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Introduction

Principle (Simpson’s Meta Theorem)

Concepts and theorems concerned with Hodge structures should have

their counterparts in the context of twistor structures.

Morihiko Saito established the theory of mixed Hodge modules.

Mixed twistor D-modules should be a counterpart of mixed Hodge

modules in the context of twistor structures.



Twistor structure

Twistor structure
def

⇐⇒ holomorphic vector bundle of finite rank on P1

V : pure of weight w ⇐⇒ V ≃ O
P1
(w)⊕ rankV

(V,W ): mixed twistor structure ⇐⇒ Gr

W

m

(V ): pure of weight m

Mixed twistor structure is a structure on the vector space X
DR

(V ) :=V|1.



Complex Hodge structure =⇒ Twistor structure

Let (H;F,G) be a complex Hodge structure.

x (H;F) :=
å

j∈ZF
− j

l

j is a free C[l ]-module, i.e., a vector bundle on

Spe
C[l ].

x (H;G) :=
å

j∈ZG
j

l

j is a free C[l−1]-module, i.e., a vector bundle on

Spe
C[l−1].

From (H;F,G), by gluing x (H;F) and x (H;G), we obtain a vector

bundle on P1.

Simpson

Complex Hodge structures are equivalent to C∗-equivariant

twistor structures.

Many concepts concerned with Hodge structures have their

counterparts in the context of twistor structures.

Harmonic bundles can be regarded as polarized variations of twistor

structure.



Harmonic bundles

Let Y be a complex manifold. Let (E,¶
E

) be a holomorphic vector bundle

on Y . Let q be a Higgs field of (E,¶
E

), i.e., q is a holomorphic section of

End(E)⊗W1 such that q ∧q = 0.

For a Hermitian metric h of E, we have the Chern connection Ñ
h

determined by (¶
E

,h). We also have the adjoint q �

h

of q with respect to h.

Definition

If D1

:= Ñ

h

+ q + q

�

h

is flat, h is called pluri-harmonic metric, and

(E,¶
E

,q ,h) is called a harmonic bundle.



Kobayashi-Hitchin correspondences

Higgs bundles

(E,¶
E

,q )
⇐=

harmonic bundles

(E,¶
E

,q ,h)
=⇒

flat bundles

(E,Ñ
h

+q +q

�)

Theorem (Corlette, Simpson, (1-dimensional case, Donaldson, Hitchin))

On smooth projective varieties, the following objects are equivalent.

Harmonic bundles

Higgs bundles (polystable, trivial Chern class)

Flat bundles (semisimple)

Non-abelian Hodge theory

Moduli spaces (¥-stacks) of Higgs bundles and flat bundles

Some deep theorems for polarized variation of Hodge structure can

be generalized to the context of harmonic bundles.



Simpson’s Meta Theorem

From a harmonic bundle (E,¶
E

,q ,h) on a complex projective manifold X ,

we have the flat bundle (E,D1) = (E,Ñ
h

+q +q

�

h

).

Simpson

H

i

DR

(X ,(E,D1)) :=Hi

(
X ,(W•

X

,d)⊗ (E,D1)
)
≃Hi

(
X ,(W•

X

,0)⊗ (E,q )
)
.

Let L be an ample line bundle of X . Then,




1

(L) j : HdimX− j

DR

(X ,(E,D1))≃ H

dimX+ j

DR

(X ,(E,D1)).

Principle (Simpson’s Meta Theorem)

Objects and theorems concerned with Hodge structures are generalized

to objects and theorems to the context of twistor structures.



Mixed Hodge modules

Very roughly, mixed Hodge modules are regular holonomic D-modules

with mixed Hodge structure.

For any smooth complex algebraic variety X , we have the category of

algebraic graded polarizable mixed Hodge modules MHM

alg(X) on X with

the forgetful functor to the category of regular holonomic D
X

-modules.

For each w ∈ Z, we have the semisimple full subcategories PHM(X ,w) of

polarizable pure Hodge modules of weight w.

Theorem (M. Saito)

We have 6-operations ( f∗, f
!

, f ∗, f !,⊗, RH om) for algebraic graded

polarizable mixed Hodge modules, compatible with 6-operations

for regular holonomic D-modules.

For any projective morphism f : X −→ Y and any M ∈ PHM(X ,w),

we obtain f

i

�

(M) ∈ PHM(Y,w+ i).



We say a mixed Hodge module is “locally free” if the underlying algebraic

D-module is a flat bundle.

Theorem (M. Saito)

Let X be a smooth algebraic variety.

“Locally free” polarizable pure Hodge modules of weight w on X

correspond to polarizable variation of pure Hodge structure of

weight w−dimX on X .

