On the Intersection of a Sparse Hypersurface and a Low-degree Curve

Mohab Safey El Din, Sébastien Tavenas

January 17, 2017

Problem Statement

• \mathcal{C} := degree- δ curve in \mathbb{C}^n defined by

$$f_1 = \ldots = f_k = 0$$
 where $f_j \in \mathbb{R}[X_1, \ldots, X_n]$.

- Let $g \in \mathbb{R}[X_1, \dots, X_n] \leadsto$ sum at most t monomial (g is t-sparse).
- V:= algebraic set defined by g(x) = 0.

Problem

Assume that $(\mathcal{V} \cap \mathcal{C})$ is finite. Can we find a **nice bound** on $\sharp (\mathcal{V} \cap \mathcal{C}) \cap \mathbb{R}^n$ A bound which only depends on δ and t (and **not** on $\deg(g)$)?

Why?

Quantitative results in real algebraic geometry

→ premise of better algorithms

Sparsity matters over the reals.

- Multivariate case?

Sparsity matters over the reals.

- Univariate case → Descartes' rule.
- Multivariate case?

Theorem (Khovanskii (1983))

System of n equations, n variables with ony n+l+1 distinct monomials. Then, number of positive real solutions bounded by

$$2^{\binom{l+n}{2}}(n+1)^{l+n}$$
.

Sparsity matters over the reals.

- Multivariate case?

Theorem (Khovanskii (1983) - Bihan, Sottile (2007))

System of n equations, n variables with ony n+l+1 distinct monomials. Then, number of positive real solutions bounded by

$$2^{\binom{l+n}{2}}(n+1)^{l+n} \rightsquigarrow \frac{e^2+3}{4}2^{\binom{l}{2}}n^l.$$

Situations where bounds are polynomial in /?

Theorem (Koiran, Portier, T. (2015))

Let $f \in \mathbb{R}[X_1, X_2]$ of degree $d \ge 1$ and $g \in \mathbb{R}[X_1, X_2]$ t-sparse.

Then the real solution set to f = g = 0 has at most

$$O(d^3t + d^2t^3)$$

connected components.

Problem Statement

• \mathcal{C} := degree- δ curve in \mathbb{C}^n defined by

$$f_1 = \ldots = f_k = 0$$
 where $f_j \in \mathbb{R}[X_1, \ldots, X_n]$.

- Let $g \in \mathbb{R}[X_1, \dots, X_n] \rightsquigarrow$ sum at most t monomial (g is t-sparse).
- V:= algebraic set defined by g(x) = 0.

Problem

Assume that $(\mathcal{V} \cap \mathcal{C})$ is finite.

Can we find a **bound polynomial in** δ , n, t on $\sharp (\mathcal{V} \cap \mathcal{C}) \cap \mathbb{R}^n$?

Main result

• \mathcal{C} := degree- δ curve in \mathbb{C}^n defined by

$$f_1 = \ldots = f_k = 0$$
 where $f_j \in \mathbb{R}[X_1, \ldots, X_n]$.

- Let $g \in \mathbb{R}[X_1, \dots, X_n] \rightsquigarrow$ sum at most t monomial (g is t-sparse).
- V:= algebraic set defined by g(x) = 0.

Theorem (Safey El Din, T.)

Assume that $(\mathcal{V} \cap \mathcal{C})$ is finite.

$$\sharp (\mathcal{V} \cap \mathcal{C}) \cap \mathbb{R}^n \leq \left(\frac{1}{3}nt^3\delta^2 + \delta^3t\right)(1 + o(1)).$$

Note: Constants are known

- 1) Parametrization of the curve C: $x_i = \phi_i(y)$
- 2) To bound number of real zeros of $g(\phi_1(y), \dots, \phi_n(y)) = 0$

$$g(\phi_1(y),\ldots,\phi_n(y)) = \sum_{k=1}^t a_k \phi_1^{\alpha_{k1}} \phi_2^{\alpha_{k2}} \ldots \phi_n^{\alpha_{kn}}(y)$$

