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Abstract

This document contains the notes of a lecture I gave at the “Journées Nationales du
Calcul Formel” (JNCF) on January 2017. The aim of the lecture was to discuss low-level
algorithmics for p-adic numbers. It is divided into two main parts: first, we present various
implementations of p-adic numbers and compare them and second, we introduce a general
framework for studying precision issues and apply it in several concrete situations.
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Introduction

The field of p-adic numbers, Qp, was first introduced by Kurt Hensel at the end of the 19th century
in a short paper written in German [35]. From that time, the popularity of p-adic numbers has
grown without interruption throughout the 20th century. Their first success was materialized
by the famous Hasse–Minkowski’s Theorem [74] that states that a Diophantine equation of the
form P (x1, . . . , xn) = 0 where P is a polynomial of total degree at most 2 has a solution over
Q if and only if it has a solution over R and a solution over Qp for all prime numbers p. This
characterization is quite interesting because testing whether a polynomial equation has a p-adic
solution can be carried out in a very efficient way using analytic methods just like over the reals.
This kind of strategy is nowadays ubiquitous in many areas of Number Theory and Arithmetic
Geometry. After Diophantine equations, other typical examples come from the study of number
fields: we hope deriving interesting information about a number field K by studying carefully
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all its p-adic incarnations K ⊗Q Qp. The ramification of K, its Galois properties, etc. can be —
and are very often — studied in this manner [68, 64]. The class field theory, which provides
a precise description of all Abelian extensions1 of a given number field, is also formulated in
this language [65]. The importance of p-adic numbers is so prominent today that there is still
nowadays very active research on theories which are dedicated to purely p-adic objects: one can
mention for instance the study of p-adic geometry and p-adic cohomologies [6, 57], the theory of
p-adic differential equations [49], Coleman’s theory of p-adic integration [23], the p-adic Hodge
theory [14], the p-adic Langlands correspondence [5], the study of p-adic modular forms [33],
p-adic ζ-functions [51] and L-functions [21], etc. The proof of Fermat’s last Theorem by Wiles
and Taylor [80, 77] is stamped with many of these ideas and developments.

Over the last decades, p-adic methods have taken some importance in Symbolic Computation
as well. For a long time, p-adic methods have been used for factoring polynomials over Q [55].
More recently, there has been a wide diversification of the use of p-adic numbers for effective
computations: Bostan et al. [13] used Newton sums for polynomials over Zp to compute composed
products for polynomials over Fp; Gaudry et al. [31] used p-adic lifting methods to generate
genus 2 CM hyperelliptic curves; Kedlaya [48], Lauder [53] and many followers used p-adic
cohomology to count points on hyperelliptic curves over finite fields; Lercier and Sirvent [56]
computed isogenies between elliptic curves over finite fields using p-adic differential equations.

The need to build solid foundations to the algorithmics of p-adic numbers has then emerged.
This is however not straightforward because a single p-adic number encompasses an infinite
amount of information (the infinite sequence of its digits) and then necessarily needs to be
truncated in order to fit in the memory of a computer. From this point of view, p-adic numbers
behave very similarly to real numbers and the questions that emerge when we are trying to
implement p-adic numbers are often the same as the questions arising when dealing with rounding
errors in the real setting [61, 25, 62]. The algorithmic study of p-adic numbers is then located
at the frontier between Symbolic Computation and Numerical Analysis and imports ideas and
results coming from both of these domains.

Content and organization of this course. This course focuses on the low-level implementation of
p-adic numbers (and then voluntarily omits high-level algorithms making use of p-adic numbers)
and pursues two main objectives. The first one is to introduce and discuss the most standard
strategies for implementing p-adic numbers on computers. We shall detail three of them, each of
them having its own spirit: (1) the zealous arithmetic which is inspired by interval arithmetic
in the real setting, (2) the lazy arithmetic with its relaxed improvement and (3) the p-adic
floating-point arithmetic, the last two being inspired by the eponym approaches in the real setting.

The second aim of this course is to develop a general theory giving quite powerful tools to
study the propagation of accuracy in the p-adic world. The basic underlying idea is to linearize
the situation (and then model the propagation of accuracy using differentials); it is once again
inspired from classical methods in the real case. However, it turns out that the non-archimedean
nature of Qp (i.e. the fact that Z is bounded in Qp) is the source of many simplifications which
will allow us to state much more accurate results and to go much further in the p-adic setting.
As an example, we shall see that the theory of p-adic precision yields a general strategy for
increasing the numerical stability of any given algorithm (assuming that the problem it solves is
well-conditioned).

This course is organized as follows. §1 is devoted to the introduction of p-adic numbers:
we define them, prove their main properties and discuss in more details their place in Number
Theory, Arithmetic Geometry and Symbolic Computation. The presentation of the standard
implementations of p-adic numbers mentioned above is achieved in §2. A careful comparison
between them is moreover proposed and supported by many examples coming from linear algebra
and commutative algebra. Finally, in §3, we expose the aforementioned theory of p-adic precision.

1An abelian extension is a Galois extension whose Galois group is abelian.
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We then detail its applications: we will notably examine many very concrete situations and, for
each of them, we will explain how the theory of p-adic precision helps us either in quantifying the
qualities of a given algorithm regarding to numerical stability or, even better, in improving them.

Acknowledgments. This document contains the (augmented) notes of a lecture I gave at the
“Journées Nationales du Calcul Formel2” (JNCF) on January 2017. I heartily thank the organizers
and the scientific committee of the JNCF for giving me the opportunity to give these lectures
and for encouraging me to write down these notes. I am very grateful to Delphine Boucher,
Nicolas Brisebarre, Claude-Pierre Jeannerod, Marc Mezzarobba and Tristan Vaccon for their
careful reading and their helpful comments on an earlier version of these notes.

Notation. We use standard notation for the set of numbers: N is the set of natural integers
(including 0), Z is the set of relative integers, Q is the set of rational numbers and R is the set
of real numbers. We will sometimes use the soft-O notation Õ(−) for writing complexities; we
recall that, given a sequence of positive real numbers (un), Õ(un) is defined as the union of the
sets O(un logk un) for k varying in N.

Throughout this course, the letter p always refers to a fixed prime number.

1 Introduction to p-adic numbers

In this first section, we define p-adic numbers, discuss their basic properties and try to explain,
by selecting a few relevant examples, their place in Number Theory, Algebraic Geometry and
Symbolic Computation. The presentation below is voluntarily very summarized; we refer the
interested reader to [2, 34] for a more complete exposition of the theory of p-adic numbers.

1.1 Definition and first properties

p-adic numbers are very ambivalent objects which can be thought of under many different angles:
computational, algebraic, analytic. It turns out that each point of view leads to its own definition
of p-adic numbers: computer scientists often prefer viewing a p-adic number as a sequence of
digits while algebraists prefer speaking of projective limits and analysts are more comfortable
with Banach spaces and completions. Of course all these approaches have their own interest
and understanding the intersections between them is often the key behind the most important
advances.

In this subsection, we briefly survey all the standard definitions of p-adic numbers and provide
several mental representations in order to try as much as possible to help the reader to develop a
good p-adic intuition.

1.1.1 Down-to-earth definition

Recall that each positive integer n can be written in base p, that is as a finite sum:

n = a0 + a1p+ a2p
2 + · · ·+ a`p

`

where the ai’s are integers between 0 and p−1, the so-called digits. This writing is moreover
unique assuming that the most significant digit a` does not vanish. A possible strategy to compute
the expansion in base p goes as follows. We first compute a0 by noting that it is necessarily the
remainder in the Euclidean division of n by p: indeed it is congruent to n modulo p and lies in
the range [0, p−1] by definition. Once a0 is known, we compute n1 = n−a0

p , which is also the
quotient in the Euclidean division of n by p. Clearly n1 = a1 + a2p+ · · ·+ a`p

`−1 and we can now
compute a1 repeating the same strategy. Figure 1.1 shows a simple execution of this algorithm.

2(French) National Computer Algebra Days
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a0 : 1742 = 248 × 7 + 6
a1 : 248 = 35 × 7 + 3
a2 : 35 = 5 × 7 + 0
a3 : 5 = 0 × 7 + 5

=⇒ 1742 = 5036
7

Figure 1.1: Expansion of 1742 in base 7

. . . 2 3 0 6 2 4 4
+ . . . 1 6 5 2 3 3 2

. . . 4 2 6 1 6 0 6

. . . 2 3 0 6 2 4 4
× . . . 1 6 5 2 3 3 2

. . . 4 6 1 5 5 2 1

. . . 2 2 5 0 6 5

. . . 2 5 0 6 5

. . . 5 5 2 1

. . . 6 1 6

. . . 6 3

. . . 4

. . . 4 3 2 0 3 0 1

Figure 1.2: Addition and multiplication in Z7

By definition, a p-adic integer is an infinite formal sum of the shape:

x = a0 + a1p+ a2p
2 + · · ·+ aip

i + · · ·

where the ai’s are integers between 0 and p−1. In other words, a p-adic integer is an integer
written in base p with an infinite number of digits. We will sometimes alternatively write x as
follows:

x = . . . ai . . . a3a2a1a0
p

or simply
x = . . . ai . . . a3a2a1a0

when no confusion can arise. The set of p-adic integers is denoted by Zp. It is endowed with a
natural structure of commutative ring. Indeed, we can add, subtract and multiply p-adic integers
using the schoolbook method; note that handling carries is possible since they propagate on the
left. The ring of natural integers N appears naturally as a subring of Zp: it consists of p-adic
integers . . . ai . . . a3a2a1a0 for which ai = 0 when i is large enough. Note in particular that the
integer p writes . . . 0010 in Zp and more generally pn writes . . . 0010 . . . 0 with n ending zeros. As
a consequence, a p-adic integer is a multiple of pn if and only if it ends with (at least) n zeros.
Remark that negative integers are p-adic integers as well: the opposite of n is, by definition, the
result of the subtraction 0−n.

Similarly, we define a p-adic number as a formal infinite sum of the shape:

x = a−np
−n + a−n+1p

−n+1 + · · ·+ aip
i + · · ·

where n is an integer which may depend on x. Alternatively, we will write:

x = . . . ai . . . a2a1a0 . a−1a−2 . . . a−n
p

and, when no confusion may arise, we will freely remove the bar and the trailing p. A p-adic
number is then nothing but a “decimal” number written in base p with an infinite number of
digits before the decimal mark and a finite amount of digits after the decimal mark. Addition and
multiplication extend to p-adic numbers as well.
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The set of p-adic numbers is denoted by Qp. Clearly Qp = Zp[1p ]. We shall see later (cf
Proposition 1.1, page 5) that Qp is actually the fraction field of Zp; in particular it is a field and
Q, which is the fraction field of Z, naturally embeds into Qp.

1.1.2 Second definition: projective limits

From the point of view of addition and multiplication, the last digit of a p-adic integer behaves
like an integer modulo p, that is an element of the finite field Fp = Z/pZ. In other words, the
application π1 : Zp → Z/pZ taking a p-adic integer x = a0 + a1p+ a2p

2 + · · · to the class of a0
modulo p is a ring homomorphism. More generally, given a positive integer n, the map:

πn : Zp → Z/pnZ
a0 + a1p+ a2p

2 + · · · 7→ (a0 + a1p+ · · ·+ an−1p
n−1) mod pn

is a ring homomorphism. These morphisms are compatible in the following sense: for all x ∈ Zp,
we have πn+1(x) ≡ πn(x) (mod pn) (and more generally πm(x) ≡ πn(x) (mod pn) provided that
m > n). Putting the πn’s all together, we end up with a ring homomorphism:

π : Zp → lim←−n Z/p
nZ

x 7→ (π1(x), π2(x), . . .)

where lim←−n Z/p
nZ is by definition the subring of

∏∞
n=1 Z/pnZ consisting of sequences (x1, x2, . . .)

for which xn+1 ≡ xn (mod pn) for all n: it is called the projective limit of the Z/pnZ’s.
Conversely, consider a sequence (x1, x2, . . .) ∈ lim←−n Z/p

nZ. In a slight abuse of notation,
continue to write xn for the unique integer of the range J0, pn−1K which is congruent to xn
modulo pn and write it in base p:

xn = an,0 + an,1p+ · · ·+ an,n−1p
n−1

(the expansion stops at (n−1) since xn < pn by construction). The condition xn+1 ≡ xn (mod pn)
implies that an+1,i = an,i for all i ∈ J0, n−1K. In other words, when i remains fixed, the sequence
(an,i)n>i is constant and thus converges to some ai. Set:

ψ(x1, x2, . . .) = . . . ai . . . a2a1a0 ∈ Zp.

We define this way an application ψ : lim←−n Z/p
nZ→ Zp which is by construction a left and a right

inverse of π. In other words, π and ψ are isomorphisms which are inverses of each other.
The above discussion allows us to give an alternative definition of Zp, which is:

Zp = lim←−
n

Z/pnZ.

The map πn then corresponds to the projection onto the n-th factor. This definition is more
abstract and it seems more difficult to handle as well. However it has the enormous advantage
of making the ring structure appear clearly and, for this reason, it is often much more useful
and powerful than the down-to-earth definition of §1.1.1. As a typical example, let us prove the
following proposition.

Proposition 1.1. (a) An element x ∈ Zp is invertible in Zp if and only if π1(x) does not vanish.

(b) The ring Qp is the fraction field of Zp; in particular, it is a field.

Proof. (a) Let x ∈ Zp. Viewing Zp as lim←−n Z/pnZ, we find that x is invertible in Zp if and only if
πn(x) is invertible in Z/pnZ for all n. The latest condition is equivalent to requiring that πn(x)
and pn are coprime for all n. Noting that p is prime, this is further equivalent to the fact that
πn(x) mod p = π1(x) does not vanish in Z/pZ.
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(b) By definition Qp = Zp[1p ]. It is then enough to prove that any nonzero p-adic integer x can be
written as a product x = pnu where n is a nonnegative integer and u is a unit in Zp. Let n be the
number of zeros at the end of the p-adic expansion of x (or, equivalently, the largest integer n
such that πn(x) = 0). Then x can be written pnu where u is a p-adic integer whose last digit does
not vanish. By the first part of the proposition, u is then invertible in Zp and we are done.

We note that the first statement of Proposition 1.1 shows that the subset of non-invertible
elements of Zp is exactly the kernel of π1. We deduce from this that Zp is a local ring with
maximal ideal kerπ1.

1.1.3 Valuation and norm

We define the p-adic valuation of the nonzero p-adic number

x = . . . ai . . . a2a1a0 . a−1a−2 . . . a−n

as the smallest (possibly negative) integer v for which av does not vanish. We denote it valp(x)
or simply val(x) if no confusion may arise. Alternatively val(x) can be defined as the largest
integer v such that x ∈ pvZp. When x = 0, we put val(0) = +∞. We define this way a function
val : Qp → Z ∪ {+∞}. Writing down the computations (and remembering that p is prime), we
immediately check the following compatibility properties for all x, y ∈ Qp:

(1) val(x+ y) > min
(
val(x), val(y)

)
,

(2) val(xy) = val(x) + val(y).

Note moreover that the equality val(x+ y) = min
(
val(x), val(y)

)
does hold as soon as val(x) 6=

val(y). As we shall see later, this property reflects the tree structure of Zp (see §1.1.5).
The p-adic norm | · |p is defined by |x|p = p−val(x) for x ∈ Qp. In the sequel, when no confusion

can arise, we shall often write | · | instead of | · |p. The properties (1) and (2) above immediately
translate as follows:

(1’) |x+ y| 6 max
(
|x|, |y|

)
and equality holds if |x| 6= |y|,

(2’) |xy| = |x| · |y|.

Remark that (1’) implies that | · | satisfies the triangular inequality, that is |x+ y| 6 |x|+ |y| for
all x, y ∈ Qp. It is however much stronger: we say that the p-adic norm is ultrametric or non
Archimedean. We will see later that ultrametricity has strong consequences on the topology of Qp

(see for example Corollary 1.3 below) and strongly influences the calculus with p-adic (univariate
and multivariate) functions as well (see §3.1.4). This is far from being anecdotic; on the contrary,
this will be the starting point of the theory of p-adic precision we will develop in §3.

