Generating function : Lp(z) =
∑

w∈Lp
z |w| = 1

1−z−z2
with z < 1

φ
.

• Proba of a word w : Prob(w) = z|w|

Lp (z)
.

Languages Lp → Generating functions Lp(z) → Probabilities pz(b) = z
Lq(z)

Lp(z)

Lp = aLp ∪ bLq ∪ {ε}; Lq = cLp ∪ {ε}.

Lp(z) = zLp(z) + zLq(z) + 1; Lq(z) = zLp(z) + 1.

L(z) = zML(z) + 1F ; L(z) = (I − zM)−11F .
6/25
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Uniform sampling of words of an automaton (3/3).

Infinite length. Parry sampling.

p q

1
φ
, a

1
φ2 , b

1, c

• For a strongly connected automaton.
• Defined by Shannon, known as Parry measure in ergodic theory. Here, we call it

Boltzmann critic.

ω-regular Languages Lp,ω → Perron eigenvector v → Probabilities p 1
ρ
(b) =

vq

ρvp

Lp,ω = aLp,ω ∪ bLq,ω; Lq,ω = cLp,ω.

ρvp = vp + vq; ρvq = vp avec ρ v.p. maximale.

ρv = Mv. 7/25
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Network of DFAs

A network of three DFAs with shared actions {α, β, γ}
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Example of words recognised: αbaγd
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Network of DFAs

A network of three DFAs with shared actions {α, β, γ}
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Example of words recognised: αbaγd
The product DFA:
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The easy case: no shared action

Language of the product = shuffle of languages.

L(A(1) × · · · × A(K)) = L(A(1))� · · ·� L(A(K))

Shuffle of languages

• Shuffle of words ab� cd = {abcd , acbd , acdb, cabd , cdab}

• Shuffle of two languages:

L(1)
� L(2) =

⋃

(w (1),w (2))∈L(1)×L(2)

w (1)
� w (2)

• Naturally extends to K languages.

10/25
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Computing the cardinalities of shuffle of languages

For the shuffle of two languages

|(L� L′)n| =
n

∑

k=0

(

n

k

)

|Lk | · |L
′
n−k |. (1)

For the shuffle of K languages L = L(1)
� · · ·� L(K)

• Do not use

|Ln| =
∑

n(1)+···+n(K )=n

(

n

n(1), . . . , n(K)

)

|L
(1)

n(1)
| · · · |L

(K)

n(K ) |

There are exponentially many coefficients!

• Instead apply equation (1) K − 1 times
L = (. . . ((L(1)

� L(2))� L(3))� · · · )� L(K).

This can be transformed into a recursive method of sampling for
L = L(1)

� · · ·� L(K).
11/25
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Generating functions for shuffle of languages
Exponential generating functions L̂(z) =

∑

n∈N |Ln|z
n/n!

Exponential Boltzmann measure µ̂z(w) = z |w|

|w |!L̂(z)

• Given L = L(1)
� · · ·� L(K),

L̂(z) = L̂(1)(z)× · · · × L̂(K)(z)

• L(z) =
∫ +∞
0 e−u L̂(zu)du

Boltzmann sampler of parameter z for L

• Choose u according to weight function:
u 7→ e−u L̂(zu) = e−u

∏K
i=1 L̂

(i)(zu);

• For i = 1 to K , let w (i) be chosen using an exponential
Boltzmann sampler of parameter zu for L(i).

• Return a word uniformly at random in w (1)
� · · ·� w (K)

12/25
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Shannon Parry-Markov chain for the shuffle of languages

Recap of the definition

P(p
a
−→ q) = vq/(ρvp) with Mv = ρv

Lemma

Let A = A(1) × · · · ×A(K) be the product of K strongly connected
DFAs without synchronisation.

Then ρ =
∑n

i=1 ρ
(i), vs =

∏K
i=1 v

(i)

s(i)
.

The sampling according to the Shannon-Parry Markov chain

Repeat forever the following:
With probability ρ(i)/ρ make one step (s(i), a, t(i)) of the
Shannon-Parry Markov chain number i , write a on the output tape;

13/25
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Difficulties come from synchronisation
Recap no shared actions=shuffle of languages=everything is easy;

All letters shared

• Language of the product = intersection of languages :

L(A(1) × · · · × A(K)) = L(A(1)) ∩ · · · ∩ L(A(K))

• L(A(1)) ∩ · · · ∩ L(A(K))
?
= ∅ is a PSPACE-complete problem.

