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Abstract

The object of study of symbolic dynamics are discrete dynamical sys-
tems made of infinite sequences of symbols, with the shift acting on them.
They come as codings of trajectories of points in a dynamical system ac-
cording to a given partition. They are used as discretization tools for ana-
lyzing such trajectories, but they also occur in a natural way in arithmetics
for instance. We first will recall basic definitions concerning symbolic dy-
namics and illustrate them with transformations like beta-numeration and
continued fractions. We then focus on orbits that are relevant in computer
science, namely finite and periodic ones, together by alluding to numerical
issues for the computation of orbits.
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1 Introduction

The object of study of symbolic dynamics are discrete dynamical systems made
of infinite sequences of symbols with values in a finite alphabet, with the shift
map S acting on them: the shift S maps an infinite word (un)n≥0 onto this infi-
nite word from which the first letter has been taken away, that is, S((un)n∈N) =
(un+1)n∈N. Symbolic dynamical systems come in a natural way as codings of
trajectories of points in a dynamical system according to a finite partition.
They are used as discretization tools for analyzing such trajectories, but they
also occur in a natural way in arithmetics for instance for the representation of
numbers (real, complex), vectors, or else polynomials or Laurent formal power
series with coefficients in a finite field.

Symbolic dynamics originates in the work of Jacques Hadamard [44], in 1898,
through the study of geodesics on surfaces of negative curvature (see also [23]).
It was then also applied by Marston Morse in 1921 in [62] to the construction of a
nonperiodic recurrent geodesic and for the symbolic representations of geodesics.
The study of combinatorics on words originates at the same time in papers of
Axel Thue from 1906 and 1912 (see [75, pp. 139-158 and 413-477]), in particular
with the study of the Thue-Morse word. Symbolic dynamics and Sturmian words
then were developed by Morse and Hedlund in 1938 in [63, 64].

We first will recall basic definitions concerning symbolic dynamics in Section
2. We illustrate them with transformations like beta-numeration and continued
fractions issued from arithmetic dynamics in Section 3. We focus on orbits that
are relevant in computer science, namely finite and periodic ones, in Section 4.
Lastly, Section 5 is devoted to Loch’s theorem. Some parts of this text come
from [10].

2 Discrete dynamical systems

2.1 First definitions

By discrete dynamical system we mean here a piecewise-continuous mapping
T : X → X that acts on a space X that will be usually assumed to be compact.

The (one-sided) orbit of x ∈ X under the action of T is defined as {Tnx |
n ∈ N}. If T is assumed to be invertible (e.g., if T is a homeomorphism), then
the two-sided orbit of x ∈ X under the action of T is defined as {Tnx | n ∈ Z}.
Orbits are also called trajectories.

The terminology discrete refers here to the time: we consider trajectories
of points of X under the discrete-time deterministic action of the mapping T .
Discrete dynamical systems can be of a geometric nature (e.g., X = [0, 1]), or of
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a symbolic nature (e.g., X = {0, 1}N), such as described below. More precisely,
as examples of dynamical systems, let us mention

• symbolic dynamical systems: these are dynamical systems defined on sets
of symbols and words; we consider them in Section 2.2;

• the beta-transformation (see Section 3.1) or the Gauss map (see Section
3.2), that both act on the unit interval [0, 1], and that allow the repre-
sentation of real numbers, as beta-expansions or as continued fractions
respectively;

• the translation Rα by α on the one-dimensional torus, that is, Rα : x 7→
x+ α mod 1 (see Section 3.3).

The notion of dynamical system can be considered in a topological context
(this is what we have considered so far), we get topological dynamics, but this
notion can be extended to measurable spaces: we thus get measure-theoretic
dynamical systems, that is, dynamical systems endowed with a probabilistic
structure (an invariant measure). We will consider them in Section 2.3

2.2 Symbolic dynamical systems

For detailed introductions to symbolic dynamics and word combinatorics, see
[3, 7, 19, 14, 15, 50, 55, 59, 60, 37] and the references therein.

An alphabet is a finite set of symbols (or letters). Let A be an alphabet. A
finite word over A is a finite sequence of letters in A (that is, a word of length
n ∈ N is a map u from {0, 1, · · · , n − 1} to A). We write is as u = u0 · · ·un−1
to express u as the concatenation of the letters ui.

Let u = u0 · · ·um−1 and v = v0 · · · vn−1 be two words over A. The con-
catenation of u and v is the word w = w0 · · ·wm+n−1 defined by wi = ui if
0 ≤ i < m, and wi = vi−m otherwise. We write u · v or simply uv to express
the concatenation of u and v. The set of all (finite) words over A is denoted
by A∗. Endowed with the concatenation of words as product operation, A∗ is
a monoid with ε as identity element. It is the free monoid generated by A. We
thus have endowed the set of finite words with an algebraic structure.

We also consider infinite words, that is, elements of AN, as well as bi-infinite
(also called two-sided) words in AZ. All the notions defined below extend to
two-sided words in AZ.

A word w1 · · ·w` is a factor of the word u (finite, infinite or bi-infinite) if
there exists k such that uk · · ·uk+`−1 = w1 · · ·w`. The set of factors Lu of an
infinite word u is called its language. The (factor) complexity function of an
infinite word u counts the number of distinct factors of a given length: there
are exactly pu(n) factors of length n in u. For more on this function, see for
instance [3].

The topology is given by the usual metric on infinite words in AN: two
infinite words are close if they coincide on their first terms. More precisely, the
set AN shall be equipped with the product topology of the discrete topology on
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each copy of A. Thus, this set is a compact space. This topology is also the
topology defined by the following distance:

for u 6= v ∈ AN, d(u, v) = 2−min{n∈N; un 6=vn}.

Note that the space AN is complete as a compact metric space. Furthermore,
it is a Cantor set, that is, a totally disconnected compact set without isolated
points. Note that the topology extends in a natural way to AN ∪ A?. Indeed,
let B be a new alphabet obtained by adding a further letter to the alphabet A;
words in A? can be considered as sequences in BN, by extending them by the
new letter in B. The set AN∪A? is thus metric and compact, as a closed subset
of BN.

The mapping S acting on sets of infinite words is the (one-sided) shift acting
on AN: S((un)n∈N) = (un+1)n∈N. It is continuous.

We can define the notion of a subhift: a subshift (also called shift) is a closed
shift invariant system included in some AN. If Y is a subshift, there exists a set
F ⊂ A∗ of finite words such that an infinite word u belongs to Y if, and only if,
none of its factors belongs to F . A subshift X is called a subshift of finite type
if one can choose the set F to be finite. A subshift is said to be sofic if the set
F is a regular language.

As an example of a shift, take the closure in AN of of u = (un)n≥0, with u

being some infinite word in AN. Let Xu := O(u) be the positive orbit closure
of the infinite word u under the action of the shift S, i.e., the closure in AN of
the set O(u) = {Sn(u) | n ≥ 0}. One checks that O(u) = {v ∈ AN, Lv ⊂ Lu},
where Lv is recalled to be the set of factors of the sequence v.