“Locally free” algebraic mixed Hodge modules on X correspond to

admissible graded polarizable variation of mixed Hodge structure

on X .



Mixed twistor D-modules

Mixed twistor D-modules are holonomic D-modules with mixed twistor

structure (studied by Sabbah and M).

For any smooth complex algebraic variety X , we have the category of

graded polarizable algebraic mixed twistor D-modules MTM

alg(X) with the

forgetful functor X
DR

: MTM

alg(X)−→Hol

alg(X). We have the semisimple

full subcategories PTM

alg(X ,w) of algebraic polarizable pure twistor

D-modules of weight w.

Theorem

We have the 6-operations for algebraic graded polarizable mixed

twistor D-modules which are compatible with 6-operations for

algebraic holonomic D-modules.

For any T ∈ PTM

alg(X ,w) and any projective morphism f : X −→ Y ,

we obtain f

i

�

T ∈ PTM

alg(Y,w+ i).



A mixed twistor D-module is called “locally free” if the underlying

algebraic D-module is a flat bundle.

Theorem

Let X be a smooth algebraic variety. Let X be any algebraic smooth

compactification.

“Locally free” algebraic pure twistor D-modules of weight w on X

are wild harmonic bundles, up to shift of the weights.

“Locally free” graded polarizable mixed twistor D-modules on X

correspond to graded polarizable admissible variation of mixed

twistor structure on (X ,X).



Weight

A polarizable variation of twistor structure of weight m on X naturally gives a pure

twistor structure of weight m.

On d

X

-dimensional smooth variety X , the following is commutative.
(

var. of pure Hodge str.

weight m

)
−−−−−→ PHM(X ,m+d

X

)

y
y

(
var. of pure twistor str.

weight m

)
⊗(l d

X O ,O ,C
0

)
−−−−−−−−−→ PTM(X ,m+d

X

)



Examples (easy case)

Let f be an algebraic function on X . We have the wild harmonic

bundle (O
X

,d f ,h
0

) on (X ,X), where h

0

(1,1) = 1, and the associated

T ( f ) ∈ PTM

alg(X ,dimX). The underlying D-module is isomorphic to

(O
X

,d+d f ).

If M ∈ Hol

alg(X) is semisimple, we have T
M

∈ PTM

alg(X ,w) such that

X

DR

(T )≃M.

We can construct many mixed twistor D-modules by applying 6-operations.



General Issue

Many holonomic D-modules are enhanced to mixed twistor D-modules.

But, in most cases, we know only the existence.

We would like to relate mixed twistor D-modules with objects in other

area of mathematics.

We would like to describe some interesting classes of mixed twistor

D-modules as explicitly as possible.

Plan of talk

R-modules

V -filtrations



R-modules

For any complex manifold X , let p

l

: C
l

×X −→ X denote the projection.

Let R
X

⊂ DC
l

×X

be the subalgebra generated by l p

∗
l

Q

X

over OC
l

×X

.

For example, RCn = OC
l

×C〈l¶1, . . . ,l¶n〉. We consider left R
X

-modules.

An R
X

-module is equivalent to OC
l

×X

-module M with a meromorphic

relative flat connection

Ñ

rel

: M −→ l

−1

p

∗
l

W

1

X

⊗M , Ñ

rel ◦Ñrel = 0

X

DR

(M ) = i

−1

1

(
M
/
(l −1)M

)
is called the underlying D-module.

(i
1

: {1}×X −→ C
l

×X denotes the inclusion.)

R-modules naturally appear in other areas of mathematics

(Gromov-Witten theory, singularity theory, tt∗-geometry,

WKB-analysis, etc.)



Mixed twistor D-modules are (M
1

,M
2

,C,W )

M
i

: R
X

-modules

C: sesqui-linear pairing

W : weight filtration

some conditions

We focus on R
X

-modules in this talk.

In this talk, for a mixed twistor D-module T = (M
1

,M
2

,C,W ),

M
2

is called the underlying R-module of T .

X

DR

(M
2

) is called the underlying D-module of T .



Issue

Describe R-modules of interesting classes of MTM.

Example

Let X be a projective manifold with a hypersurface H. Let f ∈ O
X

(∗H).

We have the D-module

L∗( f ,H) :=
(
O
X

(∗H),d+d f

)

on X . We naturally have the mixed twistor D-module T∗( f ,H) such that

X

DR

(T∗( f ,H)) ≃ L∗( f ,H). Let L∗( f ,H) be the underlying R
X

-module.