The p-adic norm defines a natural distance d on Qp as follows: we agree that the distance
between two p-adic numbers x and y is |x− y|p. Again this distance is ultrametric in the sense
that:

d(x, z) 6 max
(
d(x, y), d(y, z)

)
.

Moreover the equality holds as soon as d(x, y) 6= d(y, z): all triangles in Qp are isosceles! Observe
also that d takes its values in a proper subset of R+ (namely {0} ∪ {pn : n ∈ Z}) whose unique
accumulation point is 0. This property has surprising consequences; for example, closed balls of
positive radius are also open balls and vice et versa. In particular Zp is open (in Qp) and compact
according to the topology defined by the distance. From now on, we endow Qp with this topology.

Clearly, a p-adic number lies in Zp if and only if its p-adic valuation is nonnegative, that is
if and only if its p-adic norm is at most 1. In other words, Zp appears as the closed unit ball in
Qp. Viewed this way, it is remarkable that it is stable under addition (compare with R); it is
however a direct consequence of the ultrametricity. Similarly, by Proposition 1.1, a p-adic integer
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is invertible in Zp if and only if it has norm 1, meaning that the group of units of Zp is then the
unit sphere in Qp. As for the maximal ideal of Zp, it consists of elements of positive valuation
and then appears as the open unit ball in Qp (which is also the closed ball of radius p−1).

1.1.4 Completeness

The following important proposition shows that Qp is nothing but the completion of Q according
to the p-adic distance. In that sense, Qp arises in a very natural way... just as does R.

Proposition 1.2. The space Qp equipped with its natural distance is complete (in the sense that
every Cauchy sequence converges). Moreover Q is dense in Qp.

Proof. We first prove that Qp is complete. Let (un)n>0 be a Qp-valued Cauchy sequence. It is then
bounded and rescaling the un’s by a uniform scalar, we may assume that |un| 6 1 (i.e. un ∈ Zp)
for all n. For each n, write :

un =

∞∑
i=0

an,ip
i

with an,i ∈ {0, 1, . . . , p−1}. Fix an integer i0 and set ε = p−i0 . Since (un) is a Cauchy sequence,
there exists a rank N with the property that |un − um| 6 ε for all n,m > N . Coming back to the
definition of the p-adic norm, we find that un−um is divisible by pi0 . Writing un = um+(un−um)
and computing the sum, we get an,i = am,i for all i 6 i0. In particular the sequence (an,i0)n>0 is
ultimately constant. Let ai0 ∈ {0, 1, . . . , p−1} denote its limit. Now define ` =

∑∞
i=0 aip

i ∈ Zp
and consider again ε > 0. Let i0 be an integer such that p−i0 6 ε. By construction, there exists a
rank N for which an,i = ai whenever n > N and i 6 i0. For n > N , the difference un − ` is then
divisible by pi0 and hence has norm at most ε. Hence (un) converges to `.

We now prove that Q is dense in Qp. Since Qp = Zp[1p ], it is enough to prove that Z is dense

in Zp. Pick a ∈ Zp and write a =
∑

i>0 aip
i. For a nonnegative integer n, set bn =

∑n−1
i=0 aip

i.
Clearly bn is an integer and the sequence (bn)n>0 converges to a. The density follows.

Corollary 1.3. Let (un)n>0 be a sequence of p-adic numbers. The series
∑

n>0 un converges in Qp if
and only if its general term un converges to 0.

Proof. Set sn =
∑n−1

i=0 ui. Clearly un = sn+1 − sn for all n. If (sn) converges to a limit s ∈ Qp,
then un converges to s − s = 0. We now assume that (un) goes to 0. We claim that (sn) is a
Cauchy sequence (and therefore converges). Indeed, let ε > 0 and pick an integer N for which
|ui| 6 ε for all i > N . Given two integers m and n with m > n > N , we have:

|sm − sn| =

∣∣∣∣∣
m−1∑
i=n

ui

∣∣∣∣∣ 6 max
(
|un|, |un+1|, . . . , |um−1|

)
thanks to ultrametricity. Therefore |sm − sn| 6 ε and we are done.

1.1.5 Tree representation

Geometrically, it is often convenient and meaningful to represent Zp as the infinite full p-ary tree.
In order to explain this representation, we need a definition.

Definition 1.4. For h ∈ N and a ∈ Zp, we set:

Ih,a =
{
x ∈ Zp s.t. x ≡ a (mod ph)

}
.

An interval of Zp is a subset of Zp of the form Ih,a for some h and a.
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...010010001 Z2

Figure 1.3: Tree representation of Z2

If a decomposes in base p as a = a0 + a1p + a2p
2 + · · · + ah−1p

h−1 + · · · , the interval Ih,a
consists exactly of the p-adic integers whose last digits are ah−1 . . . a1a0 in this order. On the other
hand, from the analytic point of view, the condition x ≡ a (mod ph) is equivalent to |x−a| 6 p−h.
Thus the interval Ih,a is nothing but the closed ball of centre a and radius p−h. Even better, the
intervals of Zp are exactly the closed balls of Zp.

Clearly Ih,a = Ih,a′ if and only if a ≡ a′ (mod ph). In particular, given an interval I of Zp,
there is exactly one integer h such that I = Ih,a. We will denote it by h(I) and call it the height of
I. We note that there exist exactly ph intervals of Zp of height h since these intervals are indexed
by the classes modulo ph (or equivalently by the sequences of h digits between 0 and p−1).

From the topological point of view, intervals behave like Zp: they are at the same time open
and compact.

We now define the tree of Zp, denoted by T (Zp), as follows: its vertices are the intervals
of Zp and we put an edge I → J whenever h(J) = h(I) + 1 and J ⊂ I. A picture of T (Z2) is
represented on Figure 1.3. The labels indicated on the vertices are the last h digits of a. Coming
back to a general p, we observe that the height of an interval I corresponds to the usual height
function in the tree T (Zp). Moreover, given two intervals I and J , the inclusion J ⊂ I holds if
and only if there exists a path from I to J .

Elements of Zp bijectively correspond to infinite paths of T (Zp) starting from the root through
the following correspondence: an element x ∈ Zp is encoded by the path

I0,x → I1,x → I2,x → · · · → Ih,x → · · · .

Under this encoding, an infinite path of T (Zp) starting from the root

I0 → I1 → I2 → · · · → Ih → · · ·

corresponds to a uniquely determined p-adic integer, which is the unique element lying in the
decreasing intersection

⋂
h∈N Ih. Concretely each new Ih determines a new digit of x; the whole

collection of the Ih’s then defines x entirely. The distance on Zp can be visualized on T (Zp) as
well: given x, y ∈ Zp, we have |x− y| = p−h where h is the height where the paths attached to x
and y separate.

The above construction easily extends to Qp.
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x0x1x2x3
•

x∞

Figure 1.4: Newton iteration over the reals

Definition 1.5. For h ∈ Z and a ∈ Qp, we set:

Ih,a =
{
x ∈ Qp s.t. |x− a| 6 p−h

}
.

A bounded interval of Qp is a subset of Qp of the form Ih,a for some h and a.

Similarly to the case of Zp, a bounded interval of Qp of height h is a subset of Qp consisting
of p-adic numbers whose digits at the positions < h are fixed (they have to agree with the digits
of a at the same positions).

The graph T (Qp) is defined as follows: its vertices are the intervals of Qp while there is an
edge I → J if h(J) = h(I) + 1 and J ⊂ I. We draw the attention of the reader to the fact that
T (Qp) is a tree but it is not rooted: there does not exist a largest bounded interval in Qp. To
understand better the structure of T (Qp), let us define, for any integer v, the subgraph T (p−vZp)
of T (Qp) consisting of intervals which are contained in p−vZp. From the fact that Qp is the union
of all p−vZp, we derive that T (Qp) =

⋃
v>0 T (p−vZp). Moreover, for all v, T (p−vZp) is a rooted

tree (with root p−vZp) which is isomorphic to T (Zp) except that the height function is shifted by
−v. The tree T (p−v−1Zp) is thus obtained by juxtaposing p copies of T (p−vZp) and linking the
roots of them to a common parent p−vZp (which then becomes the new root).

1.2 Newton iteration over the p-adic numbers

Newton iteration is a well-known tool in Numerical Analysis for approximating a zero of a “nice”
function defined on a real interval. More precisely, given a differentiable function f : [a, b]→ R,
we define a recursive sequence (xi)i>0 by:

x0 ∈ [a, b] ; xi+1 = xi −
f(xi)

f ′(xi)
, i = 0, 1, 2, . . . (1.1)

Under some assumptions, one can prove that the sequence (xi) converges to a zero of f , namely
x∞. Moreover the convergence is very rapid since, assuming that f is twice differentiable, we
usually have an inequality of the shape |x∞ − xi| 6 ρ2

i
for some ρ ∈ (0, 1). In other words, the

number of correct digits roughly doubles at each iteration. The Newton recurrence (1.1) has
a nice geometrical interpretation as well: the value xi+1 is the x-coordinate of the intersection
point of the x-axis with the tangent to the curve y = f(x) at the point xi (see Figure 1.4).

1.2.1 Hensel’s Lemma

It is quite remarkable that the above discussion extends almost verbatim when R is replaced
by Qp. Actually, extending the notion of differentiability to p-adic functions is quite subtle and
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probably the most difficult part. This will be achieved in §3.1.3 (for functions of class C1) and
§3.2.3 (for functions of class C2). For now, we prefer avoiding these technicalities and restricting
ourselves to the simpler (but still interesting) case of polynomials. For this particular case, the
Newton iteration is known as Hensel’s Lemma and already appears in Hensel’s seminal paper [35]
in which p-adic numbers are introduced.

Let f(X) = a0 + a1X + · · · + anX
n be a polynomial in the variable X with coefficients

in Qp. Recall that the derivative of f can be defined in a purely algebraic way as f ′(X) =
a1 + 2a2X + · · ·+ nanX

n−1.

Theorem 1.6 (Hensel’s Lemma). Let f ∈ Zp[X] be a polynomial with coefficients in Zp. We suppose
that we are given some a ∈ Zp with the property that |f(a)| < |f ′(a)|2. Then the sequence (xi)i>0

defined by the recurrence:

x0 = a ; xi+1 = xi −
f(xi)

f ′(xi)

is well defined and converges to x∞ ∈ Zp with f(x∞) = 0. The rate of convergence is given by:

|x∞ − xi| 6 |f ′(a)| ·
(
|f(a)|
|f ′(a)|2

)2i

.

Moreover x∞ is the unique root of f in the open ball of centre a and radius |f ′(a)|.

The proof of the above theorem is based on the next lemma:

Lemma 1.7. Given f ∈ Zp[X] and x, h ∈ Zp, we have:

(i) |f(x+ h)− f(x)| 6 |h|.

(ii) |f(x+ h)− f(x)− hf ′(x)| 6 |h|2.

Proof. For any nonnegative integer i, define f [i] = 1
i! f

(i) where f (i) stands for the i-th derivative
of f . Taylor’s formula then reads:

f(x+ h)− f(x) = hf ′(x) + h2f [2](x) + · · ·+ hnf [n](x). (1.2)

Moreover, a direct computation shows that the coefficients of f [i] are obtained from that of f by
multiplying by binomial coefficients. Therefore f [i] has coefficients in Zp. Hence f [i](x) ∈ Zp, i.e.
|f [i](x)| 6 1, for all i. We deduce that each summand of the right hand side of (1.2) has norm at
most |h|. The first assertion follows while the second is proved similarly.

Proof of Theorem 1.6. Define ρ = |f(a)|
|f ′(a)|2 . We first prove by induction on i the following conjunc-

tion:
(Hi) : |f ′(xi)| = |f ′(a)| and |f(xi)| 6 |f ′(a)|2 · ρ2i .

Clearly (H0) holds. We assume now that (Hi) holds for some i > 0. We put h = − f(xi)
f ′(xi)

so
that xi+1 = xi + h. We write f ′(xi+1) =

(
f ′(xi+1) − f ′(xi)

)
+ f ′(xi). Observe that the first

summand f ′(xi+1) − f ′(xi) has norm at most |h| by the first assertion of Lemma 1.7, while
|f ′(xi)| > |h| · ρ−2

i
> |h| by the induction hypothesis. The norm of f ′(xi+1) is then the maximum

of the norms of the two summands, which is |f ′(xi)| = |f ′(a)|. Now, applying again Lemma 1.7,
we get |f(xi+1)| 6 |h|2 6 |f ′(a)|2 · ρ2i and the induction goes.

Coming back to the recurrence defining the xi’s, we get:

|xi+1 − xi| =
|f(xi)|
|f ′(xi)|

6 |f ′(a)| · ρ2i . (1.3)

By Corollary 1.3, this implies the convergence of the sequence (xi)i>0. Its limit x∞ is a solution to
the equation x∞ = x∞ + f(x∞)

f ′(x∞) . Thus f(x∞) has to vanish. The announced rate of convergence
follows from Eq. (1.3) thanks to ultrametricity.
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It remains to prove uniqueness. For this, consider y ∈ Zp with f(y) = 0 and |y − x0| < |f ′(a)|.
Since |x∞− x0| 6 |f ′(a)| · ρ < |f ′(a)|, we deduce |x∞− y| < |f ′(a)| as well. Applying Lemma 1.7
with x = x∞ and h = y − x∞, we find |hf ′(x∞)| 6 |h|2. Since |h| < |f ′(a)| = |f ′(x∞)|, this
implies |h| = 0, i.e. x = x∞. Uniqueness is proved.

Remark 1.8. All conclusions of Theorem 1.6 are still valid for any sequence (xi) satisfying the
weaker assumption: ∣∣∣∣xi+1 − xi +

f(xi)

f ′(xi)

∣∣∣∣ 6 |f ′(a)| · ρ2i+1

(the proof is entirely similar). Roughly speaking, this stronger version allows us to work with
approximations at each iteration. It will play a quite important role for algorithmic purpose
(notably in §2.1.3) since computers cannot handle exact p-adic numbers but always need to work
with truncations.

1.2.2 Computation of the inverse

A classical application of Newton iteration is the computation of the inverse: for computing the
inverse of a real number c, we introduce the function x 7→ 1

x − c and the associated Newton
scheme. This leads to the recurrence xi+1 = 2xi − cx2i with initial value x0 = a where a is
sufficiently close to 1

c .
In the p-adic setting, the same strategy applies (although it does not appear as a direct

consequence of Hensel’s Lemma since the mapping x 7→ 1
x − c is not polynomial). Anyway, let us

pick an invertible element c ∈ Zp, i.e. |c| = 1, and define the sequence (xi)i>0 by:

x0 = a ; xi+1 = 2xi − cx2i , i = 0, 1, 2, . . .

where a is any p-adic number whose last digit is the inverse modulo p of the last digit of c.
Computing such an element a reduces to computing a modular inverse and thus is efficiently
feasible.

Proposition 1.9. The sequence (xi)i>0 defined above converges to 1
c ∈ Zp. More precisely, we have

|cxi − 1| 6 p−2
i

for all i.

Proof. We prove the last statement of the proposition by induction on i. By construction of a, it
holds for i = 0. Now observe that cxi+1 − 1 = 2cxi − c2x2i − 1 = −(cxi − 1)2. Taking norms on
both sides, we get |cxi+1 − 1| = |cxi − 1|2 and the induction goes this way.

Quite interestingly, this method extends readily to the non-commutative case. Let us illustrate
this by showing how it can be used to compute inverses of matrices with coefficients in Zp.
Assume then that we are starting with a matrix C ∈ Mn(Zp) whose reduction modulo p is
invertible, i.e. there exists a matrix A such that AC ≡ In (mod p) where In is the identity matrix
of size n. Note that the computation of A reduces to the inversion of an n × n matrix over
the finite field Fp and so can be done efficiently. We now define the sequence (Xi)i>0 by the
recurrence:

X0 = A ; Xi+1 = 2Xi −XiCXi

(be careful with the order in the last term). Mimicking the proof of Proposition 1.9, we write:

CXi+1 − In = 2CXi − CXiCXi − In = −(CXi − In)2

and obtain this way that each entry of CXi− 1 has norm at most p2
i
. Therefore Xi converges to a

matrix X∞ satisfying CX∞ = In, i.e. X∞ = C−1 (which in particular implies that C is invertible).
A similar argument works for p-adic skew polynomials and p-adic differential operators as well.
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1.2.3 Square roots in Qp

Another important application of Newton iteration is the computation of square roots. Again, the
classical scheme over R applies without (substantial) modification over Qp.

