Introduction to Stokes structures

III: A RH correspondence with lattices and the case of singularities

Claus Hertling

Universität Mannheim

13.04.2017

Program SISYPH DFG HE2287/4-1

Plan

• Riemann-Hilbert correspondence for holomorphic flat bundles (H, ∇) on $(\Delta, 0)$ with extra assumptions.

 The case of holomorphic functions with isolated singularities, via this RH correspondence and a topological Fourier-Laplace transformation.

Situation

 $\Delta \subset \mathbb{C}$ disk around 0 with coordinate z.

 $(H \to \Delta, \nabla)$ hol. bundle with hol. flat connection ∇ on $H|_{\mathbb{C}^*}$ with merom. pole at z=0. Equivalent: $(\mathcal{H}_0:=\mathcal{O}(H)_0, \nabla_{\partial_z})$.

Assumptions:

- (i) The formal decomposition (Levelt-Turrittin) of $(\mathcal{H}_0[z^{-1}], \nabla_{\partial_z})$ works without ramification.
- (ii) The pole is pure of level $q \in \mathbb{Z}_{\geq 1}$, i.e. order q+1: The exponentials $\varphi_1,...,\varphi_n$ are

$$\varphi = \frac{u_i}{z^q} + lower \ terms \ \in z^{-1}\mathbb{C}[z^{-1}]$$

with $u_1,...,u_n \in \mathbb{C}$ and $u_i \neq u_j$ for $i \neq j$.

(iii) $(\mathcal{H}_0, \nabla_{\partial_z})$ has a pole of order q+1 (only).

Formal decomposition

A notation:
$$(\mathcal{E}^{\varphi}, \nabla^{\varphi}_{\partial z}) := (\mathbb{C}\{z\}, d + d\varphi)$$
. Write \mathcal{E}^{φ} for $(\mathcal{E}^{\varphi}, \nabla^{\varphi}_{\partial z})$.

(i)&(ii)&(iii) \Rightarrow The formal decomposition (Levelt-Turrittin) works also for (H, ∇) : \exists formal isom

$$\Psi_{\textit{for}}: (\mathcal{H}_0, \nabla_{\partial_z}) \otimes_{\mathbb{C}\{z\}} \mathbb{C}[[z]] \cong \bigoplus_{i=1}^n \mathcal{E}^{-\varphi_i} \otimes (\mathcal{H}_0^{\textit{reg},i}, \nabla_{\partial_z}^{\textit{reg},i}) \otimes_{\mathbb{C}\{z\}} \mathbb{C}[[z]],$$

here $(H^{reg,i}, \nabla^{reg,i})$, i = 1, ..., n, is a hol. flat bundle on $(\Delta, 0)$ with regular singular pole of order $\leq q + 1$.

Sectorial decomposition

Also the sectorial decomposition (Hukuhara-Turrittin) works: For any small interval $I\subset S^1$ a lift Ψ_I of Ψ_{for} exists, an isomorphism

$$\Psi_{I}: (\mathcal{H}_{0}, \nabla_{\partial_{z}}) \otimes_{\mathbb{C}\{z\}} \mathcal{A}_{S^{1}}|_{I} \cong \bigoplus_{i=1}^{n} \mathcal{E}^{-\varphi} \otimes (\mathcal{H}_{0}^{reg,i}, \nabla_{\partial_{z}}^{reg,i}) \otimes_{\mathbb{C}\{z\}} \mathcal{A}_{S^{1}}|_{I}.$$

Next slides: • Read off the Stokes filtration from Ψ_I .

• Claim: Fix $I \subset S^1$. Then

$$\left\{\begin{array}{l} \mathsf{Sectorial} \\ \mathsf{isomorphisms} \ \Psi_I \end{array}\right\} \overset{1:1}{\longleftrightarrow} \left\{\begin{array}{l} \mathsf{Joint} \ \mathsf{splittings} \\ \mathsf{of} \ \mathsf{all} \ \mathsf{Stokes} \\ \mathsf{filtrations} \ \mathsf{over} \ I \end{array}\right\}$$

Recall that here (pure level q) joint splittings exist if length(I) $\leq \pi/q + \varepsilon$, and a unique one if length(I) $= \pi/q + \varepsilon$.