If ( f )
0

∩ ( f )
¥

= /0 and |( f )
¥

|= H,

L∗( f ,H) =
(
OC

l

×X

(∗(C
l

×H)),d
X

+d

X

(l−1

f )
)

But, in general, it is hard to describe L∗( f ,H) explicitly.



Example

Let X be a smooth projective variety.

Let (E,¶
E

,q ) be a stable Higgs bundle on X with 
∗(E) = 1. We have a

pluri-harmonic metric h. We obtain the Chern connection ¶

E

+ ¶

E,h and

the adjoint q �

h

of q .

Let (E ,Ñrel) denote the R
X

-module underlying the corresponding pure

twistor D-module.

Let p

l

: C
l

×X −→ X denote the projection.

Then, E = (p−1

l

(E),¶
E

+lq

�

h

+ ¶

l

), and

Ñ

rel

:= ¶

E,h+l

−1

q : E −→ l

−1

E ⊗ p

∗
l

W

X

It is difficult to explicitly describe h and hence (E ,Ñrel).



It is significant to describe explicitly the R-modules underlying some

interesting classes of MTM.

Better behaved GKZ-systems

Toda-like harmonic bundles (tt∗-Toda equations)



Better behaved GKZ-systems

Let A = {aaa
1

, . . . ,aaa
m

} ⊂ Zn be a subset generating Zn.

KR(A ) :=
{

m

å

j=1

r

j

a

a

a

j

∣∣∣r
j

∈R≥0

}
, K(A ) := Z

n∩KR(A )

K(A )◦ := Z
n∩ (the interior part of KR(A )).

Let G⊂ K(A ) be any subset such that G+a

a

a⊂ G for any a

a

a ∈ A .

Let bbb = (b
1

, . . . ,b
n

) ∈Cn.

GKZ(A ,G,bbb ): the system of differential equations for (F







|


 ∈ G)

¶

x

j

F








=F





+aaa

j

(∀


 ∈ G,∀ j = 1, . . . ,m)

(
å

j

a

j,ix j¶x
j

+ 


i

−b

i

)
F








= 0 (∀


 ∈ G,∀i= 1, . . . ,n)

Let M(A ,G,bbb ) denote the associated D-module on Cm.



We are particularly interested in

MA ,∗ :=M(A ,K(A ),0), MA ,! :=M(A ,K(A )◦,0).

We have the algebraic function FA :=
å

x

j

t

a
a
a

j on (C∗)n×Cm. We obtain the

algebraic D-module L(FA ) := (O(C∗)n×Cm ,d+dFA ).

Let p : (C∗)n×Cm −→ Cm be the projection.

Lemma

MA ,∗ ≃ p

0

∗L(FA ), MA ,! ≃ p

0

!

L(FA ).

By the description, we have TA ,⋆ ∈MTM

alg(Cm) (⋆= ∗, !) over MA ,⋆.

Namely, we have T (FA ) ∈MTM

alg((C∗)n×Cm) associated to FA .

TA ,⋆ := p

0

⋆T (FA ) (⋆= ∗, !)

Because X
DR

(T (FA )) = L(FA ), we obtain X
DR

(TA ,⋆)≃MA ,⋆.

Let MA ,⋆ be the RCm-module underlying TA ,⋆.



Let us consider the R-modules M GKZ(A ,G,bbb ) given by the following

system GKZR(A ,G,bbb ) for tuples of functions (F







|


 ∈ G)

l¶

x

j

F








=F





+aaa

j

, (∀


 ∈ G, j = 1, . . . ,m)

(
l (


i

−b

i

)+
m

å

j=1

a

j,ilx j¶x
j

)
F








= 0, (∀


 ∈ G, i= 1, . . . ,n)

Theorem (Reichelt-Sevenheck, M)

MA ,∗ ≃ M
GKZ(A ,K(A ),0), MA ,! ≃ M

GKZ(A ,K(A )◦,0)

M GKZ(A ,K(A ),0), M GKZ(A ,K(A )◦,0) and MA ,⋆ (⋆= ∗, !) are

enhanced to R̃Cm-modules, where R̃Cm = RCm〈l 2

¶

l

〉.

For M GKZ,
(
l

2

¶

l

+nl +
å

m

j=1

lx

j

¶

x

j

)
F








= 0.

The isomorphisms are also compatible with the actions of l 2

¶

l

.



According to Givental, Iritani, Mann, Mignon, Reichelt, Sevenheck, the

R̃Cm-modules MGKZ(A ,K(A ),0), MGKZ(A ,K(A )◦,0) are important in the

mirror symmetry for weak Fano manifolds, the mirror symmetry for

hypersurfaces in toric Fano manifolds, and the local mirror symmetry for line

bundles on toric Fano manifolds.