For a word w = w0...wr, the cylinder set [w] is the set {v ∈ Xu | v0 =
w0, ..., vr = wr}. The cylinder sets are clopen (open and closed) sets and form a
basis of open sets for the topology of Xu. Indeed, if the cylinder [w] is nonempty
and v is a point in it, [w] is identified with both the open ball {v′ | d(v, v′) < 2−n}
and the closed ball {v′ | d(v, v′) ≤ 2−n−1}. As an exercise, prove that a clopen
set is a finite union of cylinders.

Let us come back to the general case of a discrete dynamical system T : X →
X. In order to understand the behavior of trajectories, it is natural to partition
the set X into a finite number (say d) of subsets (Xi)1≤i≤d: X = ∪di=1Xi. We
then code the trajectory of a point x ∈ X with respect to the finite partition
(Xi)1≤i≤d. One thus associates with each point x ∈ X an infinite word with
values in the finite alphabet {1, . . . , d} defined as follows:

∀n ∈ N, un = i if and only if Tn(x) ∈ Xi.

Coding trajectories allows one to go from dynamical systems (X,T ) defined on
‘geometric’ spaces X to symbolic dynamical systems and backwards, provided
the coding has been chosen in an efficient way. Section 3.3 devoted to Sturmian
words, provides an example of such a fruitful coding. If the partition is well-
chosen, these symbolic codings allow the statistical analysis (via ergodic theory)
on the underlying dynamical systems. This is the object of next section.
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2.3 Measure-theoretic dynamical systems

General references on the subject are [8, 18, 28, 46, 69, 72, 78]. See [31] for
connections with number theory and Diophantine approximation.

A measure-theoretic dynamical system is defined as a system (X,T, µ,B),
where µ is a probability measure defined on the σ-algebra B of subsets of X,
and T : X → X is a measurable map which preserves the measure µ, that is,
µ(T−1(B)) = µ(B) for all B ∈ B. The measure µ is said to be T -invariant.

An invariant probability measure on X is said ergodic if for every set B ∈ B,
T−1(B) = B has either zero or full measure. The system (X,T, µ,B) is then
said to be ergodic. This implies that almost all orbits are dense in X (almost
all means that the set of elements x ∈ X whose orbit is not dense is contained
in a set of zero measure). More generally a property is said to hold almost
everywhere (abbreviated as a.e.) if the set of elements for which the property
does not hold is contained in a set of zero measure; this property is said to be
generic (the points that satisfy this property are then also said to be generic).
This helps us to give a meaning to the notion of typical behavior for a dynamical
system.

Ergodicity yields furthermore the following striking convergence result. In-
deed, measure-theoretic ergodic dynamical system satisfy the Birkhoff ergodic
theorem, also called individual ergodic theorem, which relates spatial means to
temporal means.

Theorem 1 (Birkhoff Ergodic Theorem). Let (X,T, µ,B) be an ergodic measure-
theoretic dynamical system. Let f ∈ L1(X,R). Then

∀f ∈ L1(X,R) ,
1

n

n−1∑
k=0

f ◦ T k µ−a.e.−−−−→
n→∞

∫
X

f dµ .

Points for which this convergence property holds for a given f are generic.
In the case of a symbolic dynamical system (O(u), S) generated by an in-

vite word u, the following special case of the Daniell-Kolmogorov consistency
theorem (see for instance [78]) provides probability measures on (O(u), S).

Theorem 2. Let A = {1, . . . , d} and u ∈ AN. Consider a family of maps
(pn)n≥1, where pn is a map from An to R, such that for any word w in An,

pn(w) ≥ 0, pn(w) =

d∑
i=1

pn+1(w1 . . . wni), and

d∑
i=1

p1(i) = 1. Then there exists a

unique probability measure µ on AN defined on the cylinders by µ([w1 . . . wn]) =
pn(w1 . . . wn).

Furthermore, if for any n and for any word w = w1 . . . wn in An, pn(w) =
d∑
i=1

pn+1(iw1 . . . wn), then this measure is S-invariant (shift-invariant).

Let u be a word in AN. The frequency f(i) of a letter i ∈ A in u is defined as
the limit when n tends towards infinity, if it exists, of the number of occurrences
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of i in u0u1 · · ·un−1 divided by n. The word u has uniform letter frequencies if,
for every letter i of u, the number of occurrences of i in uk · · ·uk+n−1 divided by
n has a limit when n tends to infinity, uniformly in k. Similarly, we can define
the frequency f(w) and the uniform frequency of a factor w, and we say that u
has uniform frequencies if all its factors have uniform frequency.

In particular, if the frequencies of all factors exists for a given u ∈ AN, then,
according to Theorem 2, there exists a unique S-invariant probability measure
µ which assigns to each cylinder [w] the frequency f(w) of the corresponding
factor [w], by setting µ[w] := f(w). Thus a precise knowledge of the frequencies
allows a complete description of the measure µ. One can similarly define a
shift-invariant measure for a subshift X ⊂ AN provided that any factor w in
the langage of X (i.e., the set of factors of its elements) has the same frequency
in all the infinite words of X. Moreover, the property of having uniform factor
frequencies for a shift is equivalent to unique ergodicity, that is, to have a unique
invariant measure. Unique ergodicity corresponds in the case of continuous
functions to uniform convergence for all points (and not only for a.e. point)
in ergodic sums, in Birkhoff’s ergodic theorem. For more details on invariant
measures and ergodicity, we refer to [72] and [14, Chap. 7].

Natural questions that can be addressed now concerning discrete dynamical
systems are the following. What is a good coding? How to describe the invariant
measures? Can one find geometric representations of given a symbolic dynamical
system? How to measure the disorder of a dynamical system system? The next
sections provides some elements of answer.

2.4 Isomorphisms

Let us come back to the coding a dynamical system via a suitable partition.
In order to make more precise the notion of good coding, let us see how to
“compare” two dynamical systems.

Two topological dynamical systems (X,S) and (Y, T ) are said to be topolog-
ically conjugate (or topologically isomorphic) if there exists an homeomorphism
f from X onto Y which conjugates S and T , that is:

f ◦ S = T ◦ f.

Two topological dynamical systems (X,S) and (Y, T ) are said to be semi-
topologically conjugate if there exist two sets X1 and Y1 which are at most
countable such that B1 = X \X1, B2 = Y \ Y1, and f is a bicontinuous bijec-
tion from B1 onto B2 which conjugates S and T . The map f is said to be a
semi-topological conjugacy.

Let us introduce an equivalent of the notion of topological conjugacy for
measure-theoretic dynamical systems. The idea here is to remove sets of mea-
sure zero in order to conjugate the spaces via an invertible measurable transfor-
mation. For a nice exposition of connected notions of isomorphism, see [46, 78].