Claim: Sufficient to bound the number of zeros of

$$W(\phi_1^{\alpha_{11}}\ldots\phi_n^{\alpha_{1n}}(y),\ldots,\phi_{t'}^{\alpha_{t'1}}\ldots\phi_{t'}^{\alpha_{t'n}}(y)).$$

Wronskian, a tool for bounding real roots

Definition: Let $f_1, \ldots, f_k \in C^{k-1}(I)$ with $I \subseteq \mathbb{R}$. The *Wronskian* of the family is the determinant of the matrix:

$$W(f_1, \dots, f_k) = \det \left[egin{array}{cccc} f_1 & f_2 & \dots & f_k \ f_1' & f_2' & \dots & f_k' \ dots & dots & dots \ f_1^{(k-1)} & f_2^{(k-1)} & \dots & f_k^{(k-1)} \ \end{array}
ight]$$

Wronskian, a tool for bounding real roots

Definition: Let $f_1, \ldots, f_k \in \mathcal{C}^{k-1}(I)$ with $I \subseteq \mathbb{R}$. The *Wronskian* of the family is the determinant of the matrix:

$$W(f_1, \dots, f_k) = \det \left[egin{array}{cccc} f_1 & f_2 & \dots & f_k \ f_1' & f_2' & \dots & f_k' \ dots & dots & dots \ f_1^{(k-1)} & f_2^{(k-1)} & \dots & f_k' \end{array}
ight]$$

Pólya, Szegő (1925) used it for proving Descartes' rule.

Wronskian, a tool for bounding real roots

Definition: Let $f_1, \ldots, f_k \in \mathcal{C}^{k-1}(I)$ with $I \subseteq \mathbb{R}$. The *Wronskian* of the family is the determinant of the matrix:

$$W(f_1, \dots, f_k) = \det \left[egin{array}{cccc} f_1 & f_2 & \dots & f_k \ f_1' & f_2' & \dots & f_k' \ dots & dots & dots \ f_1^{(k-1)} & f_2^{(k-1)} & \dots & f_k^{(k-1)} \ \end{array}
ight]$$

- Pólya, Szegö (1925) used it for proving Descartes' rule.
- Some connections with the number of roots of a sum already known by Voorhoeve and van der Poorten (1975).

Observation

If the family (f_1, \ldots, f_k) is linearly dependent, then $W(f_1, \ldots, f_k) = 0$.

Observation

If the family (f_1, \ldots, f_k) is linearly dependent, then $W(f_1, \ldots, f_k) = 0$.

Lemma

If the functions f_i are analytic, then the reverse is true.

Observation

If the family (f_1, \ldots, f_k) is linearly dependent, then $W(f_1, \ldots, f_k) = 0$.

Lemma

If the functions f_i are analytic, then the reverse is true.

Lemma (Koiran, Portier, T.(2013))

$$Z_{\mathbb{R}}(f_1+\ldots+f_k)\leq k-1+2\sum_{i=1}^{k-2}Z_{\mathbb{R}}(W(f_1,\ldots,f_j))$$

Observation

If the family (f_1, \ldots, f_k) is linearly dependent, then $W(f_1, \ldots, f_k) = 0$.

Lemma

If the functions f_i are analytic, then the reverse is true.

Lemma (Koiran, Portier, T.(2013))

$$Z_{\mathbb{R}}(f_1+\ldots+f_k)\leq k-1+2\sum_{j=1}^{k-2}Z_{\mathbb{R}}(W(f_1,\ldots,f_j))$$

Why does it help?

Observation

If the family (f_1, \ldots, f_k) is linearly dependent, then $W(f_1, \ldots, f_k) = 0$.

Lemma

If the functions f_i are analtic, then the reverse is true.