By using the above isomorphisms, we can deduce an isomorphism of the

quantum D-modules for some local mirror symmetry from the mirror

symmetry for toric weak Fano manifolds. We can also compare the weight

filtration and pairings on the A-side studied by Konishi-Minabe, and the

natural weight filtration and pairing on the B-side.

A
1

=

{(
b

b

b

1

1

)
,

(
b

b

b

2

1

)
, . . . ,

(
b

b

b

N

1

)
,

(
0

0

0

−1

)}

=⇒ A
2

=

{(
b

b

b

1

1

)
,

(
b

b

b

2

1

)
, . . . ,

(
b

b

b

N

1

)}



For the proof (⋆= ∗), take an n-dimensional projective toric manifold X

S

. Let

D

S

:= X

S

\ (C∗)n. Let i : (C∗)n×Cm −→ X

S

×Cm denote the inclusion. Let L∗,S(FA )

denote the R
X

S

×Cm-modules underlying i∗T (FA ) ∈MTM

alg(X
S

×Cm).

L∗,S(FA ) is described explicitly and easily.

Let p

S

: X

S

×Cm −→ Cm denote the projection. Let q :C
l

×X

S

×Cm −→ X

S

denote

the projection. Set W
j

X

S

:= l

− j

q

∗
W

j

X

S

.

MA ,∗ = p

0

S+L∗,S(FA )≃ R

n

p

S∗

(
W

•
X

S

⊗L∗,S(FA )
)

Let W
j

X

S

(logD
S

) := l

− j

q

∗
W

j

X

S

(logD
S

).

Lemma We have the following quasi-isomorphism:

W

•
X

S

⊗L∗,S(FA )≃
(
W

•
X

S

(logD
S

)⊗O(∗(FA )
¥

),d
X

S

+l

−1

d

X

S

FA

)

We can obtain

R

n

p

S∗

(
W

•
X

S

(logD
S

)⊗O(∗(FA )
¥

),d
X

S

+l

−1

d

X

S

FA

)
≃ M

GKZ(A ,K(A ),0).



A special case

In the case

A =

{(
b

b

b

1

1

)
,

(
b

b

b

2

1

)
, . . . ,

(
b

b

b

m

1

)}
,

the mixed twistor D-modules TA ,⋆ are naturally mixed Hodge modules. In

particular, MA ,⋆ are the analytification of filtered D-modules (MA ,⋆,F). For the

computation of F, it is enough to see the action of l 2

¶

l

.

We have the natural surjections

⊕








∈K(A )

OCm

e(


)−→MA ,∗

⊕








∈K(A )◦

OCm

e(


)−→MA ,!

F

j

MA ,⋆ are the image of

⊕








∈K(A )



n

≤ j+n

OCm

e(


),
⊕








∈K(A )◦




n

≤ j+n

OCm

e(


).

If K(A ) = Z≥0

·A , then F

j

(MA ,∗) = F

ord

j+n(MA ,∗).



Toda-like harmonic bundles and Toda equations

Let K (r,1) be C∗
q

−→ {r-square matrix}:

K (r,1)
i, j :=





1 (i= j+1)

q ((i, j) = (1,r))

0 (otherwise)

We have the Higgs field q on E =
⊕

OC∗
e

i

given by qe

e

e= e

e

eK (r,1)dq/q.

Theorem

Harmonic metrics h on (E,q ) such that det(h) = A log |q| are classified by

a

a

a= (a
1

, . . . ,a
r

) ∈ Rr such that a
1

≥ a

2

≥ ·· · ≥ a

r

≥ a

1

−1.

For aaa ∈Rr, we have a unique harmonic metric h

a
a
a

such that

å

logh

a
a
a

(e
i

,e
i

) =−
å

a

i

log |q|2.

logh

a
a
a

(e
i

,e
i

)+a

i

log |q|2 = O

(
log(log |q|−1)

)
around q= 0.

We have h

a
a
a

(e
i

,e
j

) = 0 (i 6= j).



For each a

a

a ∈ Rr, we have the pure twistor D-module corresponding to(
E,q ,h

a
a
a

)
. Let M

a
a
a

denote the underlying R-module.

Theorem M
a
a
a

(∗q)≃
(⊕

r

i=1

OC
l

×C∗
q

ẽ

i

,Ñrel

)
:

qÑ

rel

q

ẽ

e

e= ẽ

e

e

(
−diag[a

1

, . . . ,a
r

]+
1

l

K (r,1)
)

In this case, Ñrel is naturally extended to a meromorphic flat connection

Ñ : M
a
a
a

(∗q)−→ M
a
a
a

(∗q)⊗l

−1

W

1

C
l

×C∗
q

(logl )

by the following action of l¶
l

:

lÑ

l

ẽ

e

e= ẽ

e

e

(
diag[1, . . . ,r]+ rdiag[a

1

, . . . ,a
r

]−
r

l

K (r,1)
)

The Stokes matrices at q= ¥ can be easily computed in terms of the

parabolic weights. The Stokes structure at l = 0 is essentially the same.