Local system and Stokes filtrations

Recall: The set $S^{dir} \subset S^1$ of Stokes directions is here

$$S^{dir} = \bigcup_{i \neq j} \{ \xi \in S^1 \mid \Re(\frac{u_i - u_j}{\xi^q}) = 0 \}$$
 (2q directions for each $i \neq j$).

For
$$\xi \in \mathcal{S}^1 - \mathcal{S}^{dir}$$

$$i <_{\xi} j : \iff \Re(\frac{u_i - u_j}{\xi^q}) < 0 \iff e^{\varphi_i - \varphi_j} \in \mathcal{A}^{\mathsf{rd}\,\mathbf{0}}_{S^1,\xi}.$$

$$\begin{array}{ccc} \mathcal{L} &:= & \text{local system ass. to } L := \mathcal{H}|_{S^1}, \\ \mathcal{L}_{\leq i,\xi} &:= & \mathcal{L}_{\leq \varphi_i,\xi} := \mathcal{L}_{\xi} \cap e^{\varphi_i} \cdot \mathcal{H}_0 \otimes \mathcal{A}_{S^1,\xi}, \end{array}$$

so
$$\sigma \in \mathcal{L}_{\xi}$$
 is in $\mathcal{L}_{\leq i,\xi} \iff e^{-\varphi_i} \cdot \sigma \in \mathcal{H}_0 \otimes \mathcal{A}_{S^1,\xi}$.

Quotient of the Stokes filtrations and reg. sing. bundles

$$\mathcal{L}^{reg,i} := ext{local system ass. to } L^{reg,i} := H^{reg,i}|_{S^1},$$
 $\mathcal{L}^{reg} := igoplus_{i=1}^n \mathcal{L}^{reg,i}, \qquad L^{reg} := igoplus_{i=1}^n H^{reg,i}|_{S^1}.$

Fix $\xi \in S^1 - S^{dir}$ and choose a sectorial isom Ψ_I for some $I \subset S^1$ with $\xi \in I$. It induces a flat isom

$$\Psi^{\mathit{flat}}_I: \mathcal{L}|_I \ o \ \mathcal{L}^{\mathit{reg}}|_I$$
 with $\mathcal{L}_{\leq i,\xi} \ \mapsto \ \bigoplus_{j \leq_{\varepsilon} i} \mathcal{L}^{\mathit{reg},j}_{\xi}.$

This induces an isom

$$\mathit{Gr}_{i}\mathcal{L}_{\xi}
ightarrow \mathcal{L}_{\xi}^{\mathit{reg},i}$$

which is in fact independent of the choice of Ψ_I and which extends to a global isom

$$Gr_i\mathcal{L} o\mathcal{L}^{reg,i}$$
.

1:1 correspondence sectorial isom's and joint splittings

Read off the Stokes filtration from Ψ_I :

$$(\Psi_I^{\mathit{flat}})^{-1}(igoplus_{i=1}^n \mathcal{L}^{\mathit{reg},i}|_I) = \mathcal{L}|_I$$

is a joint splitting for all Stokes filtrations $\mathcal{L}_{\leq ullet, \zeta}$ for $\zeta \in I - S^{dir}$.

Theorem: Fix I. Then

$$\left\{\begin{array}{l} \mathsf{Sectorial} \\ \mathsf{isomorphisms} \ \Psi_I \end{array}\right\} \overset{1:1}{\longleftrightarrow} \left\{\begin{array}{l} \mathsf{Joint} \ \mathsf{splittings} \\ \mathsf{of} \ \mathsf{all} \ \mathsf{Stokes} \\ \mathsf{filtrations} \ \mathsf{over} \ I \end{array}\right\}$$

A RH correspondence for holomorphic bundles

Theorem:

$$\left\{ \begin{array}{l} \text{Hol. flat bundles} \\ (H,\nabla) \text{ on } (\Delta,0) \\ \text{ with } (i)\&(\text{iii})\&(\text{iiii}) \end{array} \right\} \overset{\text{1:1}}{\longleftrightarrow} \left\{ \begin{array}{l} \varphi_1,...,\varphi_n \in z^{-1}\mathbb{C}[z^{-1}] \text{ with } (\text{ii}), \\ \text{Stokes data } (\mathcal{L},\mathcal{L}_{\leq \bullet},\mathcal{L}^{reg} \cong Gr\mathcal{L}), \\ \text{reg. sing. bundles } (\mathcal{H}_0^{reg,i},\nabla_{\partial_z}^{reg,i}) \\ \text{which fit to } \mathcal{L}^{reg,i} \\ \text{with poles of order } \leq q+1 \end{array} \right\}$$