Two measure-theoretic dynamical systems (X1, T1, µ1,B1) and (X2, T2, µ2,
B2) are said to be measure-theoretically isomorphic if there exist two sets of full
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measure B1 ∈ B1, B2 ∈ B2, a measurable map f : B1 → B2 called conjugacy
map such that

• the map f is one-to-one and onto,

• the reciprocal map of f is measurable,

• f ◦ T1(x) = T2 ◦ f(x) for every x ∈ B1 ∩ T−11 (B1),

• µ2 is the image of the measure µ1 with respect to f , that is,

∀B ∈ B2, µ1(f−1(B ∩B2)) = µ2(B ∩B2).

2.5 Entropy

We briefly discuss in this section the notion of entropy which provides a mea-
sure of disorder for dynamical systems: in particular, it allows to distinguish
between deterministic and chaotic dynamical systems. Deterministic systems
have zero entropy, whereas chaotic systems have positive entropy. We will not
enter into the details of possible definitions for chaoticity. A general reference
on the subject is [32]. We just stress the fact that it is expected from chaotic
dynamical systems that close initial points have divergent orbits, with the sep-
aration rate being exponential (this is called sensitivity to initial conditions),
to have dense periodic points, as well as a topological property of mixing. The
beta-transformation (see Section 3.1) and the Gauss map (see Section 3.2) are
examples of chaotic systems. Indeed, the Gauss map is sensitive to initial con-
ditions: rational initial points form a dense set and are attracted to 0, whereas
quadratic irrational points are eventually attracted to a periodic orbit (which
is not finite). We focus here on the case of maps of the unit circle but all these
notions hold for more general dynamical systems. For more on the entropy of
dynamical systems, see for instance [46, 78].

As seen before for other dynamical concepts, the notion of entropy can be
defined either in a topological context, or in a measure-theoretic context. Let
us start with the case of symbolic dynamical systems and topological entropy,
defined with respect to the complexity function. Let X be a subshift of AN.
Recall that the complexity function pX(n) counts the number of factors of infi-
nite word in X of length n. The topological entropy of the shift (X,S) is then
defined as the exponential growth rate of the complexity function as the length
increases:

Htop(X) = lim
n→+∞

logd(pX(n))

n
,

where d denotes the cardinality of the alphabet A. The existence of the limit
follows from the subadditivity of the function n 7→ logd(pX(n)):

∀m,n, logd(pX(n+m)) ≤ logd(pX(m)) + logd(pX(n)).

This notion also extends to more general topological dynamical systems by
involving open covers.
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One then can define a similar notion of measure-theoretic entropy. Let us
consider the case of a symbolic dynamical system for which all elements admit
factor frequencies. We assume that for any factor w of the language of X,
all elements in X have the same frequency f(w). Let µ be the shift-invariant
measure provided by the frequencies. We recall that LX(n) stands for the set
of factors of length n of X. The measure-theoretic entropy of the shift (X,S, µ)
is then defined as

Hµ(X) = lim
n→+∞

1

n

∑
w∈LX(n)

L(f(w)) = lim
n→+∞

1

n

∑
w∈LX(n)

L(µ[w])

where L(x) = −x logd(x) for x 6= 0, and L(0) = 0 (d stands for the cardinality
of the alphabet A).

Once again, this notion extends to the case of general measure-theoretic
dynamical systems through the use of pullbacks and refined partitions. In the
particular case where T is a piecewise C1 map from the unit interval I = [0, 1]
into itself, natural expansion assumptions yield the existence of an absolutely
continuous invariant Borel measure µ for T , then log |T ′| is µ-integrable and its
metric entropy hµ satisfies, according to Rohlin’s entropy formula:

hµ(T ) =

∫
I

log |T ′|dµ.

One recovers, under the assumption of ergodicity and through Birkhoff’s
ergodic theorem, the notion of Lyapounov exponent of a dynamical system (pro-
vided by a one-dimensional differentiable map), which measures the exponential
rate of separation of orbits. It is defined for an orbit of a dynamical system
(X,T ), with T being piecewise differentiable, as

λ(x) = lim
n→∞

1

n
log

(
n−1∏
i=0

|T ′(T i(x))|

)
= lim
n→∞

1

n
log (|(Tn(x))′|) ,

when this limit exists. Note that the formula given here comes from the chain
rule applied to Tn(x) in order to get its derivative. This allows us to get in-
formation on |Tn(x) − Tn(y)|. Indeed, intuitively (and as nicely explained in
Chap. 9 of [24]), |T (x)−T (y)| is approximatively equal to T ′(x) · |x− y| (under
suitable hypotheses such as x and y being close), whereas |Tn(x)− Tn(y)| has

to be compared with
∏n−1
i=0 |T ′(T ix)| · |x− y|. This implies

|Tn(x)− Tn(y)| ∼ expnλ(x) · |x− y|,

which allows one to connect the rate of divergence of distinct orbits to the
Lyapounov exponent. Under suitable assumptions for (X,T,B, µ) (ergodicity
at least), the ergodic theorem provides that for a.e. point x

lim
n→∞

1

n

n−1∑
i=0

log |T ′(T i(x))| =
∫
I

log |T ′|dµ = hµ(T ).
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The systems associated with the beta-numeration (that is, with the beta-
transformation) and with continued fractions (that is, with the Gauss map)
have positive entropy, whereas the translation Rα on R/Z has zero entropy (it
is deterministic).

3 Arithmetic dynamics

We consider in this section examples of dynamical systems that all pertain to
what is called ‘arithmetic dynamics’ in [74]. Note that the term ‘arithmetic
dynamics’ also refers in the literature to the study of the number-theoretic
properties of integer, rational, p-adic, or else algebraic points under repeated
application of a polynomial or rational function (according to Wikipedia https:

//en.wikipedia.org/wiki/Arithmetic_dynamics).
The survey [74] deals with explicit arithmetic expansions of reals and vec-

tors that have a ‘dynamical’ flavor. These expansions allow to (semi-)conjugate
a given dynamical system and a symbolic one, with the arithmetic properties
of the point x in the dynamical system X being reflected in its expansion. We
focus here on classical examples of arithmetic dynamics, namely numeration dy-
namics, continued fractions and Sturmian shifts. Symbolic representations such
as the ones described below allow for compact representations of real numbers.