Outline of the proof

Let p

l

:C
l

×C∗ −→ C∗ be the projection. We have

E = (p−1

l

(E),¶
E

+lq

�+¶

l

) and Ñrel = ¶

E

+l

−1

q : E −→ E ⊗l

−1

p

∗
l

W

1

C∗ .

The bundle E =
⊕

r

i=1

OC∗
e

i

is S1-equivariant, where t

∗
q= t

r

q, t∗e
i

= t

i

e

i

.

We have t

∗
q = tq . We obtain t

∗
h

a
a
a

= h

a
a
a

.

E is naturally S

1-equivariant with respect to the action t(l ,q) = (tl , trq), for

which t

∗
Ñ

rel = Ñ

rel.

By using the S

1-action, Ñrel is extended to the meromorphic connection

Ñ : E −→ E ⊗l

−1

W

1(logl ).

We have a connection Ñ
1

of E for which Ñrel = Ñ

1

+l

−1

q . (Key step)

The bundle E is m

r

= {t ∈ C |tr = 1}-equivariant, where t

∗
q= q, t∗e

i

= te

i

.

We have t

∗
q = q and t

∗
h

a
a
a

= h

a
a
a

.

E is naturally m

r

-equivariant with respect to the action t(l ,q) = (tl ,q), for

which t

∗
Ñ

rel = Ñ

rel.

It implies Ñ
1

is m

r

-equivariant and C∗-equivariant. and hence we have b

i

∈ C

such that Ñ
1

(e
i

) = e

i

b

i

dq/q.

The eigenvalues of Res(Ñrel) on Gr

(0)
a

i

(E ) are −a
i

=⇒ b

i

=−a
i

.



Relation with tt

∗-Toda equations

These harmonic bundles (E,q ,h
a
a
a

) are closely related to solutions of the

Toda equations studied by Cecotti-Vafa:

2¶

z

¶

z

w

i

− e

2(w
i

−w

i−1

)+ e

2(w
i+1

−w

i

) = 0, w

r+i

= w

i

(i ∈ Z)

From the harmonic metric h

a
a
a

, we obtain a solution

w

i

(z) =−(i−1) log |z/r|+
1

2

log

(
h

(1)
a

a

a

(e
i

,e
i

)|q=(z/r)r
)

(i= 1, . . . ,r)

Any solution (w
i

) satisfying
å

r

i=1

w

i

(z)+ 1

2

r(r−1) log |z/r|+a log|z/r|= 0 is

obtained in this way.

Note that for any solution, we have
å

w

i

(z) = Re( f )+A log |z| for a

holomorphic function f on C∗ and A ∈ R. We can normalize it as above.

Remark Guest and Lin, with Its, studied these equations in a system-

atic way from a viewpoint of tt∗-geometry on the mathematical side:

classification of solutions, the associated Stokes structures, etc.



V -filtrations

V -filtrations with nilpotent Higgs residue

Let T be a mixed twistor D-module on Y =Y

0

×C
t

. Let M be the underlying

R-module of T .

A V -filtration of M along t with nilpotent Higgs residue is an increasing filtration

V

a

M (a ∈ R) satisfying the following conditions:

V

a

M (a ∈ R) are OC
l

×Y -submodules of M . We have M =
⋃
a∈RVaM and

V

b

M =
⋂
b<aVaM .

The relative flat connection Ñrel is logarithmic with respect to V

a

M , i.e.,

Ñ

rel(V
a

M )⊂V

a

M ⊗
(
l

−1

W

1

C×Y /C(log t)
)

lÑ

t

· t+la are nilpotent on Gr

V

a

(M ) =V

a

(M )/V<a(M ) for any a ∈ R.

t :V

a

M −→V

a−1

M are isomorphisms if a< 0, and lÑ

t

: Gr

V

a

(M )−→ Gr

V

a+1

(M )

are isomorphisms for a>−1.

Gr

V

a

(M ) are flat over OC
l

.

V

a

(M ) satisfy some “coherence condition”.



Remark

In general, the underlying R-module of a MTM does not necessarily

have V -filtration with nilpotent Higgs residue. Their V -filtrations are

characterized by a more complicated condition.



Functoriality

Let Z
0

be any complex manifold, and let W be any projective manifold.

