A factorization theorem for rank-two irregular flat connections

Frank Loray (CNRS / Univ Rennes 1)

Joint work with Jorge Vitório Pereira and Frédéric Touzet Journal de l'École Polytechnique **3** (2016) p. 263-308.

Flat rank 2 connections

Let X be a smooth projective variety over \mathbb{C} .

DEFINITION: A flat meromorphic connection (E, ∇) of rank 2 is

- $E \rightarrow X$ is a rank 2 vector bundle,
- D > 0 an effective (polar) divisor on X,
- $\nabla : E \to E \otimes \Omega^1_X(D)$ connection,
- flatness condition: $\nabla \cdot \nabla = 0$.

Flat rank 2 connections

Let X be a smooth projective variety over \mathbb{C} .

DEFINITION: A flat meromorphic connection (E, ∇) of rank 2 is

Projective and birational equivalence

DEFINITION: 1) Projective equivalence: $(E_1, \nabla_1) \sim_{\text{proj}} (E_2, \nabla_2)$ $\Leftrightarrow \exists (L, \zeta) \text{ rank 1 flat meromorphic connection s.t. } (E_2, \nabla_2) = (L, \zeta) \otimes (E_1, \nabla_1).$

2) Birational equivalence:
$$(E_1, \nabla_1) \sim_{\text{bir}} (E_2, \nabla_2)$$

 $\Leftrightarrow \exists \phi : E_1 - \cdots + E_2$ birational bundle tranformation such that $\nabla_1 = \phi^* \nabla_2$.

3) Projective-birational equivalence: $(E_1, \nabla_1) \sim (E_2, \nabla_2)$ $\Leftrightarrow \exists (E_3, \nabla_3) \text{ s.t. } (E_1, \nabla_1) \sim_{\text{proj}} (E_3, \nabla_3) \sim_{\text{bir}} (E_2, \nabla_2).$

Projective and birational equivalence

DEFINITION: 1) Projective equivalence: $(E_1, \nabla_1) \sim_{\text{proj}} (E_2, \nabla_2)$ $\Leftrightarrow \exists (L, \zeta) \text{ rank 1 flat meromorphic connection s.t. } (E_2, \nabla_2) = (L, \zeta) \otimes (E_1, \nabla_1).$

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \sim_{\text{proj}} \begin{pmatrix} \alpha + \omega & \beta \\ \gamma & \delta + \omega \end{pmatrix}$$

2) Birational equivalence: $(E_1, \nabla_1) \sim_{\text{bir}} (E_2, \nabla_2)$ $\Leftrightarrow \exists \phi : E_1 - \cdots + E_2$ birational bundle tranformation such that $\nabla_1 = \phi^* \nabla_2$.

 $A \sim_{\text{bir}} M^{-1}dM + M^{-1}AM, \quad M \in GL_2(\mathcal{M}_X)$

3) Projective-birational equivalence: $(E_1, \nabla_1) \sim (E_2, \nabla_2)$ $\Leftrightarrow \exists (E_3, \nabla_3) \text{ s.t. } (E_1, \nabla_1) \sim_{\text{proj}} (E_3, \nabla_3) \sim_{\text{bir}} (E_2, \nabla_2).$

Motivation

Let $(E \to X, \nabla : E \to E \otimes \Omega^1_X(D))$ flat meromorphic connection of rank 2.

THEOREM: Corlette-Simpson

Assume

- D has simple normal crossing
- ∇ is regular-singular
- ∇ has rational residual eigenvalues along D
- its monodromy has Zariski dense image in $PSL_2(\mathbb{C})$.

Then we are in one of the following cases:

 $\exists f: X \dashrightarrow C \text{ (curve) such that } (E, \nabla) \sim f^*(E_0, \nabla_0)$ (for a meromorphic connection (E_0, ∇_0) on C);

 $\exists \phi : X \to \mathfrak{H}$ Shimura polydisk and $(E, \nabla) \sim f^*(E_0, \nabla_0)$ for one of the tautological connections (E_0, ∇_0) on \mathfrak{H} .