Lemma (Koiran, Portier, T.(2013))

$$Z_{\mathbb{R}}(f_1+\ldots+f_k)\leq k-1+2\sum_{j=1}^{k-2}Z_{\mathbb{R}}(W(f_1,\ldots,f_j))$$

Why does it help? (depends on the parametrization)

$$W(f_1,\ldots,f_k) =$$

(monomial in ϕ_1, \ldots, ϕ_n) · (low-degree polynomial in ϕ_1, \ldots, ϕ_n)

- 1) Parametrization of the curve C: $x_i = \phi_i(y)$
- 2) To bound number of real zeros of $g(\phi_1(y), \dots, \phi_n(y)) = 0$

$$g(\phi_1(y),\ldots,\phi_n(y)) = \sum_{k=1}^t a_k \phi_1^{\alpha_{k1}} \phi_2^{\alpha_{k2}} \ldots \phi_n^{\alpha_{kn}}(y)$$

Claim: Sufficient to bound the number of zeros of

$$W(\phi_1^{\alpha_{11}}\ldots\phi_n^{\alpha_{1n}}(y),\ldots,\phi_{t'}^{\alpha_{t'1}}\ldots\phi_{t'}^{\alpha_{t'n}}(y)).$$

- 1) Parametrization of the curve C: $x_i = \phi_i(y)$
- 2) To bound number of real zeros of $g(\phi_1(y), \dots, \phi_n(y)) = 0$

$$g(\phi_1(y),\ldots,\phi_n(y)) = \sum_{k=1}^t a_k \phi_1^{\alpha_{k1}} \phi_2^{\alpha_{k2}} \ldots \phi_n^{\alpha_{kn}}(y)$$

Claim: Sufficient to bound the number of zeros of

$$W(\phi_1^{\alpha_{11}} \dots \phi_n^{\alpha_{1n}}(y), \dots, \phi_{t'}^{\alpha_{t'1}} \dots \phi_{t'}^{\alpha_{t'n}}(y)).$$

$$= (\text{monomial in } \phi_1, \dots, \phi_n) \cdot T(\phi_1, \dots, \phi_n)$$

with T of low degree.

- 1) Parametrization of the curve C: $x_i = \phi_i(y)$
- 2) To bound number of real zeros of $g(\phi_1(y), \dots, \phi_n(y)) = 0$

$$g(\phi_1(y),\ldots,\phi_n(y)) = \sum_{k=1}^t a_k \phi_1^{\alpha_{k1}} \phi_2^{\alpha_{k2}} \ldots \phi_n^{\alpha_{kn}}(y)$$

Claim: Sufficient to bound the number of zeros of

$$W(\phi_1^{\alpha_{11}} \dots \phi_n^{\alpha_{1n}}(y), \dots, \phi_{t'}^{\alpha_{t'1}} \dots \phi_{t'}^{\alpha_{t'n}}(y)).$$

$$= (\text{monomial in } \phi_1, \dots, \phi_n) \cdot T(\phi_1, \dots, \phi_n)$$

with T of low degree.

It finishes the proof.

1) Parametrize the curve C: $x_i = \phi_i(y)$

2) To bound number of real zeros of $g(\phi_1(y), \dots, \phi_n(y)) = 0$ Sufficient to bound the number of zeros of

$$W(\phi_1^{\alpha_{11}} \dots \phi_n^{\alpha_{1n}}(y), \dots, \phi_{t'}^{\alpha_{t'1}} \dots \phi_{t'}^{\alpha_{t'n}}(y))$$
"="(monomial in ϕ_1, \dots, ϕ_n) $T(\phi_1, \dots, \phi_n)$.

- 4 □ ▶ 4 @ ▶ 4 분 ▶ 4 분 ▶ 9 Q @

Rationnal parametrization of the curve.

Kronecker's System: (y, z generical position) $\begin{cases} q_0(y, z)x_1 = p_1(y, z) \\ \dots \\ q_0(y, z)x_n = p_n(y, z) \\ u(y, z) = 0 \end{cases}$

 $u, q_0 = \partial_Z u, p_1, \dots, p_n$ of degree $\leq \delta$.