In our framework

We introduce the reduced automaton:

• It keeps only the synchronised part of the product automaton
(the true difficulty that needs sequential reasoning).

• The non-synchronised part is projected out
(easy to treat by combining independent local works).

14/25
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The reduced automaton
The reduced automaton of a DFA A = (Q,Σ, ι,F , δ) is a finite automaton
Ared = (Qred,Σred, ιred,Fred,∆red) such that

• Qred ⊆ Q are states occurring just after a shared action + initial state ι;

• Σred set of shared action;

• ιred = ι (same initial state);

• Final states Fred irrelevant

• ∆red = {(s, α, t) | s
uα
−→ t for some u ∈ (Σ \ Σred)

∗}

111

121

112

122321

212211

221 222

313

323

311

bc

α

bb c

a

a

α

a

γ

β

β, γ

d

b cb c

α

α

c

α, cα

d

a

111

311

112

313

323
α

α
β

α

β, γα

γ

α

Do not compute Ared from the product DFA A = A1 × · · · × AK

but use Ared = A1
red

× · · · × AK
red

.
15/25
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Languages associated to the reduced automaton
Given a DFA A and its reduced automaton Ared.

• L̃s : language from state s without shared action.
• Lδ = {u ∈ (Σ \ Σred)

∗ | s
uα
−→ t}, for δ = (s, α, t) ∈ ∆red

These language are obtained by modifying slightly the automaton.
Example L̃111 and L(112,γ,323)

111

121

112

122321

212211

221 222

313

323

311

bc

α

bb c

a

a

α

a

γ

β

β, γ

d

b cb c

α

α

c

α, c
α

d

a

111

311

112

313

323
α

α
β

α

β, γα

γ

α

In fact, compute everything locally and use shuffle of languages:

L(112,γ,323) = L
(1)
(1,γ,3) � L

(2)
(1,γ,2) � L

(3)
(3,γ,3) = a� (bc)∗b� ε.

16/25
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Equations on languages related to the reduced automaton

Theorem: Equations on languages

Ls = L̃s ∪
⋃

δ=(s,α,t)∈∆red

Lδ · α · Lt

L̃s = �
K
i=1L̃

(i)

s(i)
; Lδ = �

K
i=1L

(i)

δ(i)

Our generic recipe to randomly generate a word w ∈ Ls

• Choose whether a synchronisation will occur or not;

if not choose w ∈ L̃s = �
K
i=1L̃

(i)

s(i)
; otherwise

• choose δ = (s, α, t) ∈ ∆red;

• choose u ∈ Lδ = �
K
i=1L

(i)

δ(i)
;

• write uα and repeat from t to generate the rest of the word.

17/25
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Our generic recipe to randomly generate a word w ∈ Ls,n (1/3)
Fixed length uniform sampling

1. Choose whether a synchronisation will occur or not;
• No synchronisation with probability |L̃s,n|/|Ls,n|.

if not choose w ∈ L̃s = �
K
i=1L̃

(i)

s(i)
; otherwise

2. choose δ = (s, α, t) ∈ ∆red;
• choose the length m with weight

∑

δ=(s,α,t)∈∆red

|Lδ,m−1|
∑n

m=1

∑

δ=(s,α,t)∈∆red

|Lδ,m−1|
;

• choose δ = (s, α, t) ∈ ∆red with weight
|Lδ,m−1|∑

δ′=(s,α′,t′) |Lδ′,m−1|
;

3. choose u ∈ Lδ,m−1 = �
K
i=1L

(i)

δ(i),m−1
;

4. write uα and repeat from t to generate the rest of the word of
length n−m.