3.1 Numeration dynamics

Let us use the usual base q numeration, as an illustration of a numeration
system that can be described in terms of a dynamical system, where the integer
q satisfies q ≥ 2. But first recall that there are two well-known algorithmic
ways of producing the digits ai ∈ {0, . . . , q − 1} of the expansion of a positive
integer N = akq

k + · · · + a0 in base q. The greedy algorithm produces the
digits of N most significant digit first: take k such that qk ≤ N < qk+1 and
set ak := bN/qkc; one then reiterates the process with N being replaced by
N − akqk in order to get the digits in decreasing power order. Now, consider
the second generation method. Let the notation y mod q stand for the unique
number in {0, 1, . . . , q − 1} which is congruent to y modulo q. The dynamical
system (N, Sq) with

Sq : N→ N, n 7→ n− (n mod q)

q

together with the coding map ψq : N→ {0, 1, . . . , q− 1}, n 7→ n mod q (which
is associated with the natural partition of N given by the sets k+qN, for 0 ≤ k ≤
q−1), produces the digits least significant digit first: one has ai+1 = ψq(S

i
q(N))

for all i. Taking all sequences of digits produced by considering all integers
yields a symbolic dynamical system made of infinite words that all eventually
take the value 0.
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Similarly, the dynamical system producing the q-ary expansions of positive
real numbers is defined as ([0, 1], Tq), with

Tq : [0, 1]→ [0, 1], x 7→ qx− bqxc = {qx} = qx (mod 1),

together with the coding map ϕq : [0, 1] → N, x 7→ bqxc. Indeed, if x =∑
i≥1 aiq

−i, then bqxc = a1 +
∑
i≥1 ai+1q

−i, and {qx} =
∑
i≥1 ai+1q

−i. One

thus has ai = bqT i−1q (x)c = ϕq(T
i−1
q (x)), for all i ≥ 1. Note that the admissible

expansions produced by Tq never terminate in (q − 1)(q − 1)(q − 1) · · · . When
q = 10 one recovers the decimal expansion, and the binary one for q = 2.

More generally, the so-called beta-numeration embraces and extends q-ary
numeration. Taking a real number β > 1, it consists in expanding numbers
x ∈ [0, 1] as power series in base β−1 with digits in the set {0, . . . , dβe−1}. The
mapping

Tβ : x 7→ {βx} = βx (mod 1)

together with the coding map ϕβ : x 7→ bβxc produces the digits

ai = bβT i−1β (x)c = ϕβ(T i−1β (x)),

for i ≥ 1, which yields the expansion

x =
∑
i≥1

aiβ
−i.

For more on beta-numeration, see e.g. [31, 38, 39]. Such expansions belong to
the more general family of so-called f -expansions [73]: one expands real numbers
as

x = lim
n→∞

f(a1 + f(a2 + f(a3 + · · ·+ f(an) · · · ))), with ai ∈ N.

For β > 1, the entropy of the β-transformation Tβ is equal to log β.

3.2 The Gauss map

For general references on continued fractions, see e.g. [18, 31, 45, 49].
The Gauss map TG is defined on [0, 1] by

TG : x 7→ {1/x} for x 6= 0, TG(0) = 0.

Together with the coding map ϕG : x 7→ b1/xc, it produces the partial quotients
in the continued fraction expansion of a real number x ∈ [0, 1].

Let x ∈ (0, 1). If x1 = TG(x) = {1/x} = 1
x − b

1
xc = 1

x − a1, then x = 1
a1+x1

.

Now, set an = b 1
Tn−1xc = ϕG(Tn−1x) for n ≥ 1. One has

x =
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

.
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We also will use the notation x = [0; a1, · · · , an, · · · ]. The digits an are called
partial quotients. Continued fractions are known to provide good rational ap-
proximations of real numbers. Indeed, let pn/qn = [0; a1, · · · , an] stand for the
n-th truncation of the continued fraction of x. One has |x− pn/qn| < 1/q2n for
all n.

Note that continued fractions extend also to Laurent formal power series
with coefficients in a finite field, see e.g. the survey [13] and the references
therein. As an application, let us mention some interesting connections with
pseudorandom numbers generated by the digital multistep method [65], with
low-discrepancy sequences [66], or with stream cipher theory and cryptography
[67].

Here, we endow ([0, 1], TG) with the Gauss measure µG which is the Borel
probability measure defined as the absolutely continuous measure with respect
to the Lebesgue measure by

µG(B) =
1

log 2

∫
B

1

1 + x
dx.

One checks that this measure is TG-invariant, i.e., µG(B) = µG(T−1G B) for
every Borel subset B of [0, 1]. It is also ergodic. This measure is the unique
TG-invariant measure that is absolutely continuous with respect to Lebesgue
measure.

By applying the ergodic theorem to the Gauss map, one obtains that the

Lyapounov exponent is a.e. equal to π2

6 log 2 , which is also equal to the entropy.
The statistical properties concerning the digits in the continued fraction ex-
pansion of α are provided by the Gauss measure via the ergodic theorem. For
instance, for a.e. x, one has

Pr([a1 = k]) =
1

log 2
log

(
(k + 1)2

k(k + 1)

)
.

Note that the continued fraction algorithm is closely related to Euclid’s
algorithm: let us start with two (coprime) positive integers u0 et u1; Euclid’s
algorithm works by subtracting as much as possible the smallest of both numbers
from the largest one (that is, one performs the Euclidean division of the largest
one by the smallest); this yields u0 = u1bu0

u1
c + u2, u1 = u2bu1

u2
c + u3, etc.,

until we reach um+1 = 1 = pgcd(u0, u1). By setting for i ∈ N, αi = ui
ui+1

and

ai = bαic, one gets αi−1 = ai−1 + 1
αi

and

α0 = u0/u1 = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+ 1
am−1+1/am
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3.3 Codings of rotations and Sturmian words

Sturmian words provide symbolic codings of translations Rα of the unit circle
(that is, the one-dimensional torus T = R/Z) with

Rα : R/Z→ R/Z, x 7→ x+ α mod 1.

They have been introduced in [64] and widely studied. For more on Sturmian
words, see the corresponding chapters in [60, 37] and the references therein.

The infinite word u = (un)n∈N ∈ {0, 1}N is said to be a Sturmian word if
there exist α ∈ (0, 1), α 6∈ Q, x ∈ R such that

∀n ∈ N, un = i⇐⇒ Rnα(x) = nα+ x ∈ Ii (mod 1),

with either I0 = [0, 1− α[, I1 = [1− α, 1[, or I0 =]0, 1− α], I1 =]1− α, 1].
A Sturmian word is thus a coding of the dynamical system (T, Rα) with

respect either to the two-interval partition {I0 = [0, 1 − α[, I1 = [1 − α, 1[} or
to {I0 =]0, 1− α], I1 =]1− α, 1]}.

The following lemma is crucial for the study of Sturmian words.

Lemma 1. The word w = w1 · · ·wn over the alphabet {0, 1} is a factor of the
Sturmian word u if and only if Iw := Iw1 ∩R−1α Iw2 ∩ · · ·R−n+1

α Iwn 6= ∅.

Proof. By definition, one has

∀i ∈ N, un = i⇐⇒ nα+ x ∈ Ii (mod 1).