Rationnal parametrization of the curve.

Kronecker's System: (y, z generical position) $\begin{cases} q_0(y, z)x_1 = p_1(y, z) \\ \dots \\ q_0(y, z)x_n = p_n(y, z) \\ u(y, z) = 0 \end{cases}$

$$u, q_0 = \partial_Z u, p_1, \dots, p_n$$
 of degree $\leq \delta$.

CAD for u bivariate

Cylindrical Algebraic Decomposition

Rationnal parametrization of the curve.

Kronecker's System: (y, z generical position)

$$\begin{cases} q_0(y,z)x_1 = p_1(y,z) \\ \dots \\ q_0(y,z)x_n = p_n(y,z) \\ u(y,z) = 0 \end{cases}$$

$$u, q_0 = \partial_Z u, p_1, \dots, p_n$$
 of degree $\leq \delta$.

CAD for u bivariate

• Separately, handle case $\operatorname{Res}_{Z}(u, \partial_{Z} u) = 0$.

Rationnal parametrization of the curve.

$$\begin{cases} q_0(y,z)x_1 = p_1(y,z) \\ \dots \\ q_0(y,z)x_n = p_n(y,z) \\ u(y,z) = 0 \end{cases} \rightarrow z = \phi(y).$$

 $u, q_0 = \partial_Z u, p_1, \dots, p_n$ of degree $\leq \delta$.

CAD for u bivariate

- Separately, handle case $\operatorname{Res}_{Z}(u, \partial_{Z} u) = 0$.
- Find solutions on interval where $\operatorname{Res}_{Z}(u, \partial_{Z}u) \neq 0$, (and so $q_0 \neq 0$).

Rationnal parametrization of the curve.

Kronecker's System: (y, z generical position) $\begin{cases} q_0(y, z)x_1 = p_1(y, z) \\ \dots & \to x_i = \frac{p_i(y, \phi(y))}{q_0(y, \phi(y))} = \phi_i(z) \\ q_0(y, z)x_n = p_n(y, z) \\ u(y, z) = 0 & \to z = \phi(y). \end{cases}$

$$u, q_0 = \partial_Z u, p_1, \dots, p_n$$
 of degree $\leq \delta$.

CAD for u bivariate

- Separately, handle case $\operatorname{Res}_{Z}(u, \partial_{Z} u) = 0$.
- Find solutions on interval where $\operatorname{Res}_{Z}(u, \partial_{Z}u) \neq 0$, (and so $q_0 \neq 0$).

$$W = W\left(\phi_1^{\alpha_{11}} \dots \phi_n^{\alpha_{1n}}(y), \dots, \phi_1^{\alpha_{t1}} \dots \phi_n^{\alpha_{tn}}(y)\right)$$

$$W = W\left(\phi_1^{\alpha_{11}} \dots \phi_n^{\alpha_{1n}}(y), \dots, \phi_1^{\alpha_{t1}} \dots \phi_n^{\alpha_{tn}}(y)\right)$$

•
$$u(y, \phi(y)) = 0$$

$$\partial_y^k \to \partial^k \phi = \frac{1}{q_0^{\text{value}}} S(y, \phi(y)) \quad (S \text{ of low degree })$$

$$W = W\left(\phi_1^{\alpha_{11}} \dots \phi_n^{\alpha_{1n}}(y), \dots, \phi_1^{\alpha_{t1}} \dots \phi_n^{\alpha_{tn}}(y)\right)$$

• $u(y,\phi(y)) = 0$ $\partial_y^k \to \partial^k \phi = \frac{1}{q_0^{\text{value}}} S(y,\phi(y)) \quad (S \text{ of low degree })$

•
$$q_0(y,\phi(y))\phi_j(y) = p_j(y,\phi(y))$$

 $\partial_y^k \to \partial^k \phi_j = \frac{1}{q_0^{\text{value}}} S_j(y,\phi(y),\phi_j(y))$ (S_j of low degree)

$$W = W\left(\phi_1^{\alpha_{11}} \dots \phi_n^{\alpha_{1n}}(y), \dots, \phi_1^{\alpha_{t1}} \dots \phi_n^{\alpha_{tn}}(y)\right)$$

