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Hyperbolic polynomials

Definition of hyperbolic polynomial

f € R[x]q is hyperbolic w.r.t. e = (ey1,. .., ep) € R"if
> f(e) # 0 (we suppose w.l.o.g. f(€) = 1)
» Vae R" tr cha(t) := f(t e — a) has only real roots

If such e exists, f is called a hyperbolic polynomial.
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Hyperbolic polynomials

Definition of hyperbolic polynomial

f € R[x]q is hyperbolic w.r.t. e = (ey1,. .., ep) € R"if
> f(e) # 0 (we suppose w.l.o.g. f(€) = 1)
» Vae R" tr cha(t) := f(t e — a) has only real roots

If such e exists, f is called a hyperbolic polynomial.

Fundamental examples:

(1) Products of real linear forms: f = x1 - - - Xy
Fore=1=(1,...,1) chi(t)=(t—ai)---(t — aq)

(2) Symmetric determinant: f = det(X), X symmetric matrix
Fore =1y  cha(t) is the characteristic polynomial of @ € Sy(R)

Convex optimization: (1) Linear Programming and (2) Semidefinite Programming
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Hyperbolicity cones

Definition of hyperbolicity cone

The hyperbolicity cone of f € R[X]q (w.r.t. €) is

Ai(f,e)={aeR":chy(t)=0=t>0}
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Base-cases:
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2/10



Hyperbolicity cones

Definition of hyperbolicity cone

The hyperbolicity cone of f € R[X]q (w.r.t. €) is

Ai(f,e)={aeR":chy(t)=0=1t>0}

Base-cases:
() Forf=x1---xg,e=1: Ay (f,1)=R] (LP)
(2) f=det(X),e=14: AL (f,14) = PSD cone (SDP)

3 =4): .
3) Gener ase (here d = 4) A hierarchy of convex opt. problems:

Linear Programming (LP)

I
Semidefinite Programming (SDP)

I
Hyperbolic Programming (HP)

Can we design Algebraic/Exact methods?
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The Lax conjecture

Examples of hyperbolic polynomials
» Elementary Symmetric polynomials f =3~ X;, > XiX;, . ..
» Derivatives along hyperbolic directions: f hyperb. = e,-% hyperb.

> f=det(Aixs + - + AnXn), where 3e with e1A1 + -+ - + €A, > 0

Example (Briandén)
There exists f € R[xi, ..., Xg] hyperbolic but no symmetric matrices Ay, ..., Ag
with f = det(A1x1 + -+ Ang) and ¢1A; +---+egAg =0
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The Lax conjecture

Examples of hyperbolic polynomials

» Elementary Symmetric polynomials f =3~ X;, > XiX;, . ..

» Derivatives along hyperbolic directions: f hyperb. = e,-g—; hyperb.

> f=det(Aixs + - + AnXn), where 3e with e1A1 + -+ - + €A, > 0

Example (Briandén)
There exists f € R[xi, ..., Xg] hyperbolic but no symmetric matrices Ay, ..., Ag
with f = det(A1x1 + -+ Ang) and @1A; +---+ e3Ag =0

Generalized Lax conjecture

Every hyperbolicity cone is a linear section
of the cone of PSD symmetric matrices,
that is A+, ..., An such that

Ai(f,€) = {x € R": Aixi+.. . +Anxn = 0}

If the conjecture holds, then HP coincides with SDP.
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Origin
From hyperbolic PDE theory
The Cauchy problem (given f € R[X]<q and Q C R" open) :

Theorem (Lax, Mizohata)
Decompose f =", , f with f; € R[x];.
If the Cauchy problem is well-posed then fy is hyperbolic.
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Origin
From hyperbolic PDE theory

The Cauchy problem (given f € R[X]<q and Q C R" open) :

Theorem (Lax, Mizohata)
Decompose f =", , f with f; € R[x];.
If the Cauchy problem is well-posed then fy is hyperbolic.

EX: The Wave operator (97 — 3 ; 9?)u = p corresponds to the polynomial

n

2 2

f=Xxm1— E Xi
i=1

hyperbolic in direction e = (1,0, ..., 0). Its hyp. cone is the second-order (or
Lorentz) cone

Ad(f,(1,0,...,0)) = {x € R™" i Xor1 > /X2 + -+ X3}
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Optimization over Multiplicity sets

Problem 1 (Hyperbolic Programming).
Given f € R[x]q hyperbolic in dir. e, and ¢ linear, solve

inf{¢(a) : ae A (f,e)}

)
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Multiplicity: For a € R”, we define
mult(a) := multiplicity of 0 as root of cha(t) = f(te — a)
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inf{¢(a) : ae A (f,e)} )]

Multiplicity: For a € R”, we define
mult(a) := multiplicity of 0 as root of cha(t) = f(te — a)
Multiplicity set: Form < d,[m ={ae€ R": mult(a) > m}

Remark: The set I, is real algebraic.
Indeed, if cha(t) = t9 + g1 (a)t?~" + - - - + go_1(a)t + gu(a) then

rm={a:g(a)=0,i>d—m+1}
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Problem 1 (Hyperbolic Programming).
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Optimization over Multiplicity sets