One first notes that ukuk+1 · · ·un+k−1 = w1 · · ·wn if and only if
kα+ x ∈ Iw1

(k + 1)α+ x ∈ Iw2

...
(k + n− 1)α+ x ∈ Iwn .

One then applies the density of (nα)n∈N in Z/R (recall that α is assumed to be
an irrational number).

One first notes that the condition of Lemma 1 does not depend on the point
x whose orbit is coded but only on α. Also, it does not depend on the partition
I0 = [0, 1 − α[, I1 = [1 − α, 1[, or I0 =]0, 1 − α], I1 =]1 − α, 1]. One thus can
define the Sturmian shift (Xα, S) as the closure in {0, 1}N of the orbit of any
Sturmian word coding Rα (and also as the closure in {0, 1}N of the orbit of
all Sturmian words coding Rα). Indeed, since two Sturmian words coding the
same rotation have the same set of factors, then one checks that the symbolic
dynamical system generated by a Sturmian word coding the rotation Rα consists
of all the Sturmian words that code the same rotation. The system (Xα, S) is
minimal: it admits no non-trivial closed and shift-invariant subset.

One easily checks that the sets Iw1
∩ R−1α Iw2

∩ · · ·R−n+1
α Iwn are intervals

of T = R/Z. Furthermore, the factors of u of length n are in one-to-one
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correspondence with the n + 1 intervals of T whose end-points are given by
−kα mod 1, for 0 ≤ k ≤ n. This implies that two Sturmian words coding the
same rotation Rα have the same factors. Furthermore, Sturmian words have
exactly n+1 factors of length n, for every n ∈ N. This is even a characterization
of Stumian words:

Theorem 3 (Coven-Hedlund [29]). A word u ∈ {0, 1}N is Sturmian if and only
if it has exactly n+ 1 factors of length n.

An infinite word u is periodic (respectively ultimately periodic) if there exists
a positive integer T such that ∀n, un = un+T .

Note that the complexity function can be considered as a good measure of
the disorder of a sequence as it is smallest for periodic sequences. Namely, a
basic result of [29] is the following.

Proposition 1. If u is a periodic or ultimately periodic sequence, pu(n) is a
bounded function. If there exists an integer n such that pu(n) ≤ n, u is an
ultimately periodic sequence.

Proof. The first part is trivial. In the other direction, we have pu(1) ≥ 2
otherwise u is constant, so pu(n) ≤ n implies that pu(k+ 1) = pu(k) for some k.
For each word w of length k occurring in u, there exists at least one word of the
form wa occurring in u, for some letter a ∈ A. As pu(k + 1) = pu(k), there can
be only one such word. Hence, if ui...ui+k−1 = uj ...uj+k−1, then ui+k = uj+k.
As the set Lu(k) is finite, there exist j > i such that ui...ui+k−1 = uj ...uj+k−1,
and hence ui+p = uj+p for every p ≥ 0, one period being j − i.

By Proposition 1, Sturmian words are non-periodic words of smallest com-
plexity. This explains why Sturmian words are widely studied and occur in
various contexts as models of aperiodic order, for quasiperidoic structures such
as quasicrystals (see the books [4, 48]), or else in discrete geometry, as (Free-
man) coding discrete lines in discrete geometry. More generally, for references
on discrete lines, see the surveys [52, 22].

One deduces from Lemma 1 not only properties of a topological nature on
the number of factors, but also information of a measure-theoretical nature,
such as the expression of densities of factors [11], that can be deduced from the
equidistribution of the sequence (nα)n∈N. Indeed, the frequency of occurrence of
the word w in the Sturmian word u is equal to the length of the interval Iw. We
have seen in Section 2.3 that it allows the expression of a shift-invariant measure.
Moreover, one checks that Sturmian words are uniquely ergodic: the convergence
to frequencies is uniform. Frequencies of factors thus provides the unique shift-
invariant measure of the Sturmian shift (Xα, S). We also deduce from the
expression of the complexity function that it has zero topological entropy.

Moreover, one checks that the systems (Rα,T) and (Xα, S) are measure-
theorerically isomorphic, and even semi-conjugate. We thus can consider that
the chosen partition provides a good coding. One has the following commutative

13



diagram:

R/Z Rα−→ R/Zy y
Xα −→

S
Xα

Let us consider now a combinatorial way of generating Sturmian words. A
substitution σ is an application from an alphabet A into the set of nonempty
finite words on A; it extends to a morphism of the free monoid A∗ by concate-
nation, that is, σ(ww′) = σ(w)σ(w′) and σ(ε) = ε. It also extends in a natural
way to a map defined over AN or AZ.

Substitutions are very efficient tools for producing sequences. Let σ be a
substitution over the alphabet A, and a be a letter such that σ(a) begins with
a and |σ(a)| ≥ 2. Then there exists a unique fixed point u of σ beginning with
a. This sequence is obtained as the limit in AN (when n tends toward infinity)
of the sequence of words σn(a), which is easily seen to converge.

The Fibonacci sequence is the fixed point v beginning with a of the the
Fibonacci substitution σ defined over the two-letter alphabet {a, b} by σ(a) = ab
and σ(b) = a.

v = abaababaabaababaababaabaababaabaababaababaabaababaababaaba...

The Fibonacci word is a particular case of a Sturmian word. It belongs to the

Sturmian shift associated with the Golden ratio α = 1+
√
5

2 .
Let us see how to generate all the Sturmian shifts with substitutions. We

work now on the alphabet {a, b}. We consider the substitutions τa and τb defined
over the alphabet A = {a, b} by τa : a 7→ a, b 7→ ab and τb : a 7→ ba, b 7→ b. Let
(in) ∈ {a, b}N. The following limits

u = lim
n→∞

τi0τi1 · · · τin−1
(a) = lim

n→∞
τi0τi1 · · · τin−1

(b) (1)

exist and coincide whenever the directive sequence (in)n is not ultimately con-
stant (it is easily shown that the shortest of the two images by τi0τi1 . . . τin−1

is a prefix of the other). One checks that the infinite words thus produced are
all Sturmian words: indeed, it suffices to consider and compute their factor
complexity. More generally, one can prove that a Sturmian word is an infinite
word whose set of factors coincides with the set of factors of a sequence u of
the form (1), with the sequence (in)n≥0 being not ultimately constant (that is,
it is an element of the symbolic dynamical system Xu generated by u, since
(Xu, S) is minimal). The proof relies on the fact that in a Sturmian language,
either aa (the letter b occurs as an isolated letter) or bb (a is isolated) occurs:
one cannot have simultaneously aa and bb since there are 3 factors of length
2. One then desubstitutes according to the isolated letter: if b is isolated in u,
then one can write u as u = σa(v) (one reduces the ranges of successive occur-
rences of a’ by 1). One checks that v (possibly up to a prefix letter) is again
a Sturmian word (associated with a different α). If one wants to generate a
specific Sturmian word (not only a Sturmian language/shift), one can use four
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substitutions. One striking property of that the way one iterates the substitu-
tions is governed by the continued fraction expansion of α. This method can
be used for the generation of discrete lines and planes in discrete geometry, as
well as for the recognition of discrete planes [33]. More generally shifts with at
most linear factor complexity can also be generated in terms of composition of
substitutions, see e.g. the survey [12] and the references therein.