Let c be a p-adic number. If the p-adic valuation of c is odd, then c is clearly not a square in
Qp and it does not make sense to compute its square root. On the contrary, if the p-adic valuation
of c is even, then we can write c = p2vc′ where v is an integer and c′ is a unit in Zp. Computing a
square root then reduces to computing a square root of c′; in other words, we may assume that c
is invertible in Zp, i.e. |c| = 1.

We now introduce the polynomial function f(x) = x2 − c. In order to apply Hensel’s Lemma
(Theorem 1.6), we need a first rough approximation a of

√
c. Precisely, we need to find some

a ∈ Zp with the property that |f(a)| < |f ′(a)|2 = |2a|2. From |c| = 1, the above inequality implies
|a| = 1 as well and therefore can be rewritten as a2 ≡ c (mod q) where q = 8 if p = 2 and q = p
otherwise. We then first need to compute a square root of c modulo q. If p = 2, this can be
achieved simply by looking at the table of squares modulo 8:

a 0 1 2 3 4 5 6 7

a2 0 1 4 1 0 1 4 1

If c is congruent to 0 (resp. 1, resp 4) modulo 8, we can take a = 0 (resp. a = 1, resp. a = 2).
Otherwise, there is no solution and c has no square root in Q2. When p > 2, we have to compute
a square root in the finite field Fp for which efficient algorithms are known [22, §1.5]. If c mod p
is not a square in Fp, then c does not admit a square root in Qp either.

Once we have computed the initial value a, we consider the recursive sequence (xi)i>0 defined
by x0 = a and

xi+1 = xi −
f(xi)

f ′(xi)
=

1

2

(
xi +

c

xi

)
, i = 0, 1, 2, . . .

By Hensel’s Lemma, it converges to a limit x∞ which is a square root of c. Moreover the rate of
convergence is given by:

|x∞ − xi| 6 p−2
i

if p > 2

|x∞ − xi| 6 2−(2
i+1) if p = 2

meaning that the number of correct digits of xi is at least 2i (resp. 2i + 1) when p > 2 (resp.
p = 2).

1.3 Similarities with formal and Laurent series

According to the very first definition of Zp we have given (see §1.1.1), p-adic integers have formal
similitudes with formal series over Fp: they are both described as infinite series with coefficients
between 0 and p−1, the main difference being that additions and multiplications involve carries
in the p-adic case while they do not for formal series. From a more abstract point of view,
the parallel between Zp and Fp[[t]] is also apparent. For example Fp[[t]] is also endowed with a
valuation; this valuation defines a distance on Fp[[t]] for which Fp[[t]] is complete and Hensel’s
Lemma (together with Newton iteration) extends verbatim to formal series. In the same fashion,
the analogue of Qp is the field of Laurent series Fp((t)). Noticing further that Fp[t] is dense in Fp[[t]]
and similarly that Fp(t) is dense in Fp((t)) 3, we can even supplement the correspondence between
the characteristic 0 and the characteristic p, ending up with the “dictionary” of Figure 1.5.

Algebraists have actually managed to capture the essence of there resemblances in the notion
of discrete valuation rings/fields and completion of those [73]. Recently, Scholze defined the notion
of perfectoid which allows us (under several additional assumptions) to build an actual bridge
between the characteristic 0 and the characteristic p. It is not the purpose of this lecture to go

3The natural embedding Fp(t)→ Fp((t)) takes a rational function to its Taylor expansion at 0.
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char. 0 char. p

Z ←→ Fp[t]
Q ←→ Fp(t)
Zp ←→ Fp[[t]]
Qp ←→ Fp((t))

Figure 1.5: Similarities between characteristic 0 and characteristic p

further in this direction; we nevertheless refer interested people to [70, 71, 9] for the exposition
of the theory.

1.3.1 The point of view of algebraic geometry

Algebraic Geometry has an original and interesting point of view on the various rings and fields
introduced before, showing in particular how p-adic numbers can arise in many natural problems
in arithmetics. The underlying ubiquitous idea in algebraic geometry is to associate to any ring A
a geometrical space SpecA — its so-called spectrum — on which the functions are the elements
of A. We will not detail here the general construction of SpecA but just try to explain informally
what it looks like when A is one of the rings appearing in Figure 1.5.

Let us start with k[t] where k is a field (of any characteristic). For the simplicity of the
exposition, let us assume further that k is algebraically closed. One thinks of elements of k[t]
as (polynomial) functions over k, meaning that this spectrum should be thought of as k itself.
Spec k[t] is called the affine line over k and is usually drawn as a straight line. The spectrum of
k(t) can be understood in similar terms: a rational fraction f ∈ k(t) defines a function on k as
well, except that it can be undefined at some points. Therefore Spec k(t) might be thought as the
affine line over k with a “moving” finite set of points removed. It is called the generic point of the
affine line.

What about k[[t]]? If k has characteristic 0 (which we assume for the simplicity of the
discussion), the datum of f ∈ k[[t]] is equivalent to the datum of the values of the f (n)(0)’s (for n
varying in N); we sometimes say that f defines a function on a formal neighborhood of 0. This
formal neighborhood is the spectrum of k[[t]]; it should then be thought as a kind of thickening
of the point 0 ∈ Spec k[t] which does not include any other point (since a formal series f ∈ k[[t]]
cannot be evaluated in general at any other point than 0). Finally Spec k((t)) is the punctured
formal neighborhood of 0; it is obtained from Spec k[[t]] by removing the point 0 but not its
neighborhood!

The embedding k[t]→ k[[t]] (resp. k(t)→ k((t))) given by Taylor expansion at 0 corresponds
to the restriction of a function f defined on the affine line (resp. the generic point of the affine
line) to the formal neighborhood (resp. the punctured formal neighborhood) of 0.

Of course, one can define similarly formal neighborhoods and punctured formal neigh-
borhoods around other points: for a ∈ k, the corresponding rings are respectively k[[ha]] and
k((ha)) where ha is a formal variable which plays the role t−a. The algebraic incarnation of the
restrictions to Spec k[[ha]] and k((ha)) are the Taylor expansions at a.

The above discussion is illustrated by the drawing at the top of Figure 1.6; it represents more
precisely the rational fraction f(t) = t2

1−t viewed as a function defined on Spec k(t) (with 1 as
point of indeterminacy) together its Taylor expansion around 0 (in blue) and 2 (in purple) which
are defined on formal neighborhoods.

We now move to the arithmetical rings (Z, Q, Zp and Qp) for which the picture is surprisingly
very similar. In order to explain what is the spectrum of Z, we first need to reinterpret Spec k[t]
in a more algebraic way. Given f ∈ k[t], its evaluation at a, namely f(a), can alternatively be
defined as the remainder in the Euclidean division of a by t−a. The affine line over k then
appears more intrinsically as the set of monic polynomials of degree 1 over k or, even better,
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t2

1−t ∈ k(t)

t2 + t3 + t4 + · · · ∈ k[[t]]

−4− (t−2)2 + (t−2)3 − (t−2)4 + · · · ∈ k[[t−2]]

Spec k[t]−1 0 1 2 3

Spec k[[t]] Spec k[[t−2]]

909
5 ∈ Q

. . . 102001100 ∈ Z3

. . . 412541634 ∈ Z7

Spec Z2 3 5 7 11

Spec Z3 Spec Z7

Figure 1.6: The point of view of algebraic geometry

as the set of irreducible monic polynomials (recall that we had assumed that k is algebraically
closed).

Translating this to the arithmetical world, we are inclined to think at the spectrum of Z as
the set of prime numbers. Moreover, the evaluation of an integer a ∈ Z at the prime p should be
nothing but the remainder in the Euclidean division of a by p. The integer a defines this way a
function over the spectrum of Z.

A rational number a
b can be reduced modulo p for all prime p not dividing b. It then defines a

function on the spectrum of Z except that there are points of indeterminacy. Spec Q then appears
as the generic point of Spec Z exactly as Spec k(t) appeared as the generic point of Spec k[t].

Now sending an integer or a rational number to Qp is the exact algebraic analogue of writing
the Taylor expansion of a polynomial or a rational fraction. That is the reason why Spec Zp
should be thought of as a formal neighborhood of the point p ∈ Spec Z. Similarly Spec Qp is the
punctured formal neighborhood around p.

The second drawing of Figure 1.6 (which really looks like the first one) displays the rational
number 909

5 viewed as a function over Spec Z (with 5 as point of indeterminacy) together with its
local p-adic/Taylor expansion at p = 3 and p = 7.

1.3.2 Local-global principle

When studying equations where the unknown is a function, it is often interesting to look at local
properties of a potential solution. Typically, if we have to solve a differential equation:

ad(t)y
(d)(t) + ad−1(t)y

(d−1)(t) + · · ·+ a1(t)y
′(t) + a0y(t) = b(t)

a standard strategy consists in looking for analytic solutions of the shape y(t) =
∑

n cn(t−a)n

for some a lying in the base field. The differential equation then rewrites as a recurrence on the
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coefficients cn which sometimes can be solved. This reasoning yields local solutions which have
to be glued afterwards.

Keeping in mind the analogy between functions and integers/rationals, we would like to
use a similar strategy for studying Diophantine equations over Q. Consider then a Diophantine
equation of the shape:

P (x1, . . . , xn) = 0 (1.4)

where P is a polynomial with rational coefficients and the xi’s are the unknowns. If Eq. (1.4)
has a global solution, i.e. a solution in Qn, then it must have local solutions everywhere, i.e. a
solution in Qn

p for each prime number p. Indeed Q embeds into each Qp. We are interested in the
converse: assuming that Eq. (1.4) has local solutions everywhere, can we glue them in order to
build a global solution? Unfortunately, the answer is negative in general. There is nevertheless
one remarkable case for which this principle works well.

Theorem 1.10 (Hasse–Minkowski). Let P (x1, . . . , xn) be a multivariate polynomial. We assume
that P is quadratic, i.e. that the total degree of P is 2. Then, the equation (1.4) has a solution in
Qn if and only if it has a solution in Rn and in Qn

p for all prime numbers p.

We refer to [74] for the proof of this theorem (which is not really the purpose of this
course). Understanding the local-global principle beyond the case of quadratic polynomials has
motivated a lot of research for more than 50 years. In 1970, at the International Congress of
Mathematicians in Nice, Manin highlighted a new obstruction of cohomological nature to the
possibility of glueing local solutions [60]. This obstruction is called nowadays the Brauer–Manin
obstruction4. Exhibiting situations where it can explain, on its own, the non-existence of rational
solutions is still an active domain of research today, in which very recent breakthrough progresses
have been done [38, 37].

1.4 Why should we implement p-adic numbers?

We have seen that p-adic numbers are a wonderful mathematical object which might be quite
useful for arithmeticians. However it is still not clear that it is worth implementing them in
mathematical software. The aim of this subsection is to convince the reader that it is definitely
worth it. Here are three strong arguments supporting this thesis:

(A) p-adic numbers provide sometimes better numerical stability;

(B) p-adic numbers provide a solution for “allowing for division by p in Fp”;
(C) p-adic numbers really appear in nature.

In the next paragraphs (§§1.4.1–1.4.3), we detail several examples illustrating the above ar-
guments and showing that p-adic numbers appear as an essential tool in many questions of
algorithmic nature.

1.4.1 The Hilbert matrix

The first aforementioned argument, namely the possibility using p-adic numbers to have better
numerical stability, is used in several contexts as factorization of polynomials over Q or compu-
tation of Galois groups of number fields. In order to avoid having to introduce too advanced
concepts here, we have chosen to focus on a simpler example which was pointed out in Vaccon’s
PhD thesis [78, §1.3.4]: the computation of the inverse of the Hilbert matrix. Although this
example is not directly related to the most concrete concerns of arithmeticians, it already very

4The naming comes from the fact this obstruction is written in the language of Brauer groups... the latter being
defined by Grothendieck in the context we are interested in.
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well highlights the potential of p-adic numbers when we are willing to apply numerical methods
to a problem which is initially stated over the rationals.

We recall that the Hilbert matrix of size n is the square matrix Hn whose (i, j) entry is 1
i+j−1

(1 6 i, j 6 n). For example:

H4 =


1 1/2 1/3 1/4

1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

 .

Hilbert matrices are famous for many reasons. One of them is that they are very ill-conditioned,
meaning that numerical computations involving Hilbert matrices may lead to important numerical
errors. A typical example is the computation of the inverse of Hn. Let us first mention that an
exact formula giving the entries of H−1n is known:

(H−1n )i,j = (−1)i+j · (i+ j − 1) ·
(
n+ i− 1

n− j

)
·
(
n+ j − 1

n− i

)
·
(
i+ j − 2

i− 1

)2

. (1.5)

(see for example [20]). We observe in particular than H−1n has integral coefficients.
We now move to the numerical approach: we consider Hn as a matrix with real coefficients

and compute its inverse using standard Gaussian elimination (with choice of pivot) and IEEE
floating-point arithmetics (with 53 bits of precision) [46]. Here is the result we get with
SAGEMATH [76] for n = 4:

H−14 ≈

 15.9999999999998 −119.999999999997 239.999999999992 −139.999999999995
−119.999999999997 1199.99999999996 −2699.99999999989 1679.99999999993

239.999999999992 −2699.99999999989 6479.99999999972 −4199.99999999981
−139.999999999995 1679.99999999993 −4199.99999999981 2799.99999999987

 .

We observe that the accuracy of the computed result is acceptable but not so high: the number of
correct binary digits is about 45 (on average on each entry of the matrix), meaning then that the
number of incorrect digits is about 8. Let us now increase the size of the matrix and observe how
the accuracy behaves:

size of
the matrix 5 6 7 8 9 10 11 12 13

number of
correct digits 40 34 28 25 19 14 9 4 0

We see that the losses of accuracy are enormous.

On the other hand, let us examine now the computation goes when H−1n is viewed as a
matrix over Q2. Making experimentations in SAGEMATH using again Gaussian elimination and
the straightforward analogue of floating-point arithmetic (see §2.3) with 53 bits of precision, we
observe the following behavior:

size of
the matrix 5 6 7 8 9 10 11 12 13 50 100

number of
correct digits 52 52 51 51 51 51 51 51 51 49 48

The computation of H−1n seems quite accurate over Q2 whereas it was on the contrary highly
inaccurate over R. As a consequence, if we want to use numerical methods to compute the exact
inverse of Hn over Q, it is much more interesting to go through the 2-adic numbers. Of course
this approach does not make any sense if we want a real approximation of the entries of H−1n ;
in particular, if we are only interesting in the size of the entries of H−1n (but not in their exact
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values) passing through the p-adics is absurd since two integers of different sizes might be very
close in the p-adic world.

The phenomena occurring here are actually easy to analyze. The accuracy of the inversion of
a real matrix is governed by the condition number which is defined by:

condR(Hn) = ‖Hn‖R · ‖H−1n ‖R

where ‖ · ‖R is some norm on Mn(R). According to Eq. (1.5), the entries of Hn are large: as an
example, the bottom right entry of Hn is equal to (2n− 1) ·

(
2n−2
n−1

)2
and thus grows exponentially

fast with respect to n. As a consequence the condition number condR(Hn) is quite large as well;
this is the source of the loss of accuracy observed for the computation of H−1n over R.

Over Qp, one can argue similarly and consider the p-adic condition number:

condQp(Hn) = ‖Hn‖Qp · ‖H−1n ‖Qp

where ‖ · ‖Qp is the infinite norm over Mn(Qp) (other norms do not make sense over Qp because
of the ultrametricity). Since H−1n has integral coefficients, all its entries have their p-adic norm
bounded by 1. Thus ‖H−1n ‖Qp 6 1. As for the Hilbert matrix Hn itself, its norm is equal to pv

where v is the highest power of p appearing in a denominator of an entry of Hn, i.e. v is the
unique integer such that pv 6 2n− 1 < pv+1. Therefore ‖Hn‖Qp 6 2n and condQp(Hn) = O(n).
The growth of the p-adic condition number in then rather slow, explaining why the computation
of H−1n is accurate over Qp.