For later use: The Stokes filtrations on the dual local system \mathcal{L}^{\vee} are

$$\mathcal{L}^{\vee}_{\geq i,\xi} = \{\sigma \in \mathcal{L}^{\vee}_{\xi} \,|\, \forall\, \omega \in \mathcal{H}_0 \quad <\omega, \sigma> \in e^{-\varphi_i} \cdot \mathcal{A}^{\text{mod } 0}_{\xi}\}, \quad \xi \in S^1 - S^{\text{dir}}.$$

Functions with isol. singularities and nice topology

 $\Delta = \Delta_{\eta} = \{z \in \mathbb{C} \mid |z| < \eta\}, \ X \subset \mathbb{C}^N \ \text{Stein manifold of dim } m, f: X \to \Delta \ \text{hol. function with (only) isolated singularities and } \textit{nice topology} \ \text{(def. below)}.$

$$\Sigma := \{u_1, ..., u_n\} := f(\operatorname{Sing}(f)) = \{\operatorname{critical values}\} \subset \Delta,$$

$$\mu := \sum_{x \in \operatorname{Sing}(f)} \mu(f, x) \quad \text{global Milnor number,}$$

$$\mu_i := \sum_{x \in \operatorname{Sing}(f^{-1}(u_i))} \mu(f, x), \qquad \sum_{i=1}^n \mu_i = \mu.$$

Notations:
$$\Delta(u_i, \delta) := \{z \in \mathbb{C} \mid |z - u_i| < \delta\} \subset \mathbb{C},$$

 $B^m(x, \varepsilon) := \{y \in X \mid ||y - x|| < \varepsilon\} \subset X \qquad (||.|| \text{ in } \mathbb{C}^N).$

Nice topology

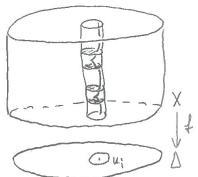
Nice topology means:

 $f:X \to \Delta$ is outside of Σ a C^{∞} locally trivial fibration, and

$$\forall \ \varepsilon > 0 \quad \exists \ \delta > 0 \quad \text{s.t.}$$

$$f:f^{-1}(\Delta(u_i,\delta))\cap \Big(X-igcup_{x\in \mathsf{Sing}(f^{-1}(u_i))}B^m(x,arepsilon)\Big) o \Delta(u_i,\delta)$$

is a C^{∞} locally trivial fibration.



Theorem

<u>Theorem:</u> (folklore? Pham? Douai-Sabbah 03) A Fourier-Laplace transformation of the Gauss-Manin system of $f: X \to \Delta$ yields a hol. flat bundle (H, ∇) on $(\mathbb{C}, 0)$ with (i)&(ii)&(iii) and more: formal decomposition without ramification, $(\mathcal{H}_0[z^{-1}], \nabla_{\partial_z})$ has a pole of pure level 1, i.e. order 2 (or a reg. sing. pole), $(\mathcal{H}_0, \nabla_{\partial_z})$ has a pole of order ≤ 2 , the exponential factors are $\varphi = \frac{u_i}{z}$ for i = 1, ..., n,

$$(\mathcal{H}_0^{reg,i}, \nabla_{\partial_z}) \cong FL \left(\bigoplus_{x \in Sing(f^{-1}(u_i))} (Brieskorn \ lattice \ of \ the \ germ \ (f, x)) \right),$$

so $\mathcal{H}^{reg,i}_0\subset V^{>0}(\mathcal{H}^{reg,i}_0[z^{-1}])$ $(V^{ullet}=\mathsf{Kashiwara}\mathsf{-Malgrange}\;\mathsf{filt.}).$

Continuation of the theorem

Local system $\mathcal{L} \supset \mathcal{L}_{\mathbb{Z}}$ local system of \mathbb{Z} -lattices of rank μ , compatible with all $\mathcal{L}_{\leq i,\xi}$, a pairing $P: \mathcal{L}_{\mathbb{Z},\xi} \times \mathcal{L}_{\mathbb{Z},-\xi} \to \frac{1}{(2\pi i)^m} \cdot \mathbb{Z}$ with good properties, more ... [pol MHS from $(H^{reg,i}, \nabla^{reg,i})$, mixed TERP str].

