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Problem Statement

@ C:= degree-d curve in C" defined by
fi =...=fi =0 where f; € R[Xq,..., Xj].

o Let g € R[Xq,...,X,] ~» sum at most t monomial (g is t-sparse).

@ V:= algebraic set defined by g(x) = 0.

Problem
Assume that (V N C) is finite. Can we find a nice bound on (VN C) N R"
A bound which only depends on § and ¢ (and not on deg(g))?

Why?
Quantitative results in real algebraic geometry
~ premise of better algorithms
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State of the art

Sparsity matters over the reals.
@ Univariate case ~» Descartes’ rule.

o Multivariate case?
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State of the art

Sparsity matters over the reals.
@ Univariate case ~» Descartes’ rule.

o Multivariate case?

Theorem (Khovanskii (1983) )

System of n equations, n variables with ony n+ | + 1 distinct monomials.
Then, number of positive real solutions bounded by

I+n

2(5) (n 4 1)1,
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State of the art

Sparsity matters over the reals.
@ Univariate case ~» Descartes’ rule.

e Multivariate case?

Theorem (Khovanskii (1983) — Bihan, Sottile (2007))

System of n equations, n variables with ony n+ | + 1 distinct monomials.
Then, number of positive real solutions bounded by

2
2 n 1)+ L3500l

Situations where bounds are polynomial in /?
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State of the art

Theorem (Koiran, Portier, T. (2015))
Let f € R[X1, X3] of degree d > 1 and g € R[X1, X3| t-sparse.
Then the real solution set to f = g = 0 has at most

O(d®t + d?t)

connected components.
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Problem Statement

@ C:= degree-6 curve in C" defined by
fi=...=f =0 where 6 S R[Xl,...,Xn].
o Let g € R[Xq,...,Xy] ~> sum at most t monomial (g is t-sparse).

@ V:= algebraic set defined by g(x) = 0.

Problem

Assume that (V N C) is finite.
Can we find a bound polynomial in d,n, t on §(VNC)NR"?
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Main result

@ C:= degree-§ curve in C" defined by

f1:...:fk:0whereGER[Xl,...,X,,].

o Let g € R[Xq,...,Xy] ~» sum at most t monomial (g is t-sparse).

@ V:= algebraic set defined by g(x) = 0.

Theorem (Safey El Din, T.)

Assume that (V N C) is finite.
Then

t(YNC)NR" < (;mﬁa? + (53t> (1 + o(1)).

@ Note: Constants are known
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Qutline of the proof: Ideal case

1) Parametrization of the curve C: x; = ¢;(y)
2) To bound number of real zeros of g(qbl(y) s On(y)) =

g(1(y), - -, dnly Z e AN ()

Claim: Sufficient to bound the number of zeros of

G ) R (D)
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Wronskian, a tool for bounding real roots

Definition: Let f;,...,f, € C71(/) with | C R. The Wronskian of the
family is the determinant of the matrix:

Ao h ... f
]
W(h,... f)=det| . -
k;l k;l k;l
D ) e
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Wronskian, a tool for bounding real roots

Definition: Let f;,...,f, € C71(/) with | C R. The Wronskian of the
family is the determinant of the matrix:

Ao h ... f
]
W(h,... f)=det| . -
k;l k;l k;l
D ) e

@ Polya, Szegd (1925) used it for proving Descartes’ rule.
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Wronskian, a tool for bounding real roots

Definition: Let fi,...,f, € C<71(/) with | C R. The Wronskian of the
family is the determinant of the matrix:

Ao h ... f
]
W(h,... f)=det| . -
k;l k;l k;l
D ) e

@ Polya, Szegd (1925) used it for proving Descartes’ rule.

@ Some connections with the number of roots of a sum already known
by Voorhoeve and van der Poorten (1975).
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Facts about the Wronskian
Observation

If the family (fi,

., fx) is linearly dependent, then W(f,

w0 |
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Facts about the Wronskian

Observation

If the family (fi, ..., fx) is linearly dependent, then W(f,..., ) = 0.

Lemma

If the functions f; are anaytic, then the reverse is true.

[m] = =

QR
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Facts about the Wronskian

Observation

If the family (fi, ..., fx) is linearly dependent, then W(f,..., ) = 0.