Set Y = Z

0

×C
t

×W and Z = Z

0

×C
t

. Let r : Y −→ Z be the projection. We

set W
j

W

:= l

− j

q

∗
W

W

j

W

, where q

W

: C
l

×Y −→W denotes the projection.

For any R
Y

-module M , r j

�

M are defined as

R

j+dimW (id×r)∗

(
W

•
W

⊗M

)

Proposition (Sabbah, Saito)

Let M be the R-module underlying a mixed twistor D-module on Y .

Suppose that M has a V -filtration along t with nilpotent Higgs residue.

Then, each r

j

�

M also has a V -filtration along t with nilpotent Higgs

residue, and the following holds:

V

a

(r
j

�

M )≃ R

j+dimW (id×r)∗

(
W

•
W

⊗V

a

M

)
(a ∈R).



Locally free property

Let M be the R-module underlying a MTM T on Y ×C
t

. Suppose

X

DR

(T )|Y×C∗
t

is a locally free O-module. Moreover, it is regular

singular along t = 0.

M has a V -filtration along t with nilpotent Higgs residue.

Proposition

V

a

M (a< 0) are locally free OC
l

×Y×C
t

-modules.



Kontsevich complexes

Let X be any smooth projective variety. Let H be a normal crossing

hypersurface of X . Let f : X −→ P1 be a morphism such that f

−1(¥)⊂ H.

Let ( f )
¥

denote the pole divisor of f . Let W j

f

be the kernel of

d f :W

j

X

(logH)−→W

j+1

X

(logH)⊗O
X

(( f )
¥

)
/
W

j+1

X

(logH)

Then, for any (l ,t) ∈ C2, we obtain the complex of sheaves

(W•
f

,ld
X

+ t d f ).



Kontsevich complexes and MTM

Set X (1)
:= X×C

t

and H

(1)
:= H×C

t

.

Let q
X

: C
l

×X

(1) −→ X denote the projection. Set W
j

f

:= l

− j

q

∗
X

W

j

f

.

K( f ) :=
(
W

•
f

,d
X

+l

−1

td

X

f

)
≃
(
q

∗
X

W

•
f

,ld
X

+ t d

X

f

)

We have the meromorphic function t f on (X (1),H(1)). We have the

D-module L∗(t f ,H
(1)) :=

(
O
X

(1) (∗H(1)),d
X

+d

X

(t f )
)
. We have the natural

MTM T∗(t f ,H
(1)) over L∗(t f ,H

(1)). Let L∗(t f ,H
(1)) denote the underlying

R
X

(1)-module.

Theorem

L∗(t f ,H
(1)) has a V -filtration along t with nilpotent Higgs

residue.

We have a natural quasi-isomorphism

K( f )−→W

•
X

⊗V−1

L∗(t f ,H
(1))



We may revisit the following theorem.

Theorem (Esnault-Sabbah-Yu, Kontsevich, M. Saito) For any (l ,t) ∈ C2,

dimH j(X ,(W•
f

,ld+ t d f )) are independent of (l ,t).

Let p : X

(1) −→ C
t

denote the projection.

By the functoriality of V -filtrations,

R

j+dimX (id×p)∗K( f )≃ R

j+dimX (id×p)∗
(
W

•
X

⊗V−1

L∗(t f ,H
(1))
)

≃V−1

p

j

�

L∗(t f ,H
(1))

X

DR

(p
j

�

L∗(t f ,H
(1))) are regular singular along t = 0, and locally free on C∗

t

.

V−1

p

j

�

L ∗(t f ,H(1)) are locally free OC
l

×C
t

-modules.

R

j(id×p)∗K( f ) are locally free O-modules.

In this way, we obtain an alternative proof of the theorem.



Nahm transform of harmonic bundles on P1

Szilard Szabo has been studying Nahm transform under some assumptions

on the singularity of (E,¶
E

,q ,h).




Wild harmonic bundles

(E,¶
E

,q ,h)

on (P1,D∪{¥})


 −−−−→




Wild harmonic bundles

(Ê,¶
Ê

, q̂ ,h)

on (P1, D̂∪{¥})




We have the Higgs bundle L(tt) =
(
OC

t

×C
t

,d(tt)
)

with the metric

h

0

(1,1) = 1.

We obtain the wild harmonic bundle on P1×P1:

p

∗
1

(E,¶
E

,q ,h)⊗L(tt)

Here, p
1

is the projection onto the first component. By taking the push-

forward to the second component, we obtain a wild harmonic bundle on

P1.

It is also “Fourier transform” for pure twistor D-modules on P1.