Now first (fast) approach via D-modules, following Sabbah 98.

Later second (more detailed) approach via the RH correspondence above and a topological Fourier-Laplace transformation which leads to the Stokes data.

D-modules in the algebraic case

First approach. Restrict to the case: X affine alg. manifold, $\mathbb C$ instead of Δ , $f:X\to\mathbb C$ M-tame function (def. not here). Gauss-Manin system

$$\begin{array}{lcl} M & := & H^m(\Omega^{\bullet}(X),[\partial_{\tau}]), d_f) = \frac{\Omega^m(X)[\partial_{\tau}]}{d_f \, \Omega^{m-1}(X)[\partial_{\tau}]}, \\ M_0 & := & \text{image of } \Omega^m(X) \text{ in } M & (= \text{Brieskorn lattice}), \end{array}$$

 M_0 is a free $\mathbb{C}[\tau]$ -module of some finite rank (often $\neq \mu$).

$$G := FL(M)[z] = FL(M[\partial_{\tau}^{-1}]),$$

 $G_0 := \mathbb{C}[z]$ -module in G generated by the image of M_0 in G $= \{\text{global sections with moderate growth at } \infty \text{ of } (H, \nabla)\}.$

This defines (H, ∇) . G_0 is a free $\mathbb{C}[z]$ -module of rank μ .

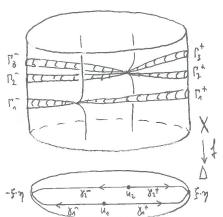
Picture of Lefschetz thimbles

 $\mathcal{L}^{\vee} := \mathsf{dual} \; \mathsf{local} \; \mathsf{system} \; \mathsf{on} \; \mathcal{S}^1$

 $\supset \mathcal{L}^{\mathsf{v}}_{\mathbb{Z}} = \mathsf{local}$ system of *Lefschetz thimbles*.

$$\mathcal{L}_{\mathbb{Z},\xi}^{\vee} \cong H_{\mathbb{Z},\xi}^{\vee} \cong H_m(X,\{x \mid \Re(f(x)/\xi) \gg 0\},\mathbb{Z}) \cong \mathbb{Z}^{\mu}$$

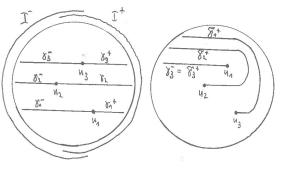
 $= \mathbb{Z}$ -lattice generated by hom. classes of Lefschetz thimbles



Semisimple case

Semisimple case: $n = \mu$ (i.e. only A_1 -sing, all crit. values different). Suppose $\Re(u_1) < ... < \Re(u_\mu)$.

Lefschetz thimble Γ_i^+ above γ_i^+ , Lefschetz thimble Γ_i^- above γ_i^- , Lefschetz thimble $M^{1/2}\Gamma_i^+$ above bended path $\widetilde{\gamma}_i^+$.



$$(M^{1/2}\Gamma_1^+,...,M^{1/2}\Gamma_\mu^+) = (\Gamma_1^-,...,\Gamma_\mu^-) \cdot S^t, \ S = \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \quad \begin{array}{l} \text{Stokes} \\ \text{matrix.} \end{array}$$

Splittings and pairings

$$I^+:=\{\xi\in S^1\,|\,\arg\xi\in]-\frac{\pi}{2}-\varepsilon,\frac{\pi}{2}+\varepsilon[\},\quad I^-:=-I^+.$$

The unique joint splitting of all $\mathcal{L}_{\mathbb{Z},\geq ullet,\xi}^{\vee}$

$$\text{for all } \xi \in \mathit{I}^{\mathit{a}} - \mathit{S}^{\mathit{dir}} : \qquad \bigoplus_{i=1}^{\mu} \mathbb{Z} \cdot \Gamma_{i}^{\mathit{a}} \qquad \text{for } \mathit{a} \in \{\pm 1\}.$$