1.4.2 Lifting the positive characteristic

In this paragraph, we give more details about the mysterious sentence: p-adic numbers provide a
solution for “allowing for divisions by p in Fp”. Let us assume that we are working on a problem
that makes sense over any field and always admits a unique solution (we will give examples later).
To fix ideas, let us agree that our problem consists in designing a fast algorithm for computing the
aforementioned unique solution. Assume further that such an algorithm is available when k has
characteristic 0 but does not extend to the positive characteristic (because it involves a division
by p at some point). In this situation, one can sometimes take advantage of p-adic numbers to
attack the problem over the finite field Fp, proceeding concretely in three steps as follows:

1. we lift our problem over Qp (meaning that we introduce a p-adic instance of our problem
whose reduction modulo p is the problem we have started with),

2. we solve the problem over Qp (which has characteristic 0),

3. we finally reduce the solution modulo p.

The existence and uniqueness of the solution together ensure that the solution of the p-adic
problem is defined over Zp and reduces modulo p to the correct answer. Concretely, here are two
significant examples where the above strategy was used with success: the fast computation of
composed products [13] and the fast computation of isogenies in positive characteristic [56, 52].

In order to give more substance to our thesis, we briefly detail the example of composed
products. Let k be a field. Given two monic polynomials P and Q with coefficients in k, we recall
that the composed product of P and Q is defined by:

P ⊗Q =
∑
α

∑
β

(X − αβ)

where α (resp. β) runs over the roots of P (resp. of Q) in an algebraic closure of k, with the
convention that a root is repeated a number of times equal to its multiplicity. Note that P ⊗Q is
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always defined over k since all its coefficients are written as symmetric expressions in the α’s and
the β’s. We address the question of the fast multiplication of composed products.

If k has characteristic 0, Dvornicich and Traverso [26] proposed a solution based on Newton
sums. Indeed, letting SP,n and SQ,n be the Newton sums of P and Q respectively:

SP,n =
∑
α

αn and SQ,n =
∑
β

βn.

It is obvious that the product SP,n ·SQ,n is the n-th Newton sum of P ⊗Q. Therefore, if we design
fast algorithms for going back and forth between the coefficients of a polynomial and its Newton
sums, the problem of fast computation of the composed product will be solved.

Schönhage [72] proposed a nice solution to the latter problem. It relies on a remarkable
differential equation relating a polynomial and the generating function of the sequence of its
Newton sums. Precisely, let A be a monic polynomial of degree d over k. We define the formal
series:

SA(t) =

∞∑
n=0

SA,n+1t
n.

A straightforward computation then leads to the following remarkable relation:

(E) : A′rec(t) = −SA(t) ·Arec(t)

where Arec is the reciprocal polynomial of A defined by Arec(X) = Xd ·A( 1
X ). If the polynomial

A is known, then one can compute SA(t) by performing a simple division in k[[t]]. Using fast
multiplication and Newton iteration for computing the inverse (see §1.2.2), this method leads to
an algorithm that computes S1, S2, . . . , SN for a cost of Õ(N) operations in k.

Going in the other direction reduces to solving the differential equation (E) where the
unknown is now the polynomial Arec. When k has characteristic 0, Newton iteration can be used
in this context (see for instance [12]). This leads to the following recurrence:

B1(t) = 1 ; Bi+1(t) = Bi(t)−Bi(t)
∫ (

B′i(t)

Bi(t)
+ SA(t)

)
dt

where the integral sign stands for the linear operator acting on k[[t]] by tn 7→ tn+1

n+1 . One proves that
Bi(t) ≡ Arec(t) (mod t2

i
) for all i. Since Arec(t) is a polynomial of degree d, it is then enough

to compute it modulo td+1. Hence after log2(d+1) iterations of the Newton scheme, we have
computed all the relevant coefficients. Moreover all the computations can be carried by omitting
all terms of degree > d. This leads to an algorithm that computes Arec (and hence A) for a cost
of Õ(d) operations in k.

In positive characteristic, this strategy no longer works because the integration involves
divisions by integers. When k is the finite field with p elements5, one can tackle this issue by
lifting the problem over Zp, following the general strategy discussed here. First, we choose two
polynomials P̂ and Q̂ with coefficients in Zp with the property that P̂ (resp. Q̂) reduces to P
(resp. Q) modulo p. Second, applying the characteristic 0 method to P̂ and Q̂, we compute P̂ ⊗ Q̂.
Third, we reduce the obtained polynomial modulo p, thus recovering P ⊗Q. This strategy was
concretized by the work of Bostan, Gonzalez-Vega, Perdry and Schost [13]. The main difficulty in
their work is to keep control on the p-adic precision we need in order to carry out the computation
and be sure to get the correct result at the end; this analysis is quite subtle and was done by hand
in [13]. Very general and powerful tools are now available for dealing with such questions; they
will be presented in §3.

5The same strategy actually extends to all finite fields.
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1.4.3 p-adic numbers in nature

We have already seen in the introduction of this course that p-adic numbers are involved
in many recent developments in Number Theory and Arithmetic Geometry (see also §1.3.2).
Throughout the 20th century, many p-adic objects have been defined and studied as well: p-adic
modular/automorphic forms, p-adic differential equations, p-adic cohomologies, p-adic Galois
representations, etc. It turns out that mathematicians, more and more often, feel the need to
make “numerical” experimentations on these objects for which having a nice implementation of
p-adic numbers is of course a prerequisite.

Moreover p-adic theories sometimes have direct consequences in other areas of mathematics.
A good example in this direction is the famous problem of counting points on algebraic curves
defined over finite fields (i.e. roughly speaking counting the number of solutions in finite fields of
equations of the shape P (X,Y ) = 0 where P is bivariate polynomial). This question has received
much attention during the last decade because of its applications to cryptography (it serves as
a primitive in the selection of secure elliptic curves). Since the brilliant intuition of Weil [79]
followed by the revolution of Algebraic Geometry conducted by Grothendieck in the 20th century
[30], the approach to counting problems is now often cohomological. Roughly speaking, if C is
an algebraic variety (with some additional assumptions) defined over a finite field Fq, then the
number of points of C is related to the traces of the Frobenius map acting on the cohomology of
C. Counting points on C then “reduces” to computing the Frobenius map on the cohomology.
Now it turns out that traditional algebraic cohomology theory yields vector spaces over Q` (for
an auxiliary prime number ` which does not need to be equal to the characteristic of the finite
field we are working with). This is the way `-adic numbers enter naturally into the scene.

2 Several implementations of p-adic numbers

Now we are all convinced that it is worth implementing p-adic numbers, we need to discuss
the details of the implementation. The main problem arising when we are trying to put p-adic
numbers on computers is the precision. Indeed, remember that a p-adic number is defined as
an infinite sequence of digits, so that it a priori cannot be stored entirely in the memory of a
computer. From this point of view, p-adic numbers really behave like real numbers; the reader
should therefore not be surprised if he/she often detects similarities between the solutions we
are going to propose for the implementation of p-adic numbers and the usual implementation of
reals.

In this section, we design and discuss three totally different paradigms: zealous arithmetic
(§2.1), lazy arithmetic together with the relaxed improvement (§2.2) and p-adic floating-point
arithmetic (§2.3). Each of these ways of thinking has of course its own advantages and disadvan-
tages; we will try to compare them fairly in §2.4.

2.1 Zealous arithmetic

Zealous arithmetic is by far the most common implementation of p-adic numbers in usual
mathematical software: MAGMA [11], SAGEMATH [76] and PARI [4] use it for instance. It appears
as the exact analogue of the interval arithmetic of the real setting: we replace p-adic numbers
by intervals. The benefit is of course that intervals can be represented without errors by finite
objects and then can be stored and manipulated by computers.
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2.1.1 Intervals and the big-O notation

Recall that we have defined in §1.1.5 (see Definitions 1.4 and 1.5) the notion of interval: a
bounded interval of Qp is by definition a closed ball lying inside Qp, i.e. a subset of the form:

IN,a =
{
x ∈ Qp s.t. |x− a| 6 p−N

}
.

The condition |x − a| 6 p−N can be rephrased in a more algebraic way since it is equivalent
to the condition x ≡ a (mod pNZp), i.e. x ∈ a + pNZp. In short IN,a = a + pNZp. In symbolic
computation, we generally prefer using the big-O notation and write:

IN,a = a+O(pN ).

The following result is easy but fundamental for our propose.

Proposition 2.1. Each bounded interval I of Qp may be written as:

I = pvs+O(pN )

where (N, v, s) is either of the form (N,N, 0) or a triple of relative integers with v < N , s ∈ [0, pN−v)
and gcd(s, p) = 1. Moreover this writing is unique.

In particular, bounded intervals of Qp are representable by exact values on computers.

Proof. It is a direct consequence of the fact that IN,a depends only on the class of a modulo
pN .

The interval a + O(pN ) has a very suggestive interpretation if we are thinking at p-adic
numbers in terms of infinite sequences of digits. Indeed, write

a = avp
v + av+1p

v+1 + · · ·+ aN−1p
N−1 + · · ·

with 0 6 ai < p and agree to define ai = 0 for i < v. A p-adic number x then lies in a+O(pN ) if
its i-th digit is ai for all i < N . Therefore one may think of the notation a+O(pN ) as a p-adic
number of the shape:

avp
v + av+1p

v+1 + · · ·+ aN−1p
N−1 + ? pN + ? pN+1 + · · ·

where the digits at all positions > N are unspecified. This description enlightens Proposition 2.1
which should become absolutely obvious now.

We conclude this paragraph by introducing some additional vocabulary.

Definition 2.2. Let I = a+O(pN ) be an interval. We define:

• the absolute precision of I: abs(I) = N ;

• the valuation of I: val(I) = val(a) if 0 6∈ I,
val(I) = N otherwise;

• the relative precision of I: rel(I) = abs(I)− val(I).

We remark that the valuation of I is the integer v of Proposition 2.1. It is also always the
smallest valuation of an element of I. Moreover, coming back to the interpretation of p-adic
numbers as infinite sequences of digits, we observe that the relative precision of a + O(pN ) is
the number of known digits (with rightmost zeroes omitted) of the family of p-adic numbers it
represents.
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2.1.2 The arithmetics of intervals

Since intervals are defined as subsets of Qp, basic arithmetic operations on them are defined in a
straightforward way. For example, the sum of the intervals I and J is the subset of Qp consisting
of all the elements of the form a+ b with a ∈ I and b ∈ J . As with real intervals, it is easy to write
down explicit formulas giving the results of the basic operations performed on p-adic intervals.

Proposition 2.3. Let I = a + O(pN ) and I ′ = a′ + O(pN
′
) be two bounded intervals of Qp. Set

v = val(I) and v′ = val(I ′). We have:

I + I ′ = a+ a′ +O
(
pmin(N,N ′)) (2.1)

I − I ′ = a− a′ +O
(
pmin(N,N ′)) (2.2)

I × I ′ = aa′ +O
(
pmin(v+N ′, N+v′)

)
(2.3)

I ÷ I ′ = a

a′
+O

(
pmin(v+N ′−2v′, N−v′)) (2.4)

where in the last equality, we have further assumed that 0 6∈ I ′.

Remark 2.4. Focusing on the precision, we observe that the two first formulae stated in Propo-
sition 2.3 immediately imply abs(I + I ′) = abs(I − I ′) = min(abs(I), abs(I ′)). Concerning
multiplication and division, the results look ugly at first glance. They are however much
more pretty if we translate them in terms of relative precision; indeed, they become simply
rel(I × I ′) = rel(I ÷ I ′) = min(rel(I), rel(I ′)) which is parallel to the case of addition and
subtraction and certainly easier to remember.

Proof of Proposition 2.3. The proofs of Eq. (2.1) and Eq. (2.2) are easy and left as an exercise to
the reader. We then move directly to multiplication. Let x ∈ I × I ′. By definition, there exist
h ∈ pNZp and h′ ∈ pN ′Zp such that:

x = (a+ h)(a′ + h′) = aa′ + ah′ + a′h+ hh′.

Moreover, coming back to the definition of the valuation of an interval, we find v 6 val(a). The
term ah′ is then divisible by pv+N

′
. Similarly a′h is divisible by pN+v′ . Finally hh′ is divisible by

pv+v
′
; it is then a fortiori also divisible by pv+N

′
because v 6 N . Thus ah′ + a′h+ hh′ is divisible

by pmin(v+N ′, N+v′) and we have proved one inclusion:

I × I ′ ⊂ aa′ +O
(
pmin(v+N ′, N+v′)

)
.

Conversely, up to swapping I and I ′, we may assume that min(v + N ′, N + v′) = v + N ′.
Up to changing a, we may further suppose that val(a) = v. Pick now y ∈ aa′ + O(pv+N

′
),

i.e. y = aa′ + h for some h divisible by pv+N
′
. Thanks to our assumption on a, we have

val(ha ) = val(h) − val(a) > v + N ′ − v = N ′, i.e. pN
′

divides h
a . Writing y = a × (a′ + h

a ) then
shows that y ∈ I × I ′. The converse inclusion follows and Eq. (2.3) is established.

We now assume that 0 6∈ I ′ and start the proof of Eq. (2.4). We define 1 ÷ I ′ as the set of
inverses of elements of I ′. We claim that:

1÷ I ′ = 1

a′
+O(pN

′−2v′). (2.5)

In other to prove the latter relation, we write I ′ = a′ × (1 + O(pN−v
′
)). We then notice

that the function x 7→ x−1 induces a involution from 1 + O(pN−v
′
) to itself; in particular

1 ÷ (1 + O(pN−v
′
)) = 1 + O(pN−v

′
). Dividing both sides by a′, we get (2.5). We finally derive

that I ÷ I ′ = I ×
(
1
a′ +O(pN

′−2v′)
)
. Eq. (2.4) then follows from Eq. (2.3).

Using Proposition 2.3, it is more or less straightforward to implement addition, subtraction,
multiplication and division on intervals when they are represented as triples (N, v, s) as in
Proposition 2.1 (be careful however at the conditions on v and s). This yields the basis of the
zealous arithmetic.
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2.1.3 Newton iteration

A tricky point when dealing with zealous arithmetic concerns Newton iteration. To illustrate it,
let us examine the example of the computation of a square root of c over Q2 for

c = 1 + 23 + 24 + 25 + 210 + 213 + 216 + 217 + 218 + 219 +O(220).

We observe that c ≡ 1 (mod 8). By Hensel’s Lemma, c has then a unique square root in Q2 which
is congruent to 1 modulo 4. Let us denote it by

√
c. Following §1.2.3, we compute

√
c using

Newton iteration: if (xi)i>0 is the recursive sequence defined by

x0 = 1 ; xi+1 =
1

2
·
(
xi +

c

xi

)
, i = 0, 1, 2, . . .

we know that xi and
√
c share the same (2i + 1) final digits. Here is the result we get if we

compute the first xi’s using zealous arithmetic:

x1 = . . . 1111001001000011101
x2 = . . . 001110100011110101
x3 = . . . 10111010001010101
x4 = . . .0111010001010101
x5 = . . .111010001010101
x6 = . . .11010001010101

Here the 2i+1 rightmost digits of xi (which are the correct digits of
√
c) are colored in purple

and the dots represent the unknown digits, that is the digits which are absorbed by the O(−).
We observe that the precision decreases by 1 digit at each iteration; this is of course due to the
division by 2 in the recurrence defining the xi’s. The maximal number of correct digits is obtained
for x4 with 16 correct digits. After this step, the result stabilizes but the precision continues to
decrease. Combining naively zealous arithmetic and Newton iteration, we have then managed to
compute

√
c at precision O(216).

It turns out that the losses of precision we have just highlighted has no intrinsic meaning but
is just a consequence of zealous arithmetic. We will now explain that it is possible to slightly
modify Newton iteration in order to completely eliminate this unpleasant phenomenon. The
starting point of your argument is Remark 1.8 which tells us that Newton iteration still converges
at the same rate to

√
c as soon as the sequence (xi) satisfies the weaker condition:∣∣∣∣xi+1 −

1

2
·
(
xi +

c

xi

)∣∣∣∣ 6 22
i+1+1.