Let us see now an example of an arithmetical discrepancy property ofRα that
can be proved symbolically. Let u ∈ AN and assume that each letter i has fre-
quency fi in u. The discrepancy of u is ∆(u) = lim supi∈A, n∈N ||u0u1 . . . un−1|i−
nfi|. The quantity ∆(u) is considered e.g. in [1, 2]. A word u ∈ AN is said to
be C-balanced if for any pair v, w of factors of the same length of u, and for
any letter i ∈ A, one has ||v|i − |w|i| ≤ C. It is said balanced if there exists
C > 0 such that it is C-balanced. If u has letter frequencies, then u is balanced
if and only if its discrepancy ∆(u) is finite. It is also said to have bounded
deviation (the term ‘deviation’ refers here to the ergodic averages, that is, the
Birkhoff sums associated with the indicator function of the cylinders associated
with letters).

A subset A of T with (Lebesgue) measure µ(A) is said to be a bounded
remainder set for the translation Rα : x 7→ x+ α (α ∈ T) if there exists C > 0
such that for a.e. x the following holds: ∀N, |Card{0 ≤ n < N ; x+nα ∈ A}−
Nµ(A)| ≤ C. Let f := 1A(x)− µ(A)1. The notation 1 stands for the constant
function that takes value 1. Note that Card{n < N ; Rnα(x) ∈ A} − Nµ(A) =∑
n<N f(Rnαx). Hence, A is a bounded remainder set if and only if the Birkhoff

sum
∑
n<N f(Rnαx) is a.e. uniformly bounded.

Sturmian words are known to be 1-balanced [60] (they have bounded devia-
tion with respect to the ergodic theorem); they even are exactly the 1-balanced
infinite words that are not eventually periodic. This result can be shown with
a purely combinatorial proof. One can also show a balance property for factors
(instead of letters) [77]. One thus deduces from Lemma 1 that intervals of the
form αZ + Z are bounded remainder sets for Rα. One recovers with a purely
symbolical proof one direction of Kesten’s characterization of intervals that are
bounded remainder sets as intervals with length in αZ + Z [47].

4 Dynamics and computation

The aim of this section is to discuss dynamical systems and their orbits from a
computational viewpoint, motivated by the question of numerical simulations in
the framework of finite precision computer arithmetic, but also by applications
in discrete geometry or for gcd computations.

4.1 First definitions

An orbit (Tn(x))n∈N of the dynamical system (X,T ) is said to be eventually
periodic if there exists n such that Tn(x) = Tn+k(x), for all k ∈ N. If n = 0,
then the orbit is said to be purely periodic. In order to define a stronger notion
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of “finiteness” for an orbit, we will assume that (X,T ) has 0 as a fixed point:
0 ∈ X and T (0) = 0. The orbit (Tn(x))n∈N is thus said to be finite if there
exists n such that Tn(x) = 0; this yields T k+n(x) = 0 for all k ∈ N. Finite orbits
are thus particular cases of periodic orbits. For instance, in base 10, rational
numbers have periodic orbits, whereas decimal numbers have finite orbits.

By finite state machine simulation of the dynamical system (X,T ), we mean
the following: we consider

• a finite set X̂, which is a set of finite sequences of, usually, binary digits,
this is a discretization of the space X,

• a coding map ϕ : X → X̂, i.e., a projection onto the discretized space X̂,

• and a map T̂ that acts on X̂ with T̂ (X̂) ⊂ X̂, whose action is defined
as a finite state machine, i.e., the image of x ∈ X̂ by T̂ is computed by
a finite state machine that takes as input the sequence of digits of x and
then outputs the sequence of digits of T̂ (x); we also want the behavior of
T̂ to be close to the behavior of T , that is, T̂ ◦ ϕ to be close to ϕ ◦ T .
Let us stress the fact that the transformation T̂ acts on a discrete space
whereas T acts on a continuous space.

The underlying discretization can be chosen either uniform (see e.g. [61]),
or non-uniform, for instance, if one works on floating-point arithmetics, in a
domain where the precision is not the same at every point of the space; it is
concentrated around 0 et gets less and less accurate when the number to be
represented increases. The question is now to understand what happens when
the number of points N of the finite space X̂ tends to infinity or when the
precision tends to 0.

As an example, consider the floating-point simulation T̂G of the Gauss map
(see e.g. [25, 26, 27]), defined as T̂G(0) = 0, T̂G(x) = 1/x mod 1 otherwise,
with the operations of division and reduction modulo 1 being defined in floating-
point arithmetics on the floating-point domain (i.e., on the finite set of numbers
represented in this fixed-precision system).

4.2 Main issues

The following issues are thus to be considered. These questions are addressed
in full generality and answers depend on the nature of the dynamical system
(X,T ) (the two extreme cases are usually considered, chaotic case or uniquely
ergodic case, but also conservative vs. dissipative dynamics), but we use as a
guideline the Gauss map acting on [0, 1].

• Periodic orbits for (X,T ) and (X̂, T̂ ) The orbits produced by a finite
state machine simulation of a dynamical system are eventually periodic
(the set of representable numbers X̂ is finite). What are the finite or
the periodic expansions of the dynamical system (X,T )? What is the
number of periodic cycles and their lengths for (X̂, T̂ )? What is the size
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of connected components (i.e., the number of points attracted by a given
cycle)? What is the time to reach it (stabilization time)?

• Genericity and ergodic properties for periodic orbits for (X,T )
Do periodic expansions for (X,T ) have a typical behavior? But what
could be considered as a typical orbit? a generic orbit, but with respect
to which invariant measure? What is the spatial distribution of periodic
cycles for (X,T )? Indeed, since measure-theoretical dynamical systems
are defined up to sets of zero measure, the relevance of the statistical
properties provided by the ergodic theorem with respect to computation
can be questioned. In particular, what can be said concerning the behavior
of rational points under the Gauss map? We just know that their orbits are
finite, and that they correspond to the application of Euclid’s algorithm.
We also know that points having finite, or periodic orbits are dense. This
does not imply a priori that their orbits behave in a generic way.

• Genericity and ergodic properties for periodic orbits for (X̂, T̂ )
Same questions on the orbits of (X̂, T̂ ). What is the impact of the fact
that the space X̂ is discrete? Does discretization detect typical behavior?
Are there typical orbits (with respect to (X,T )) among computable ones?

• Rounding and truncation errors are then to be taken care of. What
can be said concerning the roundoff errors when simulating trajectories?
How far are computed orbits from exact ones?