Intersection form for Lefschetz thimbles P_{Lef} (also non-ss case):

$$\begin{split} P_{Lef}: \mathcal{L}_{\mathbb{Z},\xi}^{\vee} \times \mathcal{L}_{\mathbb{Z},-\xi}^{\vee} &\to \mathbb{Z} \qquad \text{unimodular,} \\ P_{Lef}((\Gamma_{1}^{+},...,\Gamma_{\mu}^{+})^{t},(\Gamma_{1}^{-},...,\Gamma_{\mu}^{-})) &= (-1)^{m(m+1)/2} \cdot \mathbf{1}_{\mu} \end{split}$$

Define P^{Lef} on $\mathcal{L}_{\mathbb{Z}}$ by duality, define $P:=\frac{(-1)^{m(m+1)/2}}{(2\pi\sqrt{-1})^m}\cdot P^{Lef}$.

Then
$$P: \mathcal{H}_0 \times \mathcal{H}_0 \to z^m \mathbb{C}\{z\}$$
 K. Saito's pairing.

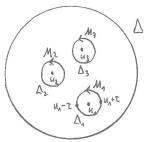
Second approach

First construct
$$\mathcal{L}_{\mathbb{Z}}^{\vee}$$
, $\mathcal{L}_{\geq i,\mathbb{Z},\xi}^{\vee}$, $\mathcal{L}_{\mathbb{Z}}^{reg,i,\vee}$ (by a top. FL trf.). $f: X \to \Delta$ as above. Choose a small δ , $\Delta_i := \Delta(u_i,\delta) \subset \Delta$. $H_{hom,\mathbb{Z}} := \bigcup_{\tau \in \Delta - \Sigma} H_{m-1}(f^{-1}(\tau),\mathbb{Z})/\text{torsion}$ (middle hom. bundle), $(H_{vc,i,\mathbb{Z}} \to \Delta_i^*) := \bigoplus_{x \in \text{Sing}(f^{-1}(u_i))} (\text{middle hom. bundle of } (f,x)),$ $H_{vc,i,\mathbb{Z}} \hookrightarrow H_{hom,\mathbb{Z}}|_{\Delta_i^*} \quad \mathbb{Z}\text{-sublattice bundle}$ $(H_{vc,\mathbb{Z}} \to \Delta - \Sigma) := \text{smallest } \mathbb{Z}\text{-sublattice bundle of } H_{hom,\mathbb{Z}}$ with $H_{vc,\mathbb{Z}}|_{\Delta_i^*} \supset H_{vc,i,\mathbb{Z}}.$

Monodromy and pairings

Now forget $H_{hom,\mathbb{Z}_{+}}$ keep $H_{vc.\mathbb{Z}}$, $H_{vc.i.\mathbb{Z}}$.

 $M_i := Mon on H_{vc,\mathbb{Z}}|_{\Delta^*}$. M_i is on $H_{vc,i,\mathbb{Z}}$ quasiunipotent, on $H_{vc,\mathbb{Z}}|_{\Delta_{\cdot}^*}/H_{vc,i,\mathbb{Z}}$ trivial.



∃ flat pairings:

$$\begin{split} I_{int}: H_{vc,\mathbb{Z},\tau} \times H_{vc,\mathbb{Z},\tau} &\to \mathbb{Z} \quad \text{ for } \tau \in \Delta - \Sigma, \\ P_i: H_{vc,i,\mathbb{Z},u_i+\tau} \times H_{vc,i,\mathbb{Z},u_i-\tau} &\to \mathbb{Z} \quad \text{ for } u_i + \tau \in \partial \Delta_i, \end{split}$$