In other words, we have a complete freedom on the choice of the “non-purple” digits of xi+1. In
particular, if some digit of xi+1 was not computed because the precision on xi was too poor, we
can just assign freely our favorite value (e.g. 0) to this digit without having to fear unpleasant
consequences. Even better, we can assign 0 to each “non-purple” digit of xi as well; this will not
affect the final result and leads to computation with smaller integers. Proceeding this way, we
obtain the following sequence:

x1 : . . . 00000000000000000101
x2 : . . . 00000000000000010101
x3 : . . . 00000000000001010101
x4 : . . . 00010111010001010101
x5 : . . .1010111010001010101

and we obtain the final result with 19 correct digits instead of 16. Be very careful: we cannot
assign arbitrarily the 20-th digit of x5 because it is a “purple” digit and not a “non-purple” one.
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More precisely if we do it, we have to write it in black (of course, we cannot decide randomly
what are the correct digits of

√
c) and a new iteration of the Newton scheme again loses this

20-th digit because of the division by 2. In that case, one may wonder why we did not try to
assign a 21-st digit to x4 in order to get one more correct digit in x5. This sounds like a good idea
but does not work because the input c — on which we do not have any freedom — appears in
the recurrence formula defining the xi’s and is given at precision O(220). For this reason, each xi
cannot be computed with a better precision than O(219).

In fact, we can easily convince ourselves that O(219) is the optimal precision for
√
c. Indeed c

can be lifted at precision O(221) either to:

c1 = 1 + 23 + 24 + 25 + 210 + 213 + 216 + 217 + 218 + 219 +O(221)

or c2 = 1 + 23 + 24 + 25 + 210 + 213 + 216 + 217 + 218 + 219 + 220 +O(221).

The square roots of these liftings are:

√
c1 = 1 + 22 + 24 + 26 + 210 + 212 + 213 + 214 + 216 + 218 +O(220)
√
c2 = 1 + 22 + 24 + 26 + 210 + 212 + 213 + 214 + 216 + 218 + 219 +O(220)

and we now see clearly that the 19-th digit of
√
c is affected by the 20-th digit of c.

2.2 Lazy and relaxed arithmetic

The very basic idea behind lazy arithmetic is the following: in every day life, we are not working
with all p-adic numbers but only with computable p-adic numbers, i.e. p-adic numbers for which
there exists a program that outputs the sequence of its digits. A very natural idea is then to use
these programs to represent p-adic numbers. By operating on programs, one should then be able
to perform additions, multiplications, etc. of p-adic numbers.

In this subsection, we examine further this idea. In §2.2.1, we adopt a very naive point of
view, insisting on ideas and not taking care of doability/performances. We hope that this will
help the reader to understand more quickly the mechanisms behind the notion of lazy p-adic
numbers. We will then move to complexity questions and will focus on the problem of designing
a framework allowing our algorithms to take advantage of fast multiplication algorithms for
integers (as Karatsuba’s algorithm, Schönhage–Strassen’s algorithm [32, §8] or Fürer’s algorithm
and its improvements [29, 39]). This will lead us to report on the theory of relaxed algorithms
introduced recently by Van der Hoeven and his followers [41, 42, 43, 7, 8, 54].

Lazy p-adic numbers have been implemented in the software MATHEMAGIX [44].

2.2.1 Lazy p-adic numbers

Definition 2.5. A lazy p-adic number is a program x that takes as input an integer N and outputs
a rational number x(N) with the property that:∣∣x(N + 1)− x(N)

∣∣
p
6 p−N

for all N .

The above condition implies that the sequence x(N) is a Cauchy sequence in Qp and therefore
converges. We call its limit the value of x and denote it by value(x). Thanks to ultrametricity, we
obtain |value(x)− x(N)| 6 p−N for all N . In other words, x(N) is nothing but an approximation
of value(x) at precision O(pN ).

The p-adic numbers that arise as values of lazy p-adic numbers are called computable. We
observe that there are only countably many lazy p-adic numbers; the values they take in Qp then
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form a countable set as well. Since Qp is uncountable (it is equipotent to the set of functions
N→ {0, 1, . . . , p−1}), it then exists many uncomputable p-adic numbers.

Our aim is to use lazy p-adic numbers to implement actual (computable) p-adic numbers. In
order to do so, we need (at least) to answer the following two questions:

• Given (the source code of) two lazy p-adic numbers x and y, can we decide algorithmically
whether value(x) = value(y) or not?

• Can we lift standard operations on p-adic numbers at the level of lazy p-adic numbers?

Unfortunately, the first question admits a negative answer; it is yet another consequence of
Turing’s halting problem. For our purpose, this means that it is impossible to implement equality
at the level of lazy p-adic numbers. Inequalities however can always be detected. In order to
explain this, we need a lemma.

Lemma 2.6. Let x be a lazy p-adic number and set x = value(x). For all integers N , we have:

valp(x) = valp(x(N)) if valp(x(N)) < N

valp(x) > N otherwise.

Proof. Recall that the norm is related to the valuation through the formula |a| = p−valp(a) for
all a ∈ Qp. Moreover by definition, we know that |x − x(N)| 6 p−N . If valp(x(N)) > N , we
derive |x(N)| 6 p−N and thus |x| 6 p−N by the ultrametric inequality. On the contrary if
valp(x(N)) < N , write x = (x−x(N)) + x(N) and observe that the two summands have different
norms. Hence |x| = min

(
|x− x(N)|, |x(N)|) = x(N) and we are done.

Lemma 2.6 implies that value(x) = value(y) if and only if valp(x(N)− y(N)) > N for all integers
N . Thus, assuming that we have access to a routine valp computing the p-adic valuation of a
rational number, we can write down the function is equal as follows (Python style6):

def is_equal(x,y):

f o r N in N:
v = valp(x(N) - y(N))

i f v < N: return False

return True

We observe that this function stops if and only if it answers False, i.e. inequalities are detectable
but equalities are not.

We now move to the second question and try to define standard operations at the level of
lazy p-adic numbers. Let us start with addition. Given two computable p-adic numbers x and
y represented by the programs x and y respectively, it is actually easy to build a third program
x plus y representing the sum x+ y. Here it is:

def x_plus_y(N):

return x(N) + y(N)

The case of multiplication is a bit more subtle because of precision. Indeed going back to
Eq. (2.3), we see that, in order to compute the product xy at precision O(pN ), we need to know
x and y at precision O(pN−val(y)) and O(pN−val(x)) respectively. We thus need to compute first
the valuation of x and y. Following Proposition 2.6, we write down the following procedure:

def val(x):

f o r N in N:
v = valp(x(N))
i f v < N: return v

return Infinity

6We emphasize that all the procedures we are going to write are written in pseudo-code in Python style but certainly
not in pure Python: they definitely do not “compile” in Python.
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However, we observe one more time that the function val can never stop; precisely it stops if and
only if x does not vanish. For application to multiplication, it is nevertheless not an issue. Recall
that we needed to know val(x) because we wanted to compute y at precision O(pN−val(x)). But
obviously computing y at higher precision will do the job as well. Hence it is in fact enough to
compute an integer vx with the guarantee that val(x) > vx. By Lemma 2.6, an acceptable value
of vx is min(0, valp(x(0))) (or more generally min(i, valp(x(i))) for any value of i). A lazy p-adic
number whose value if xy is then given by the following program:

def x_mul_y(N):

vx = min(0, valp(x(0))
vy = min(0, valp(y(0))
return x(N-vy) * y(N-vx)

The case of division is similar except that we cannot do the same trick for the denominator:
looking at Eq. (2.4), we conclude that we do not need a lower bound on the valuation of the
denominator but an upper bound. This is not that surprising since we easily imagine that the
division becomes more and more “difficult” when the denominator gets closer and closer to
0. Taking the argument to its limit, we notice that a program which is supposed to perform a
division should be able, as a byproduct, to detect whether the divisor is zero or not. But we have
already seen that the latter is impossible. We are then reduced to code the division as follows:

def x_div_y(N):

vx = min(0, valp(x(0))
vy = val(y) # This step might never stop
return x(N + vy) / y(N + 2*vy - vx)

keeping in mind that the routine never stops when the denominator vanishes.

2.2.2 Relaxed arithmetic

The algorithms we have sketched in §2.2.1 are very naive and inefficient. In particular, they
redo many times a lot of computations. For example, consider the procedure x plus y we have
designed previously and observe that if we had already computed the sum x + y at precision
O(pN ) and we now ask for the same sum x+ y at precision O(pN+1), the computation restarts
from scratch without taking advantage of the fact that only one digit of the result remains
unknown.

One option for fixing this issue consists basically in implementing a “sparse cache”: we decide
in advance to compute and cache the x(N)’s only for a few values of N ’s (typically the powers
of 2) and, on the input N , we output x(N ′) for a “good” N ′ > N . Concretely (a weak form
of) this idea is implemented by maintaining two global variables current precision[x] and
current approximation[x] (attached to each lazy p-adic number x) which are always related
by the equation:

current approximation[x] = x(current precision[x])

If we are asking for x(N) for some N which is not greater than current approximation[x], we
output current precision[x] without launching a new computation. If, instead, N is greater
than current approximation[x], we are obliged to redo the computation but we take the
opportunity to double the current precision (at least). Here is the corresponding code:

def x_with_sparse_cache(N):

i f current_precision[x] < N:

current_precision[x] = max(N, 2* current_precision[x])

current_approximation[x] = x(current_precision[x])

return current_approximation[x]
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This solution is rather satisfying but it has nevertheless several serious disadvantages: it often
outputs too large results7 (because they are too accurate) and often does unnecessary computa-
tions.

Another option was developed more recently first by van der Hoeven in the context of formal
power series [41, 42, 43] and then by Berthomieu, Lebreton, Lecerf and van der Hoeven for
p-adic numbers [7, 8, 54]. It is the so-called relaxed arithmetic that we are going to expose now.
For simplicity we shall only cover the case of p-adic integers, i.e. Zp. Extending the theory to Qp

is more or less straightforward but needs an additional study of the precision which makes the
exposition more technical without real benefit.

Data structure and addition

The framework in which relaxed arithmetic takes place is a bit different and more sophisticated
than the framework we have used until now. First of all, relaxed arithmetic does not view a
p-adic number as a sequence of more and more accurate approximations but as the sequence
of its digits. Moreover it needs a richer data structure in order to provide enough facilities for
designing its algorithms. For this reason, it is preferable to encode p-adic numbers by classes
which may handle its own internal variables and its own methods.

We first introduce the class RelaxedPAdicInteger which is an abstract class for all re-
laxed p-adic integers (i.e. relaxed p-adic integers must be all instances of a derived class of
RelaxedPAdicInteger). The class RelaxedPAdicInteger is defined as follows:

c l a s s RelaxedPAdicInteger:

# Variable
digits # list of (already computed) digits

# Virtual method
def next(self) # compute the next digit and append it to the list

We insist on the fact that the method next is an internal (private) method which is not supposed to
be called outside the class. Of course, although it does not appear above, we assume that the class
RelaxedPAdicInteger is endowed with several additional public methods making the interface
user-friendly. For instance if x is a relaxed p-adic integer inheriting from RelaxedPAdicInteger,
we shall often use the construction x[N ] to access to the N -th digit of x. In pure Python, this
functionality can be implemented by adding to the class a method getitem written as follows:

def __getitem__(self ,N):

n = len(self.digits) # Index of the first uncomputed digit
while n < N+1: # We compute the digits until the position N

self.next()

n += 1

return self.digits[N] # We return the N-th digit

In order to highlight the flexibility of the construction, let us explain as a warm-up how
addition is implemented in this framework. One actually just follows the schoolbook algorithm:
the n-th digit of a sum is obtained by adding the n-th digit of the summands plus possibly a carry.
We add an additional local variable to the class in order to store the current carry and end up
with the following implementation:

c l a s s x_plus_y(RelaxedPAdicInteger ):

# Additional variable
carry # variable for storing the current carry

def next(self): # compute the next digit and append it to the list
n = len(self.digits) # index of the first uncomputed digit
s = x[n] + y[n] + self.carry # perform the addition

7Of course it is always possible to reduce the result modulo pN but this extra operation has a non-negligible cost.
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self.digits[n] = s % p # compute and store the new digit
self.carry = s // p # update the carry

That’s all. Although this does not appear in the pseudo-code above, the relaxed p-adic integers x
and y (which are supposed to be instances of the class RelaxedPAdicInteger) should be passed
as attributes to the constructor of the class.

The subtraction is performed similarly (exercise left to the reader).

Multiplication

A priori, multiplication can be treated in a similar fashion. Given x and y two p-adic integers
with digits xi’s and yj ’s, the n-th digit of a product xy is obtained by adding the contribution of
all cross products xiyj for i+ j = n plus a possible carry. This approach leads to the following
straightforward implementation:

c l a s s x_mul_y(RelaxedPAdicInteger ):

# Additional variable
carry # variable for storing the current carry

def next(self): # compute the next digit and append it to the list
n = len(self.digits)

s = self.carry

f o r i in 0,1,...,n:

s += x[i] * y[n-i]

self.digits[n] = s % p

self.carry = s // p

Nevertheless this strategy has one important defect: it does not take advantage of the fast
multiplication algorithms for integers, that is, it computes the first N digits of xy in O(N2 log p)
bit operations while we would have expected only Õ(N log p).

The relaxed multiplication algorithm from [7] fixes this drawback. The rough idea behind it
is to gather digits in x and y as follows:

x = x0 + (x1 + x2p)p+ (x3 + x4p+ x5p
2 + x6p

3)p3 + · · ·
y = y0 + (y1 + y2p)p+ (y3 + y4p+ y5p

2 + y6p
3)p3 + · · ·

and to implement a kind of block multiplication. More precisely, we materialize the situation by
a grid drawn in the half plane (see Figure 2.1). The coordinate on the x-axis (resp. the y-axis)
corresponds to the integers i’s (resp. j’s) that serve as indices for the positions of the digits of the
p-adic integer x (resp. y). As for the cell (i, j), it represents the product xiyj . The computation of
the n-th digit of xy needs to know all the digits appearing on the anti-diagonal i + j = n; we
refer again to Figure 2.1 where this anti-diagonal is displayed for n = 10.

We now pave the grid using larger and larger squares as follows. We pave the first row8 and
the first column by squares of size 1. Once this has been done, we forget temporarily the cells
that have been already paved (i.e. the cells lying on the first row or the first column), we group
the two next lines and the two next columns together and we pave them with squares of size 2.
We continue this process and double the size of the squares at each iteration. The obtained result
is displayed on Figure 2.1. This construction exhibits the following remarkable property:

Lemma 2.7. If (i, j) is a cell located on a square of size 2` of the paving, then 2` < i and 2` < j.

Proof. The squares of size 2` are all located by construction on the region where both coordinates
i and j are greater than or equal to 1 + 2 + 22 + · · ·+ 2`−1 = 2` − 1. The Lemma follows from
this observation.

8It is of course the row corresponding to j = 1 which is drawn on the bottom in Figure 2.1.
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Figure 2.1: Relaxed multiplication scheme

As an example, look at the cell (7, 3) on Figure 2.1; it is the bottom left corner of a square of size
4. Let us denote by Si,j the square of the paving with bottom left corner located at position (i, j).
For such any (i, j), we define:

Ci,j(t) =
(
xi + txi+1 + · · ·+ t`xi+2`−1

)
×
(
yj + tyj+1 + · · ·+ t`yj+2`−1

)
∈ Z[t]

where 2` is the size of Si,j and t is a new formal variable. We are now ready to explain the
concrete idea behind the relaxed multiplication algorithm. In the next procedure, when we
encounter a pair (i, j = n−i) we distinguish between two cases:

• if (i, j) is the position of a cell located at the bottom left corner of square of the paving, we
add the contribution of Ci,j(p) (instead of adding the sole contribution of xiyj),

• otherwise, we do nothing (since the contribution of xiyj has already been taken into
account previously).