Recently, Szabo and I studied the Nahm transform of wild harmonic

bundles (E,¶
E

,q ,h) on (P1,D∪{¥}) satisfying the following conditions:

tame at each point of D,

unramifiedly good wild of Poincaré rank 1 at ¥.

We established the basic properties such as the comparison with the

algebraic transforms of parabolic Higgs bundles, the involutivity, etc.

One of the key steps is the description of the parabolic structure of

(Ê,¶
Ê

, q̂ , ĥ) at the points of D̂∪{¥}.

More recently, I obtained an alternative proof to use the functoriality of

V -filtrations.

We explain it in the case of the induced parabolic for (Ê,¶
Ê

, ĥ) at ¥, under

the assumptions (i) D= {0}, (ii) Res

0

q is nilpotent.



The associated parabolic bundles

For any (a,b) ∈ R2, we extend E to the bundle P
a,bE on P1 by considering the local

sections s satisfying |s|
h

=O(|z|−a−e ) (∀e > 0) around 0, and |s|
h

=O(|z|b+e ) (∀e > 0)

around ¥.

Let (Ê,¶
Ê

, q̂ , ĥ) be the Nahm transform of (E,¶
E

,q ,h).

Let Û
¥

be a neighbourhood of ¥ in P1. For each a ∈ R, (Ê,¶
Ê

)|Û
¥

\{¥} is extended

to a holomorphic vector bundle P
(¥)
a

Ê

Û

¥

.

In particular, we have the vector bundle P
(¥)
0

Ê

Û

¥

. The fiber P
(¥)
0

Ê

Û

¥

|¥ is equipped

with the filtration F indexed by −1< a≤ 0:

F
a

(
P

(¥)
0

Ê

Û

¥

|¥

)
:= Im

(
P

(¥)
a

Ê

Û

¥

|¥ −→ P
(¥)
0

Ê

Û

¥

|¥

)

We would like to describe P
(¥)
0

Ê

Û

¥

and the parabolic filtration F in terms of

(P
a,bE |(a,b) ∈ R

2) and q .



Algebraic description of the parabolic filtration at ¥

We have the endomorphism Gr

(0)
0

(Res
0

(q )) of Gr
(0)
0

(E) := P
0,0(E)/P<0,0(E). Let G

a

be the kernel of

P
0,aE −→

Gr

(0)
0

(E)

ImGr

(0)
0

Res(q )
(skyscraper sheaf at 0)

Let Û
¥

be a small neighbourhood of ¥ in P1. Let t := z

−1. Let p

i

be the projection

of P1×Û

¥

onto the i-th component. We have the following complex C •
a

:

p

∗
1

P
0,aE

t p

∗
1

(q )+p

∗
1

(dz)
−−−−−−−−−→ p

∗
1

(
G
a

⊗W1({0}+2{¥})
)

In the case a= 0, we obtain a holomorphic bundle Ê

alg

Û

¥

:= Rp

2∗C
•
0

on Û

¥

. Moreover,

for −1< a< 0, we set

F
a

(Ê
alg

Û

¥

|¥
) := Im

(
Rp

2∗(C
•
a

)|¥ −→ Ê

alg

Û

¥

|¥

)

We obtain the induced filtration F on Ê

alg

Û

¥

|¥
.

Theorem (M-Szabo)

The parabolic bundle (Ê
alg

Û

¥

,F) is isomorphic to (P
(¥)
0

Ê

Û

¥

,F).



Revisit from a twistor viewpoint

We have the algebraic pure twistor D-module T on P1 associated to (E,¶
E

,q ,h).

Let M denote the R-modules underlying T .

We have the algebraic function zz on C
z

×C
z

. We have the associated pure

twistor D-module T (zz ). Let L (zz ) be the underlying R-module.

Proposition

We have the following quasi-isomorphism

C
•
0

−→
(
W

•
P1

⊗V−1

(
p

∗
1

M ⊗L (zz )
))

|{0}×P1×Û
¥

As a result, we obtain Ê

alg

Û

¥

≃V−1

p

0

2�

(p∗
1

M ⊗L (zz ))|{0}×Û
¥

≃ P
(¥)
0

Ê

Û

¥

.

How to describe V−1+ap
2�

(
p

∗
1

M ⊗L (zz )
)
|{0}×Û

¥

≃ P
(¥)
a

Ê

Û

¥

?

In general, C •
a

and
(
W

•
P1

⊗V

a−1

(
p

∗
1

M ⊗L (zz )
))

|{0}×P1×Û
¥

are not quasi-isomorphic.



To compare the parabolic filtrations, it is convenient to consider the mixed twistor

D-module T [!0] (i.e., i
!

i

∗T for i : P1 \{0} −→ P1).