4.3 Roundoffs and shadowing

We focus here on the example of the floating-point Gauss map to illustrate
this section. We follow here mainly [25, 26, 27, 40]. Orbits under the real
Gauss map TG are all finite (they reach 0) since machine-representable numbers
are rational numbers. If one looks at the orbits produced by the floating-point
Gauss map, it is a priori unclear to know whether they also reach 0. In the case
of the Gauss map, the notion of genericity refers to the Gauss measure µG =

1
log 2

∫
1

1+xdx (see Section 3.2), that is the unique ergodic invariant measure
absolutely continuous with respect to the Lebesgue measure.

As seen in the previous section, there are two levels of difficulties that have
to be handled.

• First, one has to check that the roundoff errors do not accumulate. One
way to handle this problem is to prove that orbits under the simulation of
the dynamical system have a counterpart in the exact dynamical system,
i.e., that they are uniformly close to exact orbits of T . These orbits are
said to shadow the simulated orbits; see [70] for more on the concept of
shadowing (roughly speaking, approximate orbits of a dynamical system
are closely followed by exact orbits). Shadowing or pseudo-orbit tracing
started with the works of Anosov and Bowen (for smooth uniformly hy-
perbolic systems) in the seventies, and is now a classical object of study
for chaotic dynamical systems.
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• But, a second problem occurs: even if orbits under a floating-point version
of the dynamical system are proved to be close to exact orbits, there is no
reason for these orbits to be generic with respect to T . In other words,
what is the measure carried by the true orbit that shadows the computer
orbit (in terms of time averages lim 1

N

∑N
n=0 δTn(x))?

It is proved in [25, 27] that orbits under the floating-point Gauss map are
uniformly close to exact orbits with an explicit construction of the initial point
of the exact orbit. The proof relies on “backward error” analysis. As stressed
in [26], “the y whose actual orbit is shadowing the numerical simulation is a
quadratic irrational or rational number, and thus is from a set of zero measure.”
But the shadowing orbits are usually long, they thus have a tendency to behave
like a generic one.

Consider now a general dynamical system (X,T ). If it admits invariant mea-
sures absolutely continuous with respect to the Lebesgue measure, then among
these measure, there exist a unique ergodic one. It is proved in [40], whose ex-
pressive title is “Why do computers like Lebesgue measure”, that the histograms
of computer simulations display the ergodic invariant measure that is absolutely
continuous with respect to Lebesgue measure under the main assumption that
there exist long trajectories for the computer transformation T̂ . Long means
here that these orbits visit a fixed portion of the space X̂. As stressed in [40],
the very process of discretization of the spaces forces computer orbits to display
only the ergodic invariant measure that is absolutely continuous.

The situation is more contrasted in the general case of conservative home-
omorphisms such as highlighted and studied in detail in [43] (see also [42]),
where the dynamical behavior of spacial discretizations of a generic homeomor-
phism of a compact manifold is investigated. The behavior of discretizations
is shown to be quite erratic in the conservative case. A property is said to be
generic here if it is satisfied (at least) on a countable intersection of dense open
sets. It is proved that dynamical properties of a generic conservative homeo-
morphism cannot be detected using a single discretization, even if subsequences
of discretizations allow to detect some dynamical features. The behavior in the
conservative and dissipative case for homeomorphims of compact manifolds is
also shown to be quite different with respect to spatial discretization.

The case of uniform discretization for circle homeomorphisms of the circle is
investigated in [61]: in particular, the discrete dynamics induced by Diophan-
tine diffeomorphisms is proved to be asymptotically random (they behave like
random mappings such as described in the next section). Moreover, in [61,
Proposition 8.1], uniquely ergodic homeomorphisms on a compact Riemannian
manifold are considered. It is proved that the uniformly distributed measure on
a periodic cycle of the discretization tends to the invariant measure when the
number of points tends to infinity.
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4.4 Random mappings

It is usual to compare the behaviour of a discretization of a chaotic dynamical
system with the behaviour of random mappings. A random mapping is a map
uniformly chosen randomly among all the maps from {1, . . . , N} to itself (each
map has probability 1/NN to be chosen). There is an important literature
devoted to random mappings, see for instance [20, 34, 51].

We represent a random mapping as a functional graph: nodes are elements
of {1, . . . , N}, there is an arrow from i to j if f(i) = j. Note that each connected
component contains one cycle. An orbit is made of a path (a tail) that connects
to a cycle. A connected component is made of possibly several orbits and can
be seen as trees rooted on a cycle.

The expectations of the following parameters have the asymptotics given
below when N tends to infinity (note that the distributions are Gaussian).

• The mean number of nodes without antecedents is equivalent to N/e.

• The mean number of cyclic nodes is equivalent to
√
πN/2.

• The mean number of connected components is equivalent to (1/2) logN .

For a random point ν, the expectations of

• the size of the component that contains ν is equivalent to 2N/3;

• the tail length is equivalent to
√
πN/8 (i.e., the maximal length of the

injective orbit);

• the cycle length is equivalent to
√
πN/8 (i.e., the average length of the

period of its orbit).

In summary, one has a one giant component and few large trees. Further-
more, periods (cycles) tend to be “long”.

4.5 Finite and periodic orbits of the Gauss map

Let us come back to the Gauss map. If N stands for the total number of
floating-point numbers in a simulation, then the average length of the period of
an orbit is thus expected to be in

√
πN/8 +O(1). The equidistribution results

for quadratic irrational numbers obtained in [71], through the use of Parry’s
prime orbit method [68], confirm this long orbit behavior, and the fact that
the periodic orbits capture some kind of genericity: taking averages on periodic
orbits yields the usual ergodic limits; if each individual periodic orbit behaves in
a non-generic way, the distribution of the quadratic irrational numbers ordered
with respect to the lengths of their period follows the Gauss measure.

We find the same kind of paradox within the so-called framework of “dynam-
ical analysis of algorithms” which mixes analysis of algorithms (such as initiated
by D. E. Knuth) and spectral study of dynamical systems through their transfer
operators, with probabilistic and ergodic methods. In particular, the dynami-
cal analysis of Euclid’s algorithm (performed in full details in [58, 5], see also
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[35, 36, 76]), proves that the orbits of rational points behave indeed in a generic
way.

This confirms the pertinence of a dynamical approach in contexts where only
integer parameters are to be considered. Let us quote two applications fields. In
discrete geometry, continued fractions and Euclid’s algorithm are indeed known
to describe discretizations of lines, and their possible generalizations describe
discrete planes [33]. In order to understand statistical properties of such dis-
cretizations, it is useful to rely on the continuous counterpart, that is, on the
Gauss map, and on its multidimensional generalizations. Continued fraction
algorithms can also be used to describe gcd algorithms such as developed in
[16, 17] for real numbers as well as polynomials with coefficients in a finite field.
The underlying dynamical systems allow to handle a complete probabilistic anal-
ysis of the associated gcd algorithms, by providing both the average-case and
the distributional analysis. In particular, the expectation of number of steps is
proved to be connected to the entropy of the dynamical system.