 I_{int} intersection form, $(-1)^{m-1}$ -symmetric, P_i unimodular and $(-1)^m$ -symmetric. Compatibility: for $a \in H_{vc,\mathbb{Z},u_i+\tau}$, $b \in H_{vc,i,\mathbb{Z},u_i+\tau}$, $|\tau| = \delta$,

$$I_{int}(a,b) = (-1)^{m+1} P_i(M_i^{-1/2}(M_i - id)(a), b).$$

Shadows of Lefschetz thimbles

Consider for $(i, \xi) \in \{1, ..., n\} \times S^1$ the space of paths

$$\begin{array}{rcl} \Pi_{i,\xi} &:= & \{ \mathsf{paths} \; \gamma_i \; \mathsf{from} \; u_i \; \mathsf{to} \; \xi \cdot \eta \in \partial \Delta \, | \\ && \mathsf{image}(\gamma_i) \cap \partial \Delta = \{ \mathsf{one} \; \mathsf{point} \; p_i \} \}. \end{array}$$

Any $(\gamma_i, \delta_i) \in \Pi_{i,\xi} \times H_{vc,i,\mathbb{Z},p_i}$ is a shadow of a Lefschetz thimble.

<u>Theorem:</u> (folklore? H., unpublished; similar to Bloch-Esnault 04, Hien 09, Mochizuki 10)

$$\forall \ \xi \in S^1 \ \exists \ \mathsf{chain} \ \mathsf{complex} \ C_2(\xi) \overset{\partial_2}{\longrightarrow} C_1(\xi) \overset{\partial_1}{\longrightarrow} C_0(\xi) \ \mathsf{with}$$

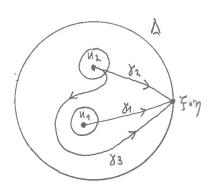
$$H_1(C_{ullet}(\xi)) = \mathbb{Z}$$
-lattice of rank μ of shadows of Lefschetz thimbles
$$= \left(\bigoplus_{i=1}^n \mathbb{Z} \cdot \Pi_{i,\xi} \times H_{vc,i,\mathbb{Z},\xi}\right) / \sim \quad (\sim \text{ suitable eq. rel.})$$
$$=: L_{\mathbb{Z}_{\varepsilon}}^{\vee}.$$

Eq. rel. by example, theorem continued

Example:

$$\begin{array}{l} \gamma_1 \in \Pi_{1,\xi}, \gamma_2, \gamma_3 \in \Pi_{2,\xi} \\ \delta \in H_{vc,2,\mathbb{Z},p_2} \\ \nabla_{\gamma} : H_{vc,\mathbb{Z},\gamma(0)} \to H_{vc,\mathbb{Z},\gamma(1)} \\ \text{parallel transport along } \gamma \end{array}$$

$$(\gamma_3, \delta) \sim (\gamma_2, \delta) + + (\gamma_1, (M_1 - id)(\nabla_{\gamma_1^{-1}} \nabla_{\gamma_2}(\delta))$$



Theorem continued: \exists natural (induced) pairing $P_{Lef}: L^{\vee}_{\mathbb{Z},\xi} \times L^{\vee}_{\mathbb{Z},-\xi} \to \mathbb{Z}$, unimodular, flat, $(-1)^m$ symmetric.

 $L_{\mathbb{Z}}^ee := \bigcup_{\xi \in S^1} L_{\mathbb{Z}, \xi}^ee$ is a flat \mathbb{Z} -lattice bundle of rank μ .

Stokes filtrations in terms of paths

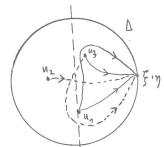
$$\mathcal{L}_{\mathbb{Z},\geq i,\xi}^{\vee} = \left\{ \left[\sum_{j=1}^{n} \sum_{k} a_{jk} (\gamma_{j}^{(k)}, \delta_{j}^{(k)}) \right] \in \mathcal{L}_{\mathbb{Z},\xi}^{\vee} \mid a_{jk} \in \mathbb{Z},$$

$$(\gamma_{j}^{(k)}, \delta_{j}^{(k)}) \in \Pi_{j,\xi}, \quad \delta_{j}^{(k)} \times H_{vc,j,\mathbb{Z},\xi},$$

$$image(\gamma_{j}^{(k)} \subset \{\tau \in \Delta \mid \Re(\frac{\tau - u_{i}}{\xi}) \geq 0\}.$$

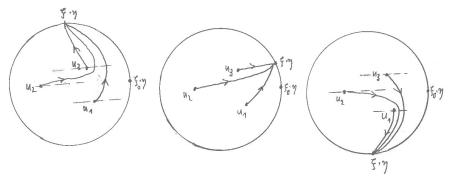
In the picture lines: $\in \mathcal{L}^ee_{\mathbb{Z},\geq 1,\xi}$

dotted lines: $otin \mathcal{L}_{\mathbb{Z},\geq 1,\xi}^{\vee}$



Unique splitting in terms of paths

Let $I \subset S^1$ be an interval of length $\pi + \varepsilon$ with midpoint $\xi_0 \in S^1$ and $\pm i \xi_0 \notin S^{dir}$. One can see the unique joint splitting for all $\xi \in I$:



from deformations of paths which move in the direction of ξ_0 until they meet $\partial \Delta$.