Here are several several important remarks. First, by Lemma 2.7, the computation of the Ci,j(p)’s
in the first step only requires the digits of x and y up to the position n. Second, notice that listing
all the pairs (i, j) fitting into the first case is easy. Indeed, notice that (i, j) is the bottom left
corner of a paving square of size 2` if and only if i and j are both congruent to 2` − 1 modulo 2`

and one of them is actually equal to 2` − 1. Hence, for a given nonnegative integer `, there exist
at most two such cells (i, j) for which i+ j = n and they are moreover given by explicit formulas.

At that point, one may wonder why we have introduced the polynomials Ci,j(t)’s instead of
working only with the values Ci,j(p)’s. The reason is technical: this modification is needed to get
a good control on the size of the carries9. We will elaborate on this later (see Remark 2.8 below).
By introducing the construction x[i, . . . , j] for giving access to the polynomial

xi + xi+1t+ xi+2t
2 + · · ·+ xjt

j−i ∈ Z[t]

the above ideas translate into the concrete algorithm of Figure 2.2.
We now briefly sketch its complexity analysis. The first observation is that the while loop of

the next method of Figure 2.2 is repeated until ` reaches the 2-adic valuation of n+ 2. Writing
9Another option, used in [7], would be to build an algorithm for performing operations on integers written in base

p. This can be achieved for instance using Kronecker substitution [32, Corollary 8.27].

28



c l a s s x_mul_y(RelaxedPAdicInteger ):

# Additional variable
carry # variable in Z[t] for storing the current carry

def next(self): # compute the next digit and append it to the list
n = len(self.digits)

m = n + 2; ` = 0; s = 0

while m > 1:

# The contribution of the first square of size 2`

s += x[2^` - 1, ..., 2^(`+1) - 2]

* y[(m -1)*2^` - 1, ..., m*2^` - 2]

# The contribution of the second square
i f m > 2: # Case where the two squares are indeed not the same

s += y[2^` - 1, ..., 2^(`+1) - 2]

* x[(m -1)*2^` - 1, ..., m*2^` - 2]

i f m is odd: break
m = m // 2

` += 1

s += self.carry

self.digits[n] = s(0) % p

self.carry = (s(0) // p) + (s // t)

Figure 2.2: An implementation of the relaxed multiplication

v = val2(n+ 2), the total complexity for the execution of the while loop therefore stays within:

v∑
`=0

Õ(2` log p) = Õ(2v log p)

if we use fast algorithms for polynomial multiplication [32, §8]. Moreover at the end of the
while loop, the degree of s remains bounded by 2v and its coefficients have all at most O(log(np))
binary digits. The second step, which is more technical, consists in bounding the size of the carry.
The key point is to notice that after the computation of the (n−1)-st digit, the carry takes the
form:

c+ (c0 + c1t+ c2t
2 + · · ·+ cnt

n)

where the ck ’s come from the contribution of the cells (i′, j′) with i′ + j′ > n that have been
already discovered (i.e. belonging to a paving square Si,j for which Ci,j(t) has already been
computed) and c comes from the carries appearing while computing the tn−1-term of the product
(x0 + x1t + x2t

2 + · · · + xnt
n) × (y0 + y1t + y2t

2 + · · · + ynt
n). Once this has been noticed, we

deduce that the ck ’s are all bounded from above by n · (p−1)2 while:

c 6
1

pn

∑
i′+j′6n

xi′yj′ 6 np · (p−1).

Hence the carry itself is a polynomial of degree at most n and each of its coefficients has at most
O(log(pn)) binary digits.

Remark 2.8. While the growth of the coefficients of the carry remains under control, its value at
p may — and does — grow exponentially fast with respect to n. That is the reason why we had
to switch to polynomials.

Noticing finally that the division by t on polynomials is free (it is just a shift of the coefficients),
we find that the last three lines of the next method displayed on Figure 2.2 have a cost of
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Õ(2v log(np)) bit operations. The total complexity of the computation of the n-th digit then stays
within Õ(2v log(np)) bit operations as well.

Summing up all these contributions up to N , we find that the relaxed multiplication algorithm
computes the first N digits of a product in Õ(N log p) bit operations. We refer to [7] for a more
precise complexity analysis (of a slightly different version of the algorithm we have presented
here).

Computation of fixed points

A quite interesting application of the relaxed approach is the possibility to define and compute
very easily fixed points of contraction mappings defined over Zp (or more generally Zdp for some
d). Before going into this, we need to define the notion of function over relaxed p-adic numbers.
Recall that a relaxed p-adic integer is an instance of RelaxedPAdicInteger. A function over
relaxed p-adic numbers can then be defined as a class deriving from RelaxedPAdicInteger

endowed with a constructor accepting x as parameter and constructing F (x). Actually we have
already seen such examples: the classes x plus y and x mul y we have designed before fit exactly
in this framework. Below is yet another easy example modeling the function s : x 7→ 1 + px.

c l a s s S(RelaxedPAdicInteger ):

def next(self):

n = len(self.digits)

i f n == 0: self.digits [0] = 1

e l s e : self.digits[n] = x[n-1]

Definition 2.9. Let F be a function defined over relaxed p-adic integers. We say that F is a
contraction if its next method computes the n-th digit by making only use of the first n−1 digits
of x.

Concretely F is a contraction if its next method never calls x[i] for some i > n when n denotes
(as usual) the position of the digit the next method is currently computing. For example, the
function S introduced above is a contraction.

Remark 2.10. If F is a contraction modeling a function f : Zp → Zp, the first n digits of f(x)
depends only on the first n−1 digits of x. This implies that f is a 1

p -contraction in the usual sense:

|f(x)− f(y)| 6 1
p · |x− y|.

Note that the converse is not necessarily true: it may happen that f is indeed a contraction but is
modeled by the function F which misses this property.

If F is a contraction modeling a function f : Zp → Zp, the Banach fixed point Theorem implies
that f has a unique fixed point in Zp. Moreover this sequence is the limit of any sequence (xn)n>0

solution to the recurrence xn+1 = f(xn). This property translates immediately in the world of
programs: it says that we can compute the fixed point of f just by replacing each occurrence of x
by the current instance of the class (self) in the next function of F . As an example, applying
this treatment to the function S, we get:

c l a s s SFixed(RelaxedPAdicInteger ):

def next(self):

n = len(self.digits)

i f n == 0: self.digits [0] = 1

e l s e : self.digits[n] = self[n-1]

which is10 a relaxed p-adic number representing the fixed point of s, namely 1
1−p .

10Or more precisely: “whose any instance is”
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Division

The above toy example has a real interest because it can be generalized to handle arbitrary
divisions a÷ b where b is invertible in Zp. We assume first that b is congruent to 1 modulo p, i.e
b = 1 + pb′ for some b′ ∈ Zp. The assumption means that the 0-th digit of b is 1; as for the digits
of b′, they are those of b shifted by one position. We introduce the affine function f : Zp → Zp
defined by:

f(x) = a+ (1− b)x = a− pb′x.
It is a contraction which can be modeled (using relaxed multiplication and relaxed subtraction)
by a contraction F defined over relaxed p-adic integers. Applying the recipe discussed above,
we then build a new relaxed p-adic integer that models the unique fixed point of x, which is
a

1+pb′ = a
b . We have therefore computed the division of a by b in the relaxed world.

For a general b, one can proceed as follows. Let b0 be the 0-th digit of b. We compute an
integer c such that b0c ≡ 1 (mod p) and view c as a p-adic number. Since b ≡ b0 (mod p), we
get bc ≡ 1 (mod p) as well. Moreover the fraction a

b rewrites a
b = ac

bc and we can now apply the
method above. Using this techniques, a general relaxed division reduces to one inversion modulo
p and two relaxed multiplication for the preparation plus one more relaxed multiplication and
one relaxed subtraction for the computation of the fixed point.

2.3 Floating-point arithmetic

The most common representation of real numbers on computers is by far floating-point arithmetic
which is normalized by the IEEE 754-2008 Standard [46, 62]. Let us recall very briefly that
the rough idea behind the floating-point arithmetic is to select a finite fixed subset R of R (the
so-called set of floating-point numbers) on which we define the operators ⊕ and ⊗ which are
supposed to mimic the usual addition and multiplication of reals.

In the p-adic world, this approach has an analogue which was first proposed (as far as we
know) in a unpublished note by Kedlaya and Roe in 2008 [50]. Unfortunately it seems that it
has never been implemented yet11. The aim of the subsection is to report on Kedlaya and Roe’s
proposal.

2.3.1 Definition of p-adic floating-point numbers

The construction of p-adic floating-point numbers depends on the initial choice of three positive
integers N , emin, emax that we fix now until the end of §2.3. We assume emin < emax and N > 1.
The integer N is called the precision of the system while emin and emax are respectively the
minimal and the maximal exponent of the system.

Definition 2.11. A p-adic floating-point number is either

• a p-adic number x ∈ Qp of the shape pes with the conditions:

emin 6 e 6 emax ; −pN−1
2 < s 6 pN−1

2 ; gcd(s, p) = 1 (2.6)

• the number 0 ∈ Qp,

• the special symbol∞,

• the special symbol NaN (not a number).

Note that the conditions (2.6) imply that a p-adic floating-point number x ∈ Qp of the shape pes
cannot be zero and moreover that e and s are uniquely determined by x. Indeed, since s is prime
with p, it cannot vanish and e has to be equal to the p-adic valuation of x. It is thus determined
by x and, consequently, so is s = p−e x.

11Although an implementation was very recently proposed by Roe for integration in SAGEMATH; see https:

//trac.sagemath.org/ticket/20348.
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Definition 2.12. Given a p-adic floating-point number x of the shape x = pes,

• the integer e is called the exponent of x,

• the integer s is called the significand (or sometimes the mentissa) of x.

Representation of p-adic floating-point numbers.

We represent p-adic floating-point numbers on machine by pairs of integers as follows:

• the p-adic number pes is represented by (e, s),

• the p-adic number 0 is represented by (emax, 0),

• the symbol∞ is represented by (emin−1, 1),

• the symbol NaN is represented by (emin−1, 0).

Remark 2.13. The above definitions omit several components of the IEEE standard. First, they
do not include subnormal numbers. These are meant to allow for gradual underflow to zero,
which is reasonable to provide when working in base 2 with relatively small e. However, for e as
large as the bit length of a modern machine word (i.e. no less than 32), this benefit is sufficiently
minor that it does not outweigh the added complexity needed to handle subnormal numbers
properly. Second, the above definitions do not include signed infinities, because p-adic numbers
do not have a meaningful notion of sign. For similar reasons, the comparison operators <,6, >,>
are not defined for p-adic numbers. Third, they do not provide for multiple types of NaN’s. For
instance, in the IEEE specification, a distinction is made between signaling NaN’s (those which
raise an exception upon any operation) and quiet NaN’s.

For some computations, it may be useful to allow some p-adic floating-point numbers to be
represented in more than one way. We thus define an operation called normalization on the set
of pairs of integers (e, s) as follows:

• if e < emin and s = 0, return (emin−1, 0) (which represents NaN);

• if e < emin and s 6= 0, return (emin−1, 1) (which represents∞);

• if e > emax, return (emax, 0) = 0 (which represents 0);

• if emin 6 e 6 emax and s = 0, return (emax, 0) = 0;

• if emin 6 e 6 emax and s 6= 0, let k ∈ {0, . . . ,m − 1} be the largest integer such that pk

divides s and return the normalization of (e+ k, s′) where s′ is the unique integer such that
−pN−1

2 < s′ 6 pN−1
2 and s′ ≡ p−km (mod pN ).

For many operations, it is safe to leave an unnormalized pair (e, s) as long as s 6= 0 and
emin 6 e 6 emax − valp(s) since pes is then guaranteed to equal the value of the normalization of
(e, s). However, one should normalize before testing for equality.

2.3.2 Operations on p-adic floats

Let QFP
p be the set of p-adic floating-point numbers. Define also Q′p = Qp t {∞,NaN}. Clearly

QFP
p ⊂ Q′p.

Lemma 2.14. Given x ∈ Qp with emin 6 val(x) 6 emax, there exists a unique element y ∈ Qp ∩QFP
p

such that |x− y| 6 |x| · p−N .

Proof. We write x = pv · x0 where v = val(x) and x0 is invertible in Zp. Set e = v and let s be the
unique integer of the range

(
− pN−1

2 , p
N−1
2

]
which is congruent to x0 modulo pN . Define y = pes;

it is a p-adic floating-point number by the assumptions of the Lemma. Moreover:

|x− y| = p−v · |x0 − s| 6 p−v−N = |x| · p−N .
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The existence is proved.
As for uniqueness, remark first that y = 0 cannot do the job. Assume now that y′ = pe

′
s′ is a

p-adic floating-point number written in normalized form which satisfies the required inequality.
First notice that e′ = v necessarily. Indeed, from e′ > v, we would deduce |x−y′| = |x| > |x| ·p−N .
Similarly from ei < v, we would get |x− y′| = p−e1 > |x|. Consequently |x− y′| = |x| · |x0 − s′|
and our assumption on y′ translates to the congruence x0 ≡ s′ (mod pN ). Therefore we derive
s ≡ s′ (mod pN ) and then s = s′ since both s and s′ have to lie in the interval

(
− pN−1

2 , p
N−1
2

]
.

Hence y = y′ and we are done.

Definition 2.15. The rounding function is the function o : Q′p → QFP
p defined as follows:

• if x ∈ {∞,NaN}, then o(x) = x;

• if x ∈ Qp and val(x) < emin, then o(x) =∞ (overflow);

• if x ∈ Qp and val(x) > emax, then o(x) = 0 (underflow);

• if x ∈ Qp and emin 6 val(x) 6 emax, then o(x) is the unique element of QFP
p such that

|x− o(x)| 6 |x| · p−N .

Remark 2.16. We emphasize that overflow (resp. underflow) occurs when e is small (resp. large)
which is the exact opposite of the real case. This is not a typo; the reason behind that is just that,
in the p-adic world, pN goes to 0 when N goes to +∞.

Remark 2.17. Note that the uniqueness in the last case means that there is no analogue of the
notion of a rounding mode in real arithmetic.

Given any k-ary function f : (Q′p)k → Q′p, we define its compliant approximation fFP :

(QFP
p )k → QFP

p by:
fFP(x1, . . . , xk) = o

(
f(x1, . . . , xk)

)
.

We are now in position to specify the four basic arithmetic operations (addition, subtraction,
multiplication, division) on QFP

p . In order to do so, we need first to extend them on Q′p. Let us
agree to set (here ÷ stands for the division operator):

∀x ∈ Q′p, x± NaN = NaN± x = NaN

∀x ∈ Q′p\{NaN}, x±∞ =∞± x =∞

∀x ∈ Q′p, x× NaN = NaN× x = NaN

∀x ∈ Q′p\{0,NaN}, x×∞ =∞× x =∞
0×∞ =∞× 0 = NaN

∀x ∈ Q′p, x÷ NaN = NaN÷ x = NaN

∀x ∈ Q′p\{0,NaN}, x÷ 0 =∞, 0÷ 0 = NaN

∀x ∈ Q′p\{∞,NaN}, x÷∞ = 0, ∞÷∞ = NaN

Addition, subtraction, multiplication and division on floating-point p-adic numbers are, by
definition, the operations +FP, −FP, ×FP and ÷FP respectively.

Let us examine concretely how the computation goes at the level of p-adic floating-point
numbers. We start with multiplication with is the easiest operator to handle. The formula we
derive immediately from the definition is:

(pe1s1) ×FP (pe2s2) = pe1+e2 · (s1s2 mod pN ) if e1 + e2 6 emax

= 0 otherwise

where a mod pN is the unique representation of a modulo pN lying in the interval
(
− pN−1

2 , p
N−1
2

]
.

We emphasize moreover that if (e1, s1) and (e2, s2) are both written in normalized form then
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so is (e1 + e2, s1s2 mod pN ) (under the assumption e1 + e2 6 emax). Indeed the product of two
numbers which are coprime to p is coprime to p as well. The case of the division is similar:

(pe1s1) ÷FP (pe2s2) = pe1−e2 · (s1s−12 mod pN ) if e1 − e2 > emin

=∞ otherwise.