5 Continued fractions vs. decimal expansions:
Lochs’ theorem

The aim of this section is to compare in average the level of information required
for computing the continued fraction expansion of a positive real number x
whose expansion in some numeration system (decimal, binary, base β etc.) is
given. More precisely, we want to know in average the number of digits in one
symbolic representation (here, the continued fraction expansion) that can be
obtained from the first n digits in another representation.

We first start with decimal expansions (this is the case that has been first
handled in the literature, it also yields the more striking result) and ask for the
number of decimal digits required for expanding x in continued fraction. We
first fix the notation. Let x ∈ (0, 1) be an irrational number with continued
fraction x = [0; a1, · · · , an, · · · ], and with decimal expansion x =

∑
i≥1

εi
10i , with

εi ∈ {0, 1, . . . , 9} for all i ≥ 1. For n ≥ 1, let xn be the lower n-th decimal
approximations of x: xn =

∑n
i=1

εi
10i .

If two numbers are sufficiently close, then their respective continued fraction
expansions have the same first partial quotients. Let us quantify this. For
a fixed non-negative integer n, let kn(x) be the largest non-negative integer
k such that the first k partial quotients of xn are equal to the first k partial
quotients of x. The following classic result by G. Lochs [56] describes the a.e.
behavior of the quantity kn(x) and indicates that the n first decimals determine
approximatively n of the first partial quotients, which might seem at first view
non-intuitive.

Theorem 4. [56] For almost every irrational number x ∈ [0, 1] (with respect to
the Lebesgue measure)

lim
n→∞

kn(x)

n
=

6 log 10 log 2

π2
∼ 0.9702. (2)
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In particular, Lochs has shown in [57] that the first 1000 decimals of π give
the first 968 partial quotients of the continued fraction expansion of π − 3.

Note that we recognize in (2) the Lyapounov exponent λG (the entropy) of
the Gauss map, i.e.,

lim
n→∞

kn(x)

n
=

log 10

λG
.

This is in fact not surprising to have the Lyapounov exponent λG intervening
in the statement of Lochs’ theorem. Indeed, the sensitive dependence on initial
conditions (i.e., the fact of having a positive Lyapounov exponent) governs the
accuracy of computations and makes it even decrease exponentially fast. As
quoted from [24], “Due to the sensitive dependence on initial conditions [· · · ]
there is a possibility of obtaining meaningless output after many iterations of a
transformation in computer experiment. Once we begin with sufficiently many
digits, however, iterations can be done without paying much attention to the
sensitive dependence on initial data. The optimal number of significant digits
can be given in terms of the Lyapounov exponent.” Still following [24], the
divergence speed for a dynamical system (X,T ), and for 0 ≤ x ≤ 1− 10−n with
a fixed n ≥ 1, is defined as

Vn(x) = min{j ≥ 1 | |T j(x)− T j(x+ 10−n)| ≥ 10−1}.

This quantity is related to the Lyapounov exponent: Vn(x) ∼ n/λ(x), which
implies that on average, the number of significant digits for T (x) becomes n−
λ(x). The computations made in [24] are based on the maximal number of
iterations that can be performed with no loss of precision when working with n
significant digits, which can be quantified thanks to the Lyapounov exponent.

A natural question is to understand the dependence of Lochs’ theorem with
respect to the choice of the basis, namely, here, 10. Lochs’s theorem was gener-
alized to more general numerations and transformations in [21, 30, 54, 6], where
it was shown that these generalizations of Lochs’ theorem can be expressed in
terms of the ratio of the entropies (i.e., of the Lyapounov exponents) of the
maps involved. In particular, the question of the comparison with β-expansions
(β > 1) is thoroughly answered in [6] (thus also covering the case of q-adic
expansions). One expands x as

∑
i≥1

εi
βi , where εi ∈ {0, 1, . . . , dβe − 1} for all

i ≥ 1. Recall that the Lyapounov exponent λβ of the β-transformation Tβ is
equal to log β. Lochs’ theorem becomes in this more general framework, with
kn(x) being defined in a similar way as in the decimal case:

Theorem 5. [6] For every x ∈ |0, 1]

lim
n→∞

kn(x)

n
=
λβ(x)

λG(x)
=

6 log 2 log β

π2
,

whenever both limit exist simultaneously.

Note that the Lyapounov exponent λG of the Gauss map is also expressed
as the following limit (when it exists):

λG(x) = − lim
n→∞

1

n
log |x− pn/qn|,
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where pn/qn = [0; a1, · · · , an]. It thus also measures the exponential speed of
convergence of the convergents. Theorem 5 makes Lochs’ theorem more intuitive
since, as underlined in [6], “if x is well approximated by rational numbers, then
the amount of information about the continued fraction expansion that can
be obtained from its β-expansion is small. Moreover, the larger β is (that is,
the more symbols we use to code a number x), the more information about
the continued fraction expansion we obtain”. Moreover, [6] also provides the
Hausdorff dimension of level sets via multifractal analysis and thermodynamic
formalism, and proves that a similar result holds for more general Markov maps.
Lochs’ theorem has also been the object of further extensions for formal power
series with coefficients in a finite field (see [53]).
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27–74.

[45] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers,
Oxford Science Publications, 1979.

[46] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynam-
ical systems, Cambridge University Press, Cambridge, 1995.

[47] H. Kesten On a conjecture of Erdös and Szüsz related to uniform distribu-
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[73] A. Rényi, Representations for real numbers and their ergodic properties,
Acta Math. Acad. Sci. Hungar.8 (1957), 477–493.

[74] N. Sidorov, Arithmetic dynamics, in S. Bezuglyi et al., editor, Topics in
dynamics and ergodic theory, volume 310 of Lond. Math. Soc. Lect. Note
Ser., pages 145–189. Cambridge University Press, 2003.

[75] A. Thue, Selected mathematical papers, Universitetsforlaget, Oslo, 1977.

26



[76] B. Vallée, Euclidean dynamics, Discrete Contin. Dyn. Syst. 15 (2006), 281–
352.

[77] I. Fagnot, L. Vuillon, Generalized balances in Sturmian words, Discrete
Appl. Math. 121 (2002), 83–101.

[78] P. Walters, An introduction to ergodic theory, Springer-Verlag, New York,
1982.

27


	Introduction
	Discrete dynamical systems
	First definitions
	Symbolic dynamical systems
	Measure-theoretic dynamical systems
	Isomorphisms
	Entropy

	Arithmetic dynamics
	Numeration dynamics
	The Gauss map
	Codings of rotations and Sturmian words

	Dynamics and computation
	First definitions
	Main issues
	Roundoffs and shadowing
	Random mappings
	Finite and periodic orbits of the Gauss map

	Continued fractions vs. decimal expansions: Lochs' theorem