Lemma

If the functions f; are anaytic, then the reverse is true.

Lemma (Koiran, Portier, T.(2013))

k—2
Zo(fit...+f)<k—142> Zr(W(h,...,f))
j=1
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Observation

If the family (fi, ..., fx) is linearly dependent, then W(f,..., ) = 0.
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If the functions f; are anaytic, then the reverse is true.

Lemma (Koiran, Portier, T.(2013))

k—2
Zo(fit...+f)<k—142> Zr(W(h,...,f))
j=1
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Facts about the Wronskian

Observation

If the family (fi, ..., fx) is linearly dependent, then W(f,..., ) = 0.

Lemma

If the functions f; are anaytic, then the reverse is true.

Lemma (Koiran, Portier, T.(2013))

k—2
Zo(fit...+f)<k—142> Zr(W(h,...,f))
j=1

Why does it help? (depends on the parametrization)

W(f,...,f) =
(monomial in ¢1,...,¢n) - (low-degree polynomial in ¢1,...,¢,)
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Qutline of the proof: Ideal case

1) Parametrization of the curve C: x; = ¢;(y)
2) To bound number of real zeros of g(qbl(y) s On(y)) =

g(1(y), - -, dnly Z e AN ()

Claim: Sufficient to bound the number of zeros of

G ) R (D)
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Qutline of the proof: Ideal case

1) Parametrization of the curve C: x; = ¢;(y)
2) To bound number of real zeros of g(gbl(y) e on(y)) =

g(1(y), - -, bnly Z P AN ()

Claim: Sufficient to bound the number of zeros of

WO . 02 (), - b0 b (¥)).
= (monomial in ¢1,...,¢,) T(é1,...,Pn)
with T of low degree.
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Qutline of the proof: Ideal case

1) Parametrization of the curve C: x; = ¢;(y)
2) To bound number of real zeros of g(gbl(y) e on(y)) =

g(1(y), - -, bnly Z P AN ()

Claim: Sufficient to bound the number of zeros of

W( o11 ¢011n( )7._.’¢‘:’r’1 .'.¢?’t'n(y)).
= (monomial in ¢1,...,¢0n) - T(P1,...,¢n)

with T of low degree.
It finishes the proof.
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Outline of the proof
1) Parametrize the curve C: x; = ¢i(y)

2) To bound number of real zeros of g(¢1(y),...,on(y)) =0
Sufficient to bound the number of zeros of

W(S51 ... 20 (y), ..., o™ .. b (y))
* =" (monomial in ¢1,...,¢,)T(¢1,.-.,Pn)-
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Parametrization

Rationnal parametrization of the curve.

Kronecker's System: (y, z generical position)

qo(y, z)x1 = p1(y, z)

qO(}/7Z)Xn = pn(y7z)
u(y,z) =0

u,go = 0zu,p1,...,p, of degree <.
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Parametrization

Rationnal parametrization of the curve.

Kronecker's System: (y, z generical position)

qo(y, z)x1 = p1(y, z)

qO(}/7Z)Xn = pn(y7z)
u(y,z) =0

u,go = 0zu,p1,...,p, of degree <.
CAD for u bivariate
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Cylindrical Algebraic Decomposition

D¢
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Parametrization

Rationnal parametrization of the curve.

Kronecker's System: (y, z generical position)

qo(y, z)x1 = p1(y, z)

qO(}/7Z)Xn = pn(y7z)
u(y,z) =0

u,go = 0zu,p1,...,p, of degree <.
CAD for u bivariate

@ Separately, handle case Resz(u,0zu) = 0.
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Parametrization

Rationnal parametrization of the curve.

Kronecker's System: (y, z generical position)

qo(y, z)x1 = p1(y, z)

qO(}/7Z)Xn = pn(y7z)
u(y,z) =0 =z =¢(y).

u,go = 0zu,p1,...,p, of degree <.
CAD for u bivariate

@ Separately, handle case Resz(u,0zu) = 0.

e Find solutions on interval where Resz(u, dzu) # 0,
(and so go # 0).
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Parametrization

Rationnal parametrization of the curve.