Let M [!0] denote the R-modules underlying T [!0]. We have the morphisms:

V

a−1

p

2�

(
p

∗
1

(M [!0])⊗L (zz )
)
−→V

a−1

p

2�

(
p

∗
1

(M )⊗L (zz )
)

For −1< a< 0, the induced morphisms

Gr

V

a−1

p

2�

(
p

∗
1

(M [!0])⊗L (zz )
)
−→ Gr

V

a−1

p

2�

(
p

∗
1

(M )⊗L (zz )
)

are isomorphisms.

Proposition

For −1< a< 0, we have the following quasi-isomorphism:

C
•
a

−→
(
W

•
P1

⊗V

a−1

(M [!0]⊗L (zz ))
)
|{0}×P1×Û

¥

.



F
a

(
P

(¥)
0

Ê

Û

¥

|¥

)

= Im

(
V−1+ap

2�

(
p

∗
1

M ⊗L (zt)
)
|(0,¥) −→V−1

p

2�

(
p

∗
1

M ⊗L (zt)
)
|(0,¥)

)

= Im

(
V−1+ap

2�

(
p

∗
1

M [!0]⊗L (zt)
)
|(0,¥) −→V−1

p

2�

(
p

∗
1

M ⊗L (zt)
)
|(0,¥)

)

= Im

(
R

2

p

2∗(C
•
a

)|¥ −→ R

2

p

2∗(C
•
0

)|¥

)
= F(Ê

alg

Û

¥

|¥
)



Theorem of Donagi-Pantev-Simpson

Let D := {t ∈ C | |t|< 1}. Let X be a complex surface with a projective morphism

F : X −→ D. Assume the following:

F

−1(D\{0}) −→ D\{0} is smooth.

The divisor F−1(0) is normal crossing.

Let F−1(0) =
⋃

j∈L
0

C

j

be the irreducible decomposition.

Let (E,¶
E

,q ,h) be a harmonic bundle on X \ F−1(0) which is “tame” along

F

−1(0). We also assume that (E,¶
E

,q ,h)|F−1(P) are irreducible for any P ∈ D\{0}

with rankE > 1.

We obtain vector bundle ⋄
E on X by considering local holomorphic sections s

such that |s|
h

=O(|F|−e ) for any e > 0. We also have locally free sheaves P
a
a
a

E

for any aaa ∈ RL0 .

Under the tamenees assumption, q is logarithmic with respect to ⋄
E. We

have the endomorphisms Res

C

i

(q ) of ⋄
E|C

i

. We assume that Res

C

i

(q ) are

nilpotent.



Set D∗ := D\{0}. On X

∗
:= X \F−1(0), we have the relative Higgs complex

E⊗W•
X

∗/D∗ .

E

1

:= R

1

F∗(E⊗W•
X

∗/D∗) is a locally free O
D

∗-module.

It is naturally equipped with Higgs field q

1

, Hermitian metric h

1

, so that

(E
1

,q
1

,h
1

) is a harmonic bundle on D∗.

We have the associated parabolic bundle. Namely, for any a ∈ R, we have the

locally free sheaf P
a

E

1

obtained as the extension of E
1

across 0, whose

sections are characterized by the condition |s|
h

1

= O(|z|−a−e) for any e > 0.



Donagi, Pantev and Simpson asked how P
a

E

1

are obtained directly from the tuple

(P
b

b

b

E |aaa ∈ RL0) and q .

They introduced the following complex.

For each a ∈ R, we have the following vector bundle P
F,aE obtained as the

extension across F−1(0) whose local sections s are characterized by the growth

condition |s|
h

= O(|F|−a−e) for any e > 0. We have ⋄
E = P

F,0E.

We have the following complex Dol

a

(E,q ,h):

P
F,aE

q

−−−−−→ P
F,aE⊗W1

X/D(logF)

Theorem (Donagi-Pantev-Simpson)

P
a

E

1

≃ R

1

F∗Dola(E,q ,h).



Let T be the pure twistor D-module associated to (E,¶
E

,q ,h). Let E denote the

underlying R-module.

Let i

F

: X −→ X×D be the graph embedding.

Theorem (Donagi-Pantev-Simpson)

For any a< 1, we have a natural quasi-isomorphism:

i

F∗Dol
•
a

(E,q ,h)−→ W

•
X

⊗
(
V

a−1

i

F�

E

)
|{0}×X×D

.

We obtain R

1

F∗
(
Dol

•
a

(E,q ,h)
)
≃V

a−1

F

0

�

(E)|{0}×D.

The theorem of Donagi-Pantev-Simpson follows from the relation between

V -filtrations and the parabolic filtration.
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