Sketch of Algorithm for Problem 1:
INPUT
f € R[x]¢,e € R", £ € R[x]4
OUTPUT
A finite set (parametrized by Rational Univ. Repres.) containing the minimizer
PROCEDURE
Form=0,...,ddo
» Compute the ideal Iy, = crit(¢, ') of critical points of £ on 'y
» Compute a Rational Univ. Repres. of I,
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Optimization over Multiplicity sets

Sketch of Algorithm for Problem 1:
INPUT
f € R[x]¢,e € R", £ € R[x]4
OUTPUT
A finite set (parametrized by Rational Univ. Repres.) containing the minimizer
PROCEDURE
Form=0,...,ddo
» Compute the ideal I, = crit(¢, ') of critical points of £ on ',
» Compute a Rational Univ. Repres. of /n

Problem 2 (Maximum multiplicity).
Given f € R[x]4 hyperbolic in dir. e, solve the non-convex opt. prob.:

max{mult(a) : a € A.(f, e)} @)
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The special case of LMI/SDP

f = det(A(x)) with A(x) = x1 A1 + - - - + XpAn

» A (f,e) = {x € R": A(x) = 0} (HP reduces to an SDP)
» mult(a) = corank(A(a)).

» Multiplicity set <> Determinantal variety I'm = {x € R" : rankA(x) < d — m}

Optimality conditions:

x € Iy < rankA(x) < d - m< A(x)Y(y) =0
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The special case of LMI/SDP

f = det(A(x)) with A(x) = x1 A1 + - - - + XpAn

» A (f,e) = {x € R": A(x) = 0} (HP reduces to an SDP)
» mult(a) = corank(A(a)).
» Multiplicity set <> Determinantal variety I'm = {x € R" : rankA(x) < d — m}

Optimality conditions:
x € Iy < rankA(x) < d - m< A(x)Y(y) =0

Henrion, N., Safey El Din (2015-2016)

Exact algorithms for linear matrix inequalities: A(x) = 0

N. (ISSAC 2016)

Rank-constrained SDP (poly-time if n or d = size(A) is fixed)

SPECTRA: Maple library for linear matrix inequalities

Work in progress!
Can we get the same complexity bounds for general hyperbolic polynomials?
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Renegar’s derivative relaxations

Fundamental remark:

f € R[x]q hyperbolic in direction @ =  Def =, eif% still hyperbolic

This gives a nested sequence of convex hyperbolicity cones:
A (f,8) C A (Dof, ) C --- C A (DL Y, e)

(the last one being a half-space), giving a sequence of lower bounds for the linear
function to optimize:

inf ¢(a)> inf f(a)>---> inf  ¢(a)

Av(f,€) A+ (Def €) AL(DS 1)
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Renegar’s derivative relaxations

Fundamental remark:

f € R[x]q hyperbolic in direction @ =  Def =, eif% still hyperbolic

This gives a nested sequence of convex hyperbolicity cones:
A (f,8) C A (Dof, ) C --- C A (DL Y, e)

(the last one being a half-space), giving a sequence of lower bounds for the linear
function to optimize:

inf ¢(a inf ay>.-.> inf {(a
Ay (,€) (a) A+(Def,€) Ha) = T AL(DY9 Ve (@)
Why Renegar’s method is useful from a computational viewpoint:

> At each step of the relaxation, the degree of the polynomial decreses by 1
> One of the /\+(Dg f, e) could be a section of the PSD cone (solution set of a

LMI), in which case a lower bound can be computed by solving a single SDP.
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N-ellipse

Given N points Py, ..., Pyin R? and D € R;.
The N-ellipse is the set Ey of Q € R? satisfying

N
> dist(Q, P) = D.

i=1

Fact: The polynomial f vanishing on the boundary
of E is hyperbolic (for all N, for general P;).

Remark! The degree of f is 2V.

Figure: 3—ellipse for many D
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N
> dist(Q, P) = D.
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Fact: The polynomial f vanishing on the boundary
of E is hyperbolic (for all N, for general P;).

Remark! The degree of f is 2V.

Figure: 3—ellipse for many D

For N =3, P; = (0,4), P = (0,0), Ps = (3, 0) (using Renegar’s derivatives) :

k ~ Xx* m* £(x*) Degree of ex. repr.
0 (0.750, 0.000, 0.250) 2 5.500000000 56
1 (0.759,-0.018,0.258) 1 5.499158216 42
2 (0.797,-0.051,0.250) 1 5.456196445 30
3 (0.862,-0.116,0.254) 1  5.392044926 20
4 (0.981,-0.254,0.273) 1 5.292250029 12
5 (1.336,—0.762,0.426) 1  5.090555573 6
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Pre-print arxXiv:1612.07340 (2016)
[N., Plaumann] Symbolic computation in hyperbolic programming

Conclusions

> An exact algorithm for hyperbolic programming
» We can compute the maximum multiplicity on a hyp. cone A4 (f, e)

» Combined with Renegar derivatives, one can certify lower bounds for HP

Questions/Perspectives

» Extend complexity bounds from SDP to HP (poly(-) when n or d is fixed?)

» Hyperbolicity test? Complexity of determinantal representations?
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Figure: A non-determinantal quartic hyperbolic surface
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