• $u(y,\phi(y)) = 0$ $\partial_y^k \to \partial^k \phi = \frac{1}{q_0^{\text{value}}} S(y,\phi(y)) \quad (S \text{ of low degree })$

•
$$q_0(y,\phi(y))\phi_j(y) = p_j(y,\phi(y))$$

 $\partial_y^k \to \partial^k \phi_j = \frac{1}{q_0^{\text{value}}} S_j(y,\phi(y),\phi_j(y))$ (S_j of low degree)

$$ightarrow W = rac{1}{q_0^{ ext{value}}} \left(\prod_{j=1}^n \phi_j^{\sum lpha_{kj} - t^2/2}
ight) \, T(\phi_1(y), \ldots, \phi_n(y)).$$

where $deg(T) \leq \frac{1}{2}(n+2)\delta t^2$.

1) Parametrize the curve C: $x_i = \phi_i(y)$

Kronecker's system:

$$\begin{cases} q_0(y,z)x_1 = p_1(y,z) \\ \dots \\ q_0(y,z)x_n = p_n(y,z) \\ u(y,z) = 0. \end{cases}$$
 (1)

$$u, q_0, p_1, \dots, p_n$$

degree- δ polynomials
 $\rightarrow x_i = \phi_i(y)$.

2) To bound number of real zeros of $g(\phi_1(y), \dots, \phi_n(y)) = 0$ Sufficient to bound the number of zeros of

$$W(\phi_1^{\alpha_{11}} \dots \phi_n^{\alpha_{1n}}(y), \dots, \phi_{t'}^{\alpha_{t'1}} \dots \phi_{t'}^{\alpha_{t'n}}(y))$$
"="(monomial in ϕ_1, \dots, ϕ_n) $T(\phi_1, \dots, \phi_n)$.

1) Parametrize the curve C: $x_i = \phi_i(y)$ Kronecker's system:

$$\begin{cases} q_0(y,z)x_1 = p_1(y,z) \\ \dots \\ q_0(y,z)x_n = p_n(y,z) \\ u(y,z) = 0. \end{cases}$$
 (1) u, q_0, p_1, \dots, p_n degree- δ polynomials $\rightarrow x_i = \phi_i(y)$.

2) To bound number of real zeros of $g(\phi_1(y), \dots, \phi_n(y)) = 0$ Sufficient to bound the number of zeros of

$$W = rac{1}{q_0^{ ext{value}}} \left(\prod_{j=1}^n \phi_j^{\sum lpha_{kj} - t^2/2}
ight) \, \mathcal{T}(\phi_1(y), \ldots, \phi_n(y))$$

where $deg(T) \leq \frac{1}{2}(n+2)\delta t^2$.

1) Parametrize the curve C: $x_i = \phi_i(y)$

Kronecker's system:

$$\begin{cases} q_0(y,z)x_1 = p_1(y,z) \\ \dots \\ q_0(y,z)x_n = p_n(y,z) \\ u(y,z) = 0. \end{cases}$$
 (1) u, q_0, p_1, \dots, p_n degree- δ polynomials $\rightarrow x_i = \phi_i(y)$.

Intersection of \mathcal{V} with System (1) equivalent to $g(\phi_1(y), \dots, \phi_n(y)) = 0$.

2) To bound number of real zeros of $g(\phi_1(y), \dots, \phi_n(y)) = 0$ Sufficient to bound the number of zeros of

$$W = rac{1}{q_0^{ ext{value}}} \left(\prod_{j=1}^n \phi_j^{\sum lpha_{kj} - t^2/2}
ight) \, T(\phi_1(y), \ldots, \phi_n(y))$$

where $deg(T) \leq \frac{1}{2}(n+2)\delta t^2$.