18/25
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Our generic recipe to randomly generate a word w ∈ Ls (2/3)
Boltzmann sampling

Recap: Ls(z) = L̃s(z) + z
∑

δ=(s,α,t)∈∆red

Lδ(z)Lt(z). (2)

1. Choose whether a synchronisation will occur or not;
• No synchronisation with probability L̃s(z)/Ls(z).

if not choose w ∈ L̃s = �
K
i=1L̃

(i)

s(i)
using Boltzmann sampling

with parameter z ; otherwise

2. choose δ = (s, α, t) ∈ ∆red with probability

Lδ(z)Lt(z)
∑

δ′=(s,α′,t′)∈∆red
Lδ′(z)Lt′(z)

3. choose u ∈ Lδ = �
K
i=1L

(i)

δ(i)
with probability z |u|/Lδ(z) using

Boltzmann sampling with parameter z ;

4. write uα and repeat from t to generate the rest of the word.
19/25
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Our generic recipe to randomly generate a word w ∈ Ls,ω (3/3)
Parry sampling

Assume the product automaton is strongly connected and let
v ≥ 0 and ρ such that Mv = ρv .

1. A synchronisation occurs in the future with probability 1;

2. choose δ = (s, α, t) ∈ ∆red with probability

Lδ(1/ρ)
vt

ρvs

3. choose u ∈ Lδ = �
K
i=1L

(i)

δ(i)
with probability

1

ρ|u|Lδ(1/ρ)

using Boltzmann sampling with parameter 1/ρ;

4. write uα and repeat from t to generate the rest of the word.

20/25
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Characterisation of the generating functions in the reduced automaton

Recap equations on languages:

Ls = L̃s ∪
⋃

δ=(s,α,t)∈∆red

Lδ · α · Lt (3)

Theorem: Equations on generating functions

Ls(z) = L̃s(z) + z
∑

δ=(s,α,t)∈∆red

Lδ(z)Lt(z)

In matrix form

Let M(z) be the Qred × Qred matrix defined by

Ms,t(z) =
∑

δ=(s,α,t)∈∆red

Lδ(z) (4)

L(z) = L̃(z) + zM(z)L(z); then L(z) = (I − zM(z))−1L̃(z) (5)
21/25
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Computing cardinalities for all languages
Let n be the length of words to sample.

Languages without synchronisation
(|L̃s,m|)m≤n,s∈Qred

and (|Lδ,m|)m≤n,δ∈∆red

See before, shuffle of languages.
Polynomial in n and K .

Languages with synchronisations (|Ls,m|)m≤n,s∈Qred

• Write L̃s(z) mod zn+1 =
∑n

m=0 |L̃s,m|z
m

and Ms,t(z) mod zn+1 =
∑n

m=0

∑

δ=(s,α,t)∈∆red
|Lδ,m|z

m

• Find L(z) mod zn+1 by taking all operations modulo zn+1 in

L(z) = (I − zM(z))−1L̃(z).

Polynomial in n and |Ared|.
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A Perron Frobenius Theorem for the reduced automaton
Let A be a product automaton that is strongly connected and
Ared its reduced automaton.

Spectral attributes of the matrix M(z)

Given λ ∈ C and v 6= 0. If M(1/λ)v = λv then λ is called a
reduced eigenvalue and v a reduced eigenvector.

Theorem

• Existence of ρ and vred:
• There exists a reduced eigenvalue ρ > 0 such that |λ| ≤ ρ for

every reduced eigenvalue λ.
• There exists a unique vred ≥ 0 (up to a multiplicative

constant) which is a reduced eigenvector. It satisfies
M(1/ρ)vred = ρvred.

• Link with A and its adjacency matrix M

• ρ is the spectral radius of M
• vred is the restriction to Qred of the unique eigenvector v ≥ 0

(it satisfies Mv = ρv)
23/25



single DFA Network of DFAs Conclusion and perspective
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Compositional methods of sampling for Network of DFAs

Conclusion and perspective
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What we have seen

• A recap in the monolithic case of
• Uniform sampling
• Boltzmann sampling
• Sampling according to Shannon-Parry Markov chain

and their link to entropy

• Compositional methods for these sampling for network of

DFAs based on the notion of reduced automata.

Possible further works

• Precise study of numerical computations
(e.g. for finding reduced spectral radius).

• Design of algorithms with better bit complexity.

• Implementations and applications to
• statistical model checking;
• model based testing.

• Extension of the theory to weighted automata.

• Extension of the theory to timed automata.
25/25
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