Kronecker's System: (y, z generical position)

qo(y, z)x1 = p1(y, z)

_ Pilysd(y)
X = qo(y,o(y)) — ¢i(2)

qO(}/7Z)Xn = pn(y7z)
u(y,z) =0 =z =¢(y).

u,go = 0zu,p1,...,p, of degree <.
CAD for u bivariate

@ Separately, handle case Resz(u,0zu) = 0.

e Find solutions on interval where Resz(u, dzu) # 0,
(and so go # 0).
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Computation of the Wronskian

W =W (1" ... 052 (y), .-, 61 .. 057 (y))
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Computation of the Wronskian

W= W (1" ... 052 (y), -, 617 - 037 ()
° u(y,¢(y)) =0

k k
o, = 0% =

q(\)/alue

5(y, o(y))

(S of low degree )
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Computation of the Wronskian
W=W/(ei"...00"(y), -, 01" - 95" (¥))

° u(y,¢(y)) =0

1
k k
Oy — "¢ =

q(\)/alue

S(y,o(y)) (S of low degree )

o qo(y, o(y))9i(y) = pj({/, o(y))
o — "¢y = Wsj(% o(y), 0i(y)) (S of low degree)
0
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Computation of the Wronskian
W=W/(ei"...00"(y), -, 01" - 95" (¥))

° u(y,¢(y)) =0

1
k ko
ok — k¢ =

q(\)/alue

S(y.o(y)) (S of low degree )

o qo(y, o(y))9i(y) = pj({/, o(y))
o — "¢y = Wsj(% o(y), 0i(y)) (S of low degree)
0

W= (H ¢,-Z°‘“2/2) T(61(y), - &n(y).
0

J=1

where deg(T) < (n+2)5t2.
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Outline of the proof

1) Parametrize the curve C: x; = ¢i(y)
Kronecker’'s system:

(v, 2)xa = p1(y, 2)
u,qo,P1s---5Pn

. (1) degree-6 polynomials

qo(y, 2)xn = pa(y, z)
u(y,z) =0. — xi = ¢i(y).

2) To bound number of real zeros of g(¢1(y),...,on(y)) =0
Sufficient to bound the number of zeros of

WG5S 03n(y), . 8ah . 60 ()
* =" (monomial in ¢1,...,¢n)T(¢1,...,¢Pn).
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Outline of the proof
1) Parametrize the curve C: x; = ¢;(y)
Kronecker's system:

qo(y, z)x = pi(y, 2)

u,qo,pP1;---,Pn
(1) degree-d polynomials
qo(y, 2)xn = pu(y, 2) & poy
u(y,z)=0. = xi = ¢i(y).

2) To bound number of real zeros of g(¢1(y),...,¢dn(y)) =0
Sufficient to bound the number of zeros of

n

W=— [T[e="" | T(er(y). ... 6n(r))

j=1

1 2
where deg(T) < 5(n+2)dt°.
January 17, 2017
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Outline of the proof
1) Parametrize the curve C: x; = ¢;(y)
Kronecker's system:

qo(y, z)x = pi(y, 2)

u,qo,pP1;---,Pn
(1) degree-d polynomials
qo(y, 2)xn = pu(y, 2) & poy
u(y,z)=0. = xi = ¢i(y).

Intersection of V with System (1)
equivalent to g(¢1(y), ., dn(y)) = 0.

2) To bound number of real zeros of g(¢1(y),...,¢dn(y)) =0
Sufficient to bound the number of zeros of

n

TT6= | T@1(y), ... 6a(y))

Jj=1

1

qvalue

W =

1 2
where deg(T) < 5(n+2)dt*.
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What happens if T is identically zero?