Result

Let $(E \to X, \nabla : E \to E \otimes \Omega^1_X(D))$ flat meromorphic connection of rank 2.

THEOREM: Corlette-Simpson + Cousin-Pereira + L.-Pereira-Touzet Assume nothing more

Then we are in one of the following cases:

(1) $\exists f: X \to C$ (curve) such that $(E, \nabla) \sim f^*(E_0, \nabla_0)$ (for a meromorphic connection (E_0, ∇_0) on C); (2) $\exists \phi: \tilde{X} \to X$ generically finite such that $\phi^*(E, \nabla) \sim (\mathcal{O}_{\tilde{X}} \oplus \mathcal{O}_{\tilde{X}}, \nabla_0)$ with $\nabla_0 = d + \begin{pmatrix} \omega & 0 \\ 0 & -\omega \end{pmatrix}$ or $\begin{pmatrix} 0 & \omega \\ 0 & 0 \end{pmatrix}$, ω closed meromorphic 1-form; (3) $\exists \phi: X \to \mathfrak{H}$ Shimura polydisk and $(E, \nabla) \sim f^*(E_0, \nabla_0)$ for one of the tautological connections (E_0, ∇_0) on \mathfrak{H} .

Today:

Let $(E \to X, \nabla : E \to E \otimes \Omega^1_X(D))$ flat meromorphic connection of rank 2.

THEOREM: Corlette-Simpson + Cousin-Pereira + L.-Pereira-Touzet Assume ∇ irregular

Then we are in one of the following cases:

(1) $\exists f: X \dashrightarrow C$ (curve) such that $(E, \nabla) \sim f^*(E_0, \nabla_0)$ (for a meromorphic connection (E_0, ∇_0) on C); (2) $\exists \phi: \tilde{X} \to X$ generically finite such that $\phi^*(E, \nabla) \sim (\mathcal{O}_{\tilde{X}} \oplus \mathcal{O}_{\tilde{X}}, \nabla_0)$ with $\nabla_0 = d + \begin{pmatrix} \omega & 0 \\ 0 & -\omega \end{pmatrix}$ or $\begin{pmatrix} 0 & \omega \\ 0 & 0 \end{pmatrix}$, ω closed meromorphic 1-form;

First reductions:

Can pass to generically finite maps $\phi : \tilde{X} \to X$ if needed.

Can assume X is a surface.

Sabbah's good formal model:

Now X is a smooth projective surface and (E, ∇) a meromorphic connection.

THEOREM: Up to a generically finite map and projective-birational equivalence, we can assume D simple normal crossing and at any $p \in |D|$ we have one of the following models:

(1)
$$d + \begin{pmatrix} \omega & 0 \\ 0 & -\omega \end{pmatrix}$$
 with $\omega = \lambda_x \frac{dx}{x} + \lambda_y \frac{dy}{y}$;
(2) $d + \begin{pmatrix} 0 & \omega \\ 0 & 0 \end{pmatrix}$ with $\omega = \lambda_x \frac{dx}{x} + \lambda_y \frac{dy}{y}$;
(3) $d + \begin{pmatrix} \omega & 0 \\ 0 & -\omega \end{pmatrix}$ with $\omega = \frac{df}{f^{\kappa+1}} + \lambda_x \frac{dx}{x} + \lambda_y \frac{dy}{y}$;
(4) $d + \begin{pmatrix} \omega & 0 \\ 0 & -\omega \end{pmatrix} + \underbrace{\begin{pmatrix} * & * \\ * & * \end{pmatrix}}_{\text{holomorphic}}$ with $\omega = \frac{df}{f^{\kappa+1}} + \lambda \frac{df}{f}$.

where (x, y) local coordinates, $f = x^p y^q$ and $\lambda_x, \lambda_y, \lambda \in \mathbb{C}$.