The cases of addition and subtraction are more subtle because they can introduce cancellations
of the rightmost digits. When e1 6= e2, this cannot happen and the formula writes as follows:

(pe1s1) +FP (pe2s2) = pe1 · (s1 + pe2−e1s2 mod pN ) if e1 < e2

= pe2 · (pe1−e2s1 + s2 mod pN ) if e2 < e1.

On the contrary, when e1 = e2, the naive formula (pes1) +FP (pes2) = pe · (s1 + s2 mod pN ) might
fail because s1 + s2 can have a huge valuation. Instead we introduce v = valp(s1 + s2) and the
correct formula writes:

(pes1) +FP (pes2) = pe+v ·
(
s1+s2
pv mod pN

)
if v 6 emax − e

= 0 otherwise.

As an alternative, we may prefer using non-normalized representations of p-adic floating-point
numbers; it is indeed an option but it requires to be very careful with underflows.

2.4 Comparison between paradigms

We have just presented three quite different ways of thinking of p-adic numbers from the
computational point of view. Of course, each of them has its own advantages and disadvantages
regarding flexibility, rapidity, accuracy, etc. In this subsection we compare them, trying as much
as possible to support our arguments with many examples.

2.4.1 Zealous arithmetic VS. lazy/relaxed arithmetic

The main difference between zealous and lazy/relaxed arithmetic is certainly that they are
designed for different uses! In the zealous perspective, the inputs are given with a certain
precision which is supposed to be fixed once for all: one can imagine for instance that the inputs
come from measures12 or that computing them requires a lot of effort and is then not an option.
So the precision on the inputs is immutable and the goal of zealous arithmetic is to propagate the
precision to the output (trying to be as sharp as possible).

On the other hand, the point of view of lazy/relaxed arithmetic is the exact opposite: instead
of fixing the precision on the inputs, we fix a target precision and we propagate it back to the
inputs. Indeed suppose, as an easy example, that we have to evaluate the product xy. In the
lazy/relaxed world, this is done by creating and returning the program x mul y without running
it. The execution (i.e. the actual computation of the product) is postponed until somebody asks
for the value of xy at a certain precision O(pN ) (through the call x mul y[N ]). At that moment,
the program runs and infers the needed precision on the inputs x and y.

Except maybe in very particular situations, the point of view of lazy/relaxed arithmetic is
certainly much closer to the needs of the mathematician. Indeed, it is quite rare to have to work
with p-adic numbers that do not come from a previous computation. Mathematicians are more
relaxed than zealous!

Apart from that, still regarding precision, the zealous and the lazy/relaxed approaches are
both based on the arithmetic of intervals and, for this reason, they exhibit similar behaviors in
the following sense. Assume that we are given a certain function f : Zp → Zp to be evaluated
and define the two numbers `1 and `2 (depending a priori on extra parameters) as follows:

12Through I have to confess that I have never seen a relevant physical p-adic measure yet.
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• when we ask for the value of f(a + O(pN )), the zealous approach answers b + O(pN−`1)
(loss of `1 digits of precision),

• when we ask for the value of f(a) at precision O(pN ), the lazy/relaxed technique requires
the computation of a at precision O(pN+`2).

It turns out that `1 and `2 do not very much depend neither on a, nor on N . Moreover they are
almost equal13. On the other hand, we underline that this value `1 ≈ `2 is very dependent on the
function f and even on the algorithm we use for the evaluation. We will present and discuss this
last remark in §2.4.3 below.

The lazy/relaxed arithmetic has nevertheless several more or less annoying disadvantages.
First of all, it is certainly more difficult to implement efficiently (although the implementation in
MATHEMAGIX [44] is very well polished and quite competitive; we refer to [7] for timings). It is
also supposed to be a bit slower; for instance, the relaxed multiplication looses asymptotically a
factor logN (for the precision O(pN )) compared to the zealous approach. Another more serious
issue is memory. Indeed the relaxed arithmetic needs to keep stored all intermediate results by
design. As an easy toy example, let us have a quick look at the following function

def nth_term(n)

u = a
f o r i in 1, 2, . . . , n:

u = f (u)
return u

that computes the n-th term of a recursive sequence defined by its initial value u0 = a and
the recurrence ui+1 = f(ui). Here a and f are given data. In zealous arithmetic, the above
implementation requires to store only one single value of the sequence (ui)i>0 at the same
time (assuming that we can rely on a good garbage collector); indeed at the i-th iteration of
the loop, the value of ui is computed and stored in the variable u while the previous value of
u, i.e. the value of ui−1, is destroyed. On the other hand, in relaxed arithmetic, the variable
representing ui stores the definition of ui, including then the value of ui−1. The relaxed p-adic
number returns by the function nth term is then a huge structure in which all the relaxed p-adic
numbers u1, u2, . . . , un have to appear. When we will then ask for the computation of the first N
digits of un, the relaxed machinery will start to work and compute — and store — the values of
all the ui’s at the desired precision. This is the price to pay in order to be able to compute one
more digit of un without having to redo many calculations.

2.4.2 Interval arithmetic VS. floating-point arithmetic

p-adic floating-point arithmetic has a very serious limitation for its use in mathematics: the results
it outputs are not proved and even often wrong! Precisely, the most significand digits of the output
are very likely to be correct while the least significand digits are very likely to be incorrect... and
we have a priori no way to know which digits are correct and which ones are not. On the other
hand, at least in the real setting, interval arithmetic is known for its tendency to yield pessimistic
enclosures. What about the p-adic case? At first, one might have expected that ultrametricity
may help. Indeed ultrametricity seems to tell that rounding errors do not accumulate as it does
in the real world. Unfortunately this simple rationale is too naive: in practice, p-adic interval
arithmetic does overestimate the losses of precision exactly as real interval arithmetic does.

The causes are multiple and complex but some of them can be isolated. The first source of
loss of precision comes from the situation where we add two p-adic numbers known at different
precision (e.g. two p-adic numbers of different sizes). As a toy example, consider the function
f : Z2

p → Z2
p mapping (x, y) to (x+ y, x− y) (it is a similarity in the p-adic plane) and suppose

13We refer to §3.2.1 for a clarification of this statement based on a theoretical study (which is itself based on the
theory of p-adic precision we shall develop in §3.1).
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that we want to evaluate f ◦ f on the entry x = 1 + O(p2), y = 1 + O(p20). We then code the
following function:

def F(x,y):

return x+y, x-y

and call F(F(x, y)). Let us have a look at precision. According to Proposition 2.3, the first call
F(x, y) returns the pair (2 +O(p2), O(p2)) and the final result is then (2 +O(p2), 2 +O(p2)). On
the other hand, observing that f ◦ f is the mapping taking (x, y) to (2x, 2y). Using this, we end
up with:

f ◦ f(x, y) =
(
2 +O(p2), 2 +O(p20)

)
if p > 2

=
(
2 +O(23), 2 +O(221)

)
if p = 2

which is much more accurate. Interval arithmetic misses the simplification and consequently
loses accuracy.

A second more subtle source of inaccuracy comes from the fact that interval arithmetic often
misses gain of precision. A very basic example is the computation of px; written this way, the
absolute precision increases by 1. However if, for some good reason14, the product px does not
appear explicitly but instead is computed by adding x to itself p times, interval arithmetic will
not see the gain of precision. It turns out that similar phenomena appear for the multiplicative
analogue of this example, i.e. the computation of xp for x = a+O(pN ). For simplicity assume
that val(x) = 0 and N > 1. Using again Proposition 2.3, we find that zealous arithmetic leads to
the result xp = ap +O(pN ). However, surprisingly, this result is not optimal (regarding precision)
as shown by the next lemma.

Lemma 2.18. If a ≡ b (mod pN ), then ap ≡ bp (mod pN+1).

Proof. Write b = a+ pNc with c ∈ Zp and compute:

bp = (a+ pNc)p =

p∑
i=0

(
p

i

)
ap−i(pNc)i.

When i > 2, the corresponding term is divisible by p2N while when i = 1, it equals pN+1ap−1c and
is therefore apparently divisible by pN+1. As a consequence bp ≡ ap (mod pN+1) as claimed.

According to Lemma 2.18, the correct precision for xp is (at least) O(pN+1) which is not detected
by arithmetic interval. SAGEMATH [76] fixes this issue by an ad-hoc implementation of the power
function which knows about Lemma 2.18. However similar behaviors happen in quite a lot of
different other situations and they of course cannot be all fixed by ad-hoc patches.

Remark 2.19. Recall that we have seen in §2.1.3 that the computation of square roots in Q2

looses one digit of precision. It is absolutely coherent with the result above which says that the
computation of squares gains one digit of precision.

As a conclusion, a very common situation where p-adic floating-point arithmetic can be very
helpful is that situation where the mathematician is experimenting, trying to understand how the
new mathematical objects he has just introduced behave. At the moment, he does not really need
proofs15; he needs fast computations and plausible accuracy, exactly what p-adic floating-point
arithmetic can offer.

2.4.3 Comparison by everyday life examples

We analyze many examples and compare for each of them the accuracy we get with p-adic
floating-point arithmetic on the one hand and with interval arithmetic (restricting ourselves to
the zealous approach for simplicity) on the other hand. Examples are picked as basic and very
common primitives in linear algebra and commutative algebra.

14For example, imagine that all the values x, 2x, 3x, . . . , px are needed.
15Well, it is of course often better to have proofs... but it is maybe too early.
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Determinant

Our first example concerns the computation of the determinant of a square matrix with
entries in Zp. In order to be as accurate as possible, we shall always use a division-free algorithm
(see for instance [10] or [47] and the references therein for faster solutions). When M is a
generic matrix there is actually not so much to say: if the entries of the matrix are given with N
significand digits, the same holds for the determinant and this precision is optimal. Nonetheless,
quite interesting phenomena show up for matrices having a special form. In the sequel, we
will examine the case of matrices M of the form M = PDQ where P,Q ∈ GLd(Zp) and D is a
diagonal matrix with diagonal entries pa1 , . . . , pad . We assume that the three matrices P , D and
Q are given at precision O(pN ) for some N . Here is a concrete example (picked at random) with
p = 2, d = 4 and N = 10:

a1 = 0 ; a2 = 2 ; a3 = 3 ; a4 = 5

P =

 . . . 1111100100 . . . 0110110101 . . . 0101011000 . . . 1101010001
. . . 1010001101 . . . 0110011001 . . . 1101111000 . . . 1010100100
. . . 1011101111 . . . 0100100111 . . . 0000111101 . . . 0010010001
. . . 1011111001 . . . 1000100011 . . . 1100100110 . . . 0111100011



Q =

 . . . 1010110001 . . . 0010011111 . . . 1010010010 . . . 1010001001
. . . 1111101111 . . . 0111100101 . . . 0110101000 . . . 0111100000
. . . 0111110100 . . . 0010010101 . . . 0000101111 . . . 1001100010
. . . 0101111111 . . . 0101110111 . . . 1110000011 . . . 1110000110


so that:

M =

 . . . 0101110000 . . . 0011100000 . . . 1011001000 . . . 0011000100
. . . 1101011001 . . . 1101000111 . . . 0111001010 . . . 0101110101
. . . 0111100011 . . . 1011100101 . . . 0010100110 . . . 1111110111
. . . 0000111101 . . . 1101110011 . . . 0011010010 . . . 1001100001

 (2.7)

Remark 2.20. Each entry of M is known at precision O(210) as well. Indeed any permutation
of M by an element H ∈ 210M4(Z2) can be induced by a perturbation of D by the element
P−1HQ−1 which lies in 210M4(Z2) as well because P and Q have their inverses in M4(Z2).

Here are the values for the determinant of M computed according to the two strategies we
want to compare:

Interval (zealous) arithmetic: detM = O(210)

Floating-point arithmetic: detM = 210 × . . . 0001001101

We observe the interval arithmetic does not manage to decide whether detM vanishes or not.
On the other hand, the floating-point approach outputs a result with 10 significand digits by
design; the point is that we do not know a priori whether these digits are correct or not. In
our particular case, we can however answer this question by computing detM as the product
detP · detD · detQ = 210 detP · detQ using zealous arithmetic. We find this way:

detM = 210 × . . . 01101

which means that the result computed by floating-point arithmetic has (at least) 5 correct digits.
This is actually optimal as we shall see later in §3.2.2.
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Characteristic polynomial

We now move to the characteristic polynomial keeping first the same matrix M . Here are the
results we get:

Interval (zealous) arithmetic:

χM (X) = X4 + (. . . 0001000010) X3 + (. . . 1000101100) X2

+ (. . . 0011100000) X + (. . . 0000000000)

Floating-point arithmetic:

χM (X) = X4 + (. . . 00001000010) X3 + (. . . 111000101100) X2

+ (. . . 110100011100000) X + (210 × . . . 0001001101)

where, in the second case, the correct digits are written in purple16. We observe again that,
although the computation is not proved mathematically, the floating-point arithmetic outputs
more accurate results. As we shall see later (see §3.2.2) the accuracy it gives is even optimal for
this particular example.

We consider now the matrix N = I4 + M where I4 is the identity matrix of size 4. The
computation of χN leads to the following results:

Interval (zealous) arithmetic:

χN (X) = X4 + (. . . 0000111110) X3 + (. . . 0101101100) X2

+ (. . . 0101001010) X + (. . . 0100001011)

Floating-point arithmetic:

χN (X) = X4 + (. . . 00000111110) X3 + (. . . 000101101100) X2

+ (. . . 10101001010) X + (. . . 0100001011)

On that example, we remark that interval arithmetic is as accurate as floating-point arithmetic.
More interesting is the evaluation of χN at 1, which is nothing but the determinant of M we have
already computed before. The values we get are the following:

Interval (zealous) arithmetic: χN (1) = O(210)

Floating-point arithmetic: χN (1) = 0

Although there is no surprise with interval arithmetic, we observe that floating-point arithmetic
now fails to produce any correct digit.

LU factorization

LU factorization is a classical tool in linear algebra which serves as primitives for many
problems. We refer to [1, §2] for an introduction to the topic. Recall briefly that a LU factorization
of a matrix M is a decomposition of the form M = LU where L (resp. U) is a lower triangular
(resp. upper triangular) matrix. In the sequel, we require moreover that the diagonal entries of L
are all equal to 1. With the normalization, one can prove that any matrix M defined over a field
admits a unique LU factorization as soon as all its principal minors17 do not vanish.

LU factorizations can be computed using standard Gaussian elimination: starting from M , we
first multiply the first column by the appropriate scalar in order to make the top left entry equal
to 1 and use it as pivot to cancel all coefficients on the first line by operating on columns. We

16We decided which digits are correct simply by computing at higher precision (with zealous arithmetic in order to
get a guaranteed result).

17Recall the i-th principal minor of M is the determinant of the submatrix of M obtained by selecting the first i
rows and first i columns.
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then get a matrix of the shape: 
1 0 · · · 0
? ? · · · ?
...

...
...

? ? · · · ?


and we continue this process with the submatrix obtained by deleting the first row and the first
column. The matrix we get at the end is the L-part of the LU factorization of M .

We propose to explore the numerical stability of LU factorization via Gaussian elimination
in the p-adic case. Let us start with an example. Consider first the same matrix M as above
and write its LU factorization M = LU (one can check that its principal minors do not vanish).
Performing Gaussian elimination as described above within the framework of zealous arithmetic
on the one hand and within the framework of floating-point arithmetic on the other hand, we
end up with the following matrices:

Interval (zealous) arithmetic:

L =

 1 0 0 0
2−4 × . . . 001111 1 0 0
2−4 × . . . 010101 . . . 100011 1 0
2−4 × . . . 001011 . . . 010101 . . . 110 1


Floating-point arithmetic:

L =

 1 0 0 0
2−4 × . . . 1010001111 1 0 0
2−4 × . . . 0110010101 . . . 0011100011 1 0
2−4 × . . . 0101001011 . . . 0111010101 00010110110 1


(2.8)

As before the correct digits are displayed in purple. We remark once again that the accuracy
of p-adic floating-point arithmetic is better than that of interval arithmetic (it is actually even
optimal on that particular example as we shall see in §3.2.2). More precisely, we note that the
zealous precision is sharp on the first column but the gap increases when we are moving to
the right. This is actually a general phenomenon: for a random matrix M ∈ Md(Z2) given at
precision O(pN ), it is expected, for large d, N and j, that:

• zealous arithmetic outputs the j-th column of L at precision about O(2N−j) on each non
exact entry;

• floating-point arithmetic outputs the j-th column of L with about N − log2 j correct digits
for each non exact entry;

We refer to [16] for related questions.