What happens if T is identically zero?

$$W\left(\underbrace{\phi_1^{\alpha_{11}}\dots\phi_n^{\alpha_{1n}}(y)}_{\eta_1(y)},\dots,\underbrace{\phi_1^{\alpha_{t1}}\dots\phi_n^{\alpha_{tn}}(y)}_{\eta_{t'}(y)}\right)$$

$$=\frac{1}{q_0^{\text{value}}}(\phi_1^{\sum \alpha_{k1}-t^2/2})\dots(\phi_n^{\sum \alpha_{kn}-t^2/2})\mathcal{T}(\phi_1(y),\dots,\phi_n(y))$$

It implies that the Wronskian is zero, i.e. the family (η_1, \dots, η_t) is dependent: $\sum_{j=1}^t b_j \eta_j = 0$. A branch of $\mathcal C$ satisfies $\sum_{j=1}^t b_j X_1^{\alpha_{j1}} \cdots X_n^{\alpha_{jn}}$. (Remember $g = \sum_{j=1}^t a_j X_1^{\alpha_{j1}} \cdots X_n^{\alpha_{jn}}$)

Remark: "Exponents of g can be real".

Remark: "Exponents of g can be real".

$$g = a_1 X_1^{\alpha_{11}} \cdots X_n^{\alpha_{1n}} + \ldots + a_t X_1^{\alpha_{t1}} \cdots X_n^{\alpha_{tn}}$$

$$\downarrow$$

$$g' = a_1 (X_1^{\alpha_{11}} \cdots X_n^{\alpha_{1n}})^{1+\eta_1} + \ldots + a_t (X_1^{\alpha_{t1}} \cdots X_n^{\alpha_{tn}})^{1+\eta_t}.$$

Remark: "Exponents of g can be real".

$$g = a_1 X_1^{\alpha_{11}} \cdots X_n^{\alpha_{1n}} + \ldots + a_t X_1^{\alpha_{t1}} \cdots X_n^{\alpha_{tn}}$$

$$\downarrow$$

$$g' = a_1 (X_1^{\alpha_{11}} \cdots X_n^{\alpha_{1n}})^{1+\eta_1} + \ldots + a_t (X_1^{\alpha_{t1}} \cdots X_n^{\alpha_{tn}})^{1+\eta_t}.$$

Values for the (η_j) 's?

Remark: "Exponents of g can be real".

$$g = a_1 X_1^{\alpha_{11}} \cdots X_n^{\alpha_{1n}} + \ldots + a_t X_1^{\alpha_{t1}} \cdots X_n^{\alpha_{tn}}$$

$$\downarrow$$

$$g' = a_1 (X_1^{\alpha_{11}} \cdots X_n^{\alpha_{1n}})^{1+\eta_1} + \ldots + a_t (X_1^{\alpha_{t1}} \cdots X_n^{\alpha_{tn}})^{1+\eta_t}.$$

Values for the (η_j) 's?

- Defined everywhere: odd denominator
- Continuity of $X \mapsto X^{1+\eta_j}$: even numerator

$$\eta_j = rac{2 p_j}{2 q_i + 1} \in]1/2, 1/2[\quad (p_j \in \mathbb{Z}, q_j \in \mathbb{N})$$

Remark: "Exponents of g can be real".

Lemma

There exists such a g' such that

the family

$$(\phi_1^{\alpha_{11}}\cdots\phi_n^{\alpha_{1n}})^{1+\eta_1},\ldots,(\phi_1^{\alpha_{t1}}\cdots\phi_n^{\alpha_{tn}})^{1+\eta_t}$$

is linearly independent

• $\#(\mathcal{C} \cap \mathcal{V}) \le \#(\mathcal{C} \cap \mathcal{V}')$ where \mathcal{V}' is defined by g' = 0.

We assume that g has the independence property and so T is not identically zero.