W o™ o5 (y), .. 7™ . o (y)

n;(ry) ?7;6/)

1 akl—z akn—z
= @)@ IAT0), - 600)

It implies that the Wronskian is zero,
i.e. the family (n1,...,7¢) is dependgnt: E;:'I bjn; = 0.
A branch of C satisfies Y7, biX;”" -+ X"
(Remember g = >7;_, a Xt X
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Perturbations of the monomials of g

Remark: “Exponents of g can be real".
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Perturbations of the monomials of g

Remark: “Exponents of g can be real".

g = arX{M - X 4 ap X X

i
g = ap(X{H - X)L gy (X X ) e
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Perturbations of the monomials of g

Remark: “Exponents of g can be real".

g = arX{M - X 4 ap X X
1
g = ap(X{H - X)L gy (X X ) e

Values for the (7;)'s?
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Perturbations of the monomials of g

Remark: “Exponents of g can be real".

g = a1 X{M - X 44X

1
g =a(Xy1- - X,f””)1Jr771 + .ot an(XP

Values for the (7);)'s?
@ Defined everywhere: odd denominator
o Continuity of X — X*7i: even numerator

2pj
g +1

Mohab Safey El Din,Sébastien Tavenas Sparse Dense System

(%7
"Xn n

am\1+n
'”Xnm) t

€]1/2,1/2| (pj S Z,qj €N)

January 17, 2017

18 / 23



Perturbations of the monomials of g

Remark: “Exponents of g can be real".
Lemma
There exists such a g’ such that

@ the family

(d)tlxu . ¢2¢1n)1+n17 o (¢?t1 . d)?’ttn)1+77t

is linearly independent

o #(CNV)<H#(CNV)
where V' is defined by g’ = 0.

We assume that g has the independence property
and so T is not identically zero.
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Outline of the proof
1) Parametrize the curve C: x; = ¢;(y)
Kronecker's system:

qo(y, z)x = pi(y, 2)

u,qo,pP1;---,Pn
(1) degree-d polynomials
qo(y, 2)xn = pu(y, 2) & poy
u(y,z)=0. = xi = ¢i(y).

Intersection of V with System (1)
equivalent to g(¢1(y), ..., ¢n(y)) = 0.

2) To bound number of real zeros of g(¢1(y),...,¢dn(y)) =0
Sufficient to bound the number of zeros of

n

TT6= | T(@1(y), ... 6a(y))

Jj=1

1

qvalue

W =

1 2
where deg(T) < 5(n+2)dt*.
January 17, 2017

19 / 23



Conclusion

C be a non-degenerated degree-§ real curve.
Let V be the algebraic set defined by g(x) = 0 where g is t-sparse.
If the number of intersections between C and V is finite,

#(CNVY) < (%nt?’éz + 5%) (1+ o(1)).
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An improvement

Assume now that

@ C is defined by a reduced regular sequence (fi, ..., f,—1) with
deg(f;) < D.

Then:
@ no need of Kronecker representation + CAD step for C

@ up to a generic linear change of coordinates, one can “invert” between
the critical values of the projection on the first coordinate.

Gain: saves a factor ¢
H(CNV) < (3n°Dt35 + nDS%t) (1 + o(1))
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Perspectives

e Find algorithms from the proof:
Detecting/counting/isolating the real solutions?

@ Intersection of sparses

f(x,y) = g(x,y) = 0 where f and g are t-sparse.

@ Number of connected components between a sparse hypersurface and
a low-degree variety.

@ Zeros of
g(y) = ar(gf™ - o) + . Far(eft - g0t

If the ¢; are sparse (but possibly high-degree) polynomials.
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Perspectives

e Find algorithms from the proof:
Detecting/counting/isolating the real solutions?

@ Intersection of sparses
f(x,y) = g(x,y) = 0 where f and g are t-sparse.

@ Number of connected components between a sparse hypersurface and
a low-degree variety.

@ Zeros of
g(y) = ar(gf™ - o) + . Far(eft - g0t

If the ¢; are sparse (but possibly high-degree) polynomials.
If you want to play:
Maximal number of zeros of fg + 1 when f and g are t-sparse?
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Perspectives

e Find algorithms from the proof:
Detecting/counting/isolating the real solutions?

@ Intersection of sparses

f(x,y) = g(x,y) = 0 where f and g are t-sparse.

@ Number of connected components between a sparse hypersurface and
a low-degree variety.

@ Zeros of
g(y) = ar(gf™ - o) + . Far(eft - g0t

If the ¢; are sparse (but possibly high-degree) polynomials.

If you want to play:

Maximal number of zeros of fg + 1 when f and g are t-sparse?
Between linear and quadratic on t...
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Thank youl!
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