Regular singular pieces

With
$$\alpha_i : \partial \Delta_i \to S^1$$
, $u + \tau \mapsto \tau/\delta$, define

$$L^{reg,i,\vee} := \alpha_i^* H_{vc,i,\mathbb{Z}}|_{\partial \Delta_i}.$$

Then

$$Gr_iL^{\vee}_{\mathbb{Z}}\cong L^{reg,i,\vee}_{\mathbb{Z}}.$$

Define

$$(\mathcal{H}^{\mathsf{reg},i}_0,\nabla_{\partial_z}) := \mathit{FL}\left(\bigoplus_{x \in \mathsf{Sing}(f^{-1}(u_i)} \mathsf{Brieskorn\ lattice\ of\ the\ germ\ } (f,x)\right).$$

All data on the right hand side of the RH correspondence above are defined. This determines (H, ∇) .

(H, ∇) by a FL transformation

 $(H_{vc,\mathbb{C}}^{\vee} \to \Delta - \Sigma) :=$ flat bundle dual to $(H_{vc,\mathbb{C}} \to \Delta - \Sigma)$. Extend it to a hol flat bundle $H_{BL} \to \Delta$ on (Δ, Σ) with reg. singularities at Σ as follows:

$$\begin{array}{ll} 0 & \to & \mathcal{O}\left(\begin{array}{c} \text{flat extension} \\ \text{to } u_i \text{ of } H^{\perp}_{vc,i,\mathbb{C}} \end{array}\right) \to \mathcal{H}_{BL,u_i} \\ & \to & FL\left(\bigoplus_{x \in \mathsf{Sing}(f^{-1}(u_i))} \mathsf{Brieskorn \ lattice \ of } \left(f,x\right)\right) \to 0. \end{array}$$

Here observe that $H^{\perp}_{vc,i,\mathbb{C}} \subset H^{\vee}_{vc,\mathbb{C}}|_{\Delta^*_i}$ has trivial monodromy.

Global sections of H with mod. growth at ∞

$$G_0 = \Gamma^{mod \, \infty}(H) := FL\left(\Gamma^{mod \, \infty}H_{BL}[\partial_\tau^{-1}]\right) = FL(\Gamma^{mod \, \infty}H_{BL})[z].$$

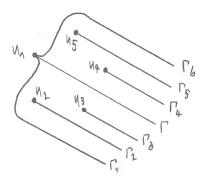
More concretely: $H|_{S^1}=L=$ flat bundle on S^1 dual to L^\vee . $\omega\in\Gamma^{mod\,\infty}(H_{BL})$ defines a global hol. section $[\omega]$ of $H|_{\mathbb{C}^*}$ by

$$[\omega](z)([(\gamma,\delta)]) := \int_{\gamma} e^{-\tau/z} \cdot \omega(\delta(\tau)) d\tau.$$

 $\Gamma^{mod \, \infty}(H) := \text{the } \mathbb{C}[z]\text{-module generated by such sections.}$

A path argument for a linear combination

Seimisimple example (relevant for the mirror partner of \mathbb{P}^n):



Suppose $\Gamma_1 + \alpha_2\Gamma_2 + \alpha_3\Gamma_3 = \alpha_4\Gamma_4 + \alpha_5\Gamma_5 + \Gamma_6$ for some $\alpha_i \in \mathbb{Z}$. Then

$$\Gamma \stackrel{!}{=} \Gamma_1 + \alpha_2 \Gamma_2 + \alpha_3 \Gamma_3 = \alpha_4 \Gamma_4 + \alpha_5 \Gamma_5 + \Gamma_6.$$