1) Parametrize the curve C: $x_i = \phi_i(y)$ Kronecker's system:

$$\begin{cases} q_0(y,z)x_1 = p_1(y,z) \\ \dots \\ q_0(y,z)x_n = p_n(y,z) \\ u(y,z) = 0. \end{cases}$$
 (1) u, q_0, p_1, \dots, p_n degree- δ polynomials $\rightarrow x_i = \phi_i(y)$.

Intersection of $\mathcal V$ with System (1) equivalent to $g(\phi_1(y),\ldots,\phi_n(y))=0.$

2) To bound number of real zeros of $g(\phi_1(y), \dots, \phi_n(y)) = 0$ Sufficient to bound the number of zeros of

$$W = rac{1}{q_0^{ ext{value}}} \left(\prod_{j=1}^n \phi_j^{\sum lpha_{kj} - t^2/2}
ight) \, \mathcal{T}(\phi_1(y), \ldots, \phi_n(y))$$

where $deg(T) \leq \frac{1}{2}(n+2)\delta t^2$.

Conclusion

 $\mathcal C$ be a non-degenerated degree- δ real curve. Let $\mathcal V$ be the algebraic set defined by $g(\mathbf x)=0$ where g is t-sparse. If the number of intersections between $\mathcal C$ and $\mathcal V$ is finite,

$$\#(\mathcal{C}\cap\mathcal{V})\leq \left(\frac{1}{3}nt^3\delta^2+\delta^3t\right)(1+o(1)).$$

An improvement

Assume now that

• C is defined by a reduced regular sequence (f_1, \ldots, f_{n-1}) with $\deg(f_i) \leq D$.

Then:

- ullet no need of Kronecker representation + CAD step for ${\cal C}$
- up to a generic linear change of coordinates, one can "invert" between the critical values of the projection on the first coordinate.

Gain: saves a factor
$$\delta$$

$$\left| \sharp (\mathcal{C} \cap \mathcal{V}) \le \left(\frac{1}{3} n^2 D t^3 \delta + n D \delta^2 t \right) (1 + o(1)) \right|$$

Perspectives

- Find algorithms from the proof:
 Detecting/counting/isolating the real solutions?
- Intersection of sparses

$$f(x,y) = g(x,y) = 0$$
 where f and g are t-sparse.

- Number of connected components between a sparse hypersurface and a low-degree variety.
- Zeros of

$$g(y) = a_1(\phi_1^{\alpha 1 1} \cdots \phi_n^{\alpha 1 n}) + \ldots + a_t(\phi_1^{\alpha 1 1} \cdots \phi_n^{\alpha 1 n})$$

If the ϕ_j are sparse (but possibly high-degree) polynomials.

Perspectives

- Find algorithms from the proof:
 Detecting/counting/isolating the real solutions?
- Intersection of sparses

$$f(x,y) = g(x,y) = 0$$
 where f and g are t-sparse.

- Number of connected components between a sparse hypersurface and a low-degree variety.
- Zeros of

$$g(y) = a_1(\phi_1^{\alpha 1 1} \cdots \phi_n^{\alpha 1 n}) + \ldots + a_t(\phi_1^{\alpha 1 1} \cdots \phi_n^{\alpha 1 n})$$

If the ϕ_j are sparse (but possibly high-degree) polynomials. If you want to play:

Maximal number of zeros of fg + 1 when f and g are t-sparse?

Perspectives

- Find algorithms from the proof:
 Detecting/counting/isolating the real solutions?
- Intersection of sparses

$$f(x,y) = g(x,y) = 0$$
 where f and g are t-sparse.

- Number of connected components between a sparse hypersurface and a low-degree variety.
- Zeros of

$$g(y) = a_1(\phi_1^{\alpha 1 1} \cdots \phi_n^{\alpha 1 n}) + \ldots + a_t(\phi_1^{\alpha 1 1} \cdots \phi_n^{\alpha 1 n})$$

If the ϕ_j are sparse (but possibly high-degree) polynomials. If you want to play:

Maximal number of zeros of fg + 1 when f and g are t-sparse? Between linear and quadratic on t...

Thank you!