Remark 2.21. It is somehow classical [45, §1.4] that the entries of L and U can all be expressed as
the quotient of two appropriate minors of M (Cramer-like formulas). Evaluating such expressions,
it is possible to compute the LU factorization and stay sharp on precision within the zealous
framework. The drawback is of course complexity since evaluating two determinants for each
entry of L and U is clearly very time-consuming. A stable and efficient algorithm, combining the
advantages of the two approaches, is designed in [16].

Bézout coefficients and Euclidean algorithm

We now move to polynomials and examine the computation of Bézout coefficients via the
Euclidean algorithm. We pick at random two monic polynomials P and Q of degree 4 over Z2:

P = X4 + (. . . 1101111111) X3 + (. . . 0011110011) X2

+ (. . . 1001001100) X + (. . . 0010111010)

Q = X4 + (. . . 0101001011) X3 + (. . . 0111001111) X2

+ (. . . 0100010000) X + (. . . 1101000111)
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We can check that P and Q are coprime modulo p (observe that P +Q ≡ 1 (mod p)); they
are therefore a fortiori coprime in Qp[X]. By Bézout Theorem, there exist two polynomials
U, V ∈ Z2[X] such that UP + V Q = 1. Moreover these polynomials are uniquely determined if
we require degU,deg V 6 3. Computing them with the extended Euclidean algorithm (without
any kind of algorithmic optimization), we get:

Interval (zealous) arithmetic:

U = (. . . 101100) X3 + (. . . 101100) X2

+ (. . . 100) X + (. . . 1011)

V = (. . . 010100) X3 + (. . . 100100) X2

+ (. . . 100) X + (. . . 101)

Floating-point arithmetic:

U = (. . . 101011101100) X3 + (. . . 111100101100) X2

+ (. . . 100000110100) X + (. . . 0110001011)

V = (. . . 010100010100) X3 + (. . . 001011100100) X2

+ (. . . 000100111100) X + (. . . 1111100101)

Floating-point arithmetic provides again better accuracy, though far for being optimal this time.
Indeed the theory of subresultants [81, §4.1] shows that the coefficients of U and V can be all
expressed as quotients of some minors of the Sylvester matrix of (P,Q) by the resultant of P and
Q, denoted hereafter by Res(P,Q). From the fact that P and Q are coprime modulo p, we deduce
that Res(P,Q) does not vanish modulo p. Thus valp(Res(P,Q)) = 0 and dividing by Res(P,Q)
does not decrease the absolute precision according to Proposition 2.3. As a consequence, following
this path and staying within the zealous framework, we can calculate the values of U and V at
precision O(210). Here is the result we get:

U = (. . . 0011101100) X3 + (. . . 0100101100) X2 + (. . . 1101110100) X + (. . . 0010001011)

V = (. . . 1100010100) X3 + (. . . 1011100100) X2 + (. . . 0110111100) X + (. . . 0001100101).

We observe that the latter values (in addition to being proved) are even more accurate that the
result which was computed “naively” using floating-point arithmetic. The drawback is complexity
since evaluating many determinants requires a lot of time. The theory of p-adic precision we are
going to introduce in the next section (see §3 and, more especially, §3.3.1) provides the tools for
writing a stabilized version of Euclidean algorithm that computes provably U and V at (almost)
optimal precision. We refer to [17] for more details (the material developed in §3 is necessary to
read this reference).

Polynomial evaluation and interpolation

Polynomial evaluation and polynomial interpolation are very classical and useful primitives
involved in many algorithms in symbolic computation. In this last paragraph, we examine how
they behave from the point of view of precision. We focus on a very basic (but already very
instructive) example. We consider the following two procedures:

• evaluation: it takes as input a polynomial P ∈ Qp[X] of degree at most d and outputs
P (0), P (1), . . . , P (d);

• interpolation: it takes as input a list of values y0, . . . , yd ∈ Qp and returns the interpola-
tion polynomial P ∈ Qp[X] of degree at most d such that P (i) = yi for i ∈ {0, 1, . . . , d}.

Algorithms (and notably fast algorithms) for these tasks abound in the literature (see for in-
stance [32, §10]). For our propose, we choose naive algorithms: we implement evaluation by
evaluating separately the P (i)’s (using Hörner scheme say) and we implement interpolation
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using the method of divided differences [40, §2]. Under our assumptions (interpolation at the
first integers), it turns out that it takes a particularly simple form that we make explicit now.

Define the difference operator ∆ on Qp[X] by ∆A(X) = A(X + 1)−A(X). The values taken
by A at the integers are related to the values ∆nA(0) by a simple closed formula, as shown by
the next lemma.

Lemma 2.22. For all polynomials A ∈ Qp[X] of degree at most d, we have:

A(X) =
d∑

n=0

∆nA(0) ·
(
X

n

)
where

(
X

n

)
=
X(X − 1) · · · (X − n+ 1)

n!
.

Proof. We proceed by induction on d. When d = 0, the lemma is trivial. We assume now that
it holds for all polynomials A of degree at most d and consider a polynomial A ∈ Qp[X] with
degA = d+1. We define B(X) =

∑d
n=0 ∆nA(0) ·

(
X
n

)
. Remarking that ∆

(
X
n

)
=
(
X
n−1
)

for all
positive integers n, we derive:

∆B(X) =

d∑
n=1

∆nA(0) ·
(

X

n− 1

)
=

d−1∑
n=0

∆n+1A(0) ·
(
X

n

)
.

From the induction hypothesis, we deduce ∆B = ∆A (since ∆A has degree at most d). Further-
more, going back to the definition of B, we find A(0) = B(0). All together, these two relations
imply A = B and the induction goes.

Remark 2.23. Lemma 2.22 extends by continuity to all continuous functions f on Zp. In this
generality, it states that any continuous function f : Zp → Zp can be uniquely written as a
convergent series of the shape:

f(x) =

∞∑
n=0

an ·
(
x

n

)
where the an’s lie in Zp and converge to 0 when i goes to infinity. The an’s are moreover uniquely
determined: we have an = ∆nf(0). They are called the Mahler coefficients of f . We refer to [59]
for much more details on this topic.

From Lemma 2.22, we easily derive an algorithm for our interpolation problem. Given
y0, . . . , yd, we define the “divided” differences yn,i for 0 6 i 6 n 6 d by (decreasing) induction
on n by yd,i = yi and yn−1,i = yn,i+1 − yn,i. These quantities can be easily computed. Moreover,
thanks to Lemma 2.22, the interpolation polynomial P we are looking for writes P (X) =∑d

n=0 yn,0
(
x
n

)
. This provides an algorithm for computing the interpolation polynomial.

Let us now try to apply successively evaluation and interpolation taking as input a random
polynomial P of degree d = 8 with coefficients in Zp (for p = 2 as usual):

P = (. . . 0111001110) X8 + (. . . 0101010001) X7 + (. . . 1000001100) X6

+ (. . . 1010001101) X5 + (. . . 1111000100) X4 + (. . . 0011101101) X3

+ (. . . 1010010111) X2 + (. . . 0011011010) X + (. . . 0001011110)

The results we get are:

Interval (zealous) arithmetic:

(. . . 110) X8 + (. . . 001) X7 + (. . . 100) X6

+ (. . . 101) X5 + (. . . 100) X4 + (. . . 1101) X3

+ (. . . 10111) X2 + (. . . 1011010) X + (. . . 0001011110)

Floating-point arithmetic:

(. . . 00001001110) X8 + (. . . 1011010001) X7 + (. . . 001010001100) X6

+ (. . . 0010001101) X5 + (. . . 000011000100) X4 + (. . . 01011011101) X3

+ (. . . 0010010111) X2 + (. . . 11011011010) X + (. . . 00001011110)
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Initial polynomial:

(. . . 0101101001)X19 + (. . . 1101000011)X18 + (. . . 0011001110)X17 + (. . . 1001011010)X16

+ (. . . 0011100111)X15 + (. . . 0110101110)X14 + (. . . 0111111001)X13 + (. . . 1011010111)X12

+ (. . . 0100000100)X11 + (. . . 0000110000)X10 + (. . . 1110101010)X9 + (. . . 1111101100)X8

+ (. . . 0100010001)X7 + (. . . 0101010000)X6 + (. . . 0111101111)X5 + (. . . 1100010011)X4

+ (. . . 0100000001)X3 + (. . . 1000010010)X2 + (. . . 0000100000)X + (. . . 0001111110)

Interval (zealous) arithmetic:

O(2−6)X19 + O(2−6)X18 + O(2−6)X17 + O(2−5)X16

+ O(2−6)X15 + O(2−6)X14 + O(2−6)X13 + O(2−5)X12

+ O(2−6)X11 + O(2−6)X10 + O(2−6)X9 + O(2−5)X8

+ O(2−4)X7 + O(2−3)X6 + O(2−2)X5 + O(2−1)X4

+ (. . . 1)X3 + (. . . 010)X2 + (. . . 100000)X + (. . . 0001111110)

Floating-point arithmetic:

(2−3 × . . . 1110011011)X19 + (2−5 × . . . 0000000011)X18 + (2−3 × . . . 0001011111)X17 + (2−5 × . . . 1100111101)X16

+ (. . . 11111100110)X15 + (2−4 × . . . 0110100011)X14 + (2−2 × . . . 0000010011)X13 + (2−4 × . . . 1010001101)X12

+ (2−3 × . . . 0010000011)X11 + (2−5 × . . . 0100101111)X10 + (2−3 × . . . 0000110011)X9 + (2−5 × . . . 1010101001)X8

+ (2−2 × . . . 0010000101)X7 + (2−2 × . . . 1101100111)X6 + (. . . 1101101111)X5 + (2−1 × . . . 0011100111)X4

+ (. . . 0101110101)X3 + (. . . 11011101010)X2 + (. . . 000000001100000)X + (. . . 00001111110)

Figure 2.3: Evaluation and re-interpolation of a polynomial of degree 19 over Z2

The result computed by floating-point arithmetic is again a bit more accurate. However this
observation is not valid anymore where the degree d gets larger. Figure 2.3 shows an example
with a polynomial (picked at random) of degree d = 19. We see that almost all digits are incorrect,
many coefficients have negative valuations, etc. For this problem, floating-point arithmetic is then
not well suited.

One may wonder whether another algorithm, specially designed for stability, would lead
to better results. Unfortunately, the answer is negative: we shall see later (in §3.2.2) that the
problem of polynomial evaluation and interpolation is very ill-conditioned in the p-adic setting,
so that numerical methods are ineffective.

3 The art of tracking p-adic precision

In many examples presented in §2.4.3, we have often recognized similar behaviors: interval
arithmetic often overestimates the losses of precision while floating-point arithmetic provides
more accurate — but unproved — results. Understanding precisely the origin of these phenomena
is a quite stimulating question (that has been widely studied in the real setting).

Recently Caruso, Roe and Vaccon [18] proposed a general theory for dealing with precision in
the p-adic setting and this way provided powerful tools for attacking the aforementioned question.
Their rough idea was to develop an analogue of interval arithmetic in higher dimensions. In
other words, instead of attaching a precision O(pN ) to each p-adic variable, they group variables
and attach to the collection of all of them a unique global precision datum materialized by
an “ellipsoid” in some normed p-adic vector space. The magic of ultrametricity then operates:
ellipsoids are rather easy to deal with and behave very well with respect to tracking of precision.

In this section, we report on Caruso, Roe and Vaccon’s work. §3.1 is dedicated to the
foundations of their theory; it is mostly of mathematical nature and deals with p-adic analysis
in several variables. It culminates with the statement (and the proof) of the precision Lemma
(Theorem 3.16). Some first applications are discussed in §3.2 where the precision Lemma is used
for finding the maximal precision one can expect in many concrete situations. Finally we propose
in §3.3 general methods for reaching this optimal precision and apply them in concrete cases.
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3.1 Foundations of the theory of p-adic precision

The aforementioned theory of p-adic precision is based on a single result of p-adic analysis —
the so-called precision Lemma — controlling how ellipsoids transform under mappings of class
C1. In fact the terminology “ellipsoid” is not quite appropriate to the p-adic setting (though
very suggestive for the comparison with the real setting) because vector spaces over Qp are not
equipped with some L2-norm. Mathematicians then prefer using the term “lattice” because, as
we shall see below, the p-adic lattices behave like usual Z-lattices in R-vector spaces.

This subsection is organized as follows. We first introduce the notion of p-adic lattice (§§3.1.1–
3.1.2) together with the necessary material of p-adic analysis (§3.1.3). After this preparation,
§3.1.4 is devoted to the precision Lemma: we state it and prove it. Applications to p-adic precision
will be discussed in the next subsections (§3.2 and §3.3).

3.1.1 Lattices in finite-dimensional p-adic vector spaces

Let E be a finite-dimensional vector space over Qp. A (ultrametric) norm on E is a mapping
‖ · ‖E : E → R+ satisfying the usual requirements:

(i) ‖x‖E = 0 if and only if x = 0;

(ii) ‖λx‖E = |λ| · ‖x‖E;

(iii) ‖x+ y‖E 6 max
(
‖x‖E , ‖y‖E

)
.

Here x and y refer to elements of E while λ refers to a scalar in Qp. We notice that, without
further assumption, one can prove that equality holds in (iii) as soon as ‖x‖E 6= ‖y‖E: all
triangles are isosceles in all normed p-adic vector spaces! Indeed, by symmetry, we may assume
‖x‖E < ‖y‖E . Now we remark that from ‖x+ y‖E < ‖y‖E , we would deduce:

‖y‖E 6 max
(
‖x+ y‖E , ‖−x‖E

)
= max

(
‖x+ y‖E , ‖x‖E

)
< ‖y‖E

which is a contradiction. Our assumption was then absurd, meaning that ‖x+ y‖E = ‖y‖E .
Given a real number r, we let BE(r) denote the closed ball in E of centre 0 and radius r, i.e.:

BE(r) =
{
x ∈ E s.t. ‖x‖E 6 r

}
.

It is worth remarking that BE(r) is a module over Zp. Indeed, on the one hand, multiplying by a
scalar in Zp does not increase the norm (since elements of Zp have norm at most 1) and, on the
other hand, the ultrametric triangular inequality implies that E is stable under addition. Balls
in p-adic vector spaces have then two faces: one is analytic and one is algebraic. Being able to
switch between these two points of view is often very powerful.

The very basic (but still very important) example of a normed Qp-vector space is Qd
p itself

endowed with the infinite norm defined by ‖(x1, x2, . . . , xd)‖∞ = max
(
|x1|, |x2|, . . . , |xd|

)
for

x1, . . . , xd ∈ Qp. The unit ball of
(
Qd
p, ‖ · ‖∞

)
is Zdp and, more generally, BQd

p
(r) = pnZdp where

n is the unique relative integer defined by p−n 6 r < p−(n−1). We notice that they are indeed
Zp-modules. Other standard norms over Rd do not have a direct p-adic analogue since they
violate the ultrametric triangular inequality.

The general notion of lattice is modeled on balls:

Definition 3.1. Let E be a finite-dimensional vector space over Qp. A lattice in E is a subset of
E of the form BE(1) for some p-adic norm on E.

Remark that if H is a lattice in E and a is a non zero scalar in Qp, then aH is a lattice in E as
well. Indeed if H is the closed unit ball for some norm ‖ · ‖E , then aH is the closed unit ball for
1
|a|‖ · ‖E . More generally, if H ⊂ E is a lattice and f : E → E is a bijective linear transformation,
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Figure 3.1: Picture of a lattice in the ultrametric world

then f(H) is also a lattice. A consequence of Proposition 3.3 below is that all lattices take the
form f(H0) where H0 is a fixed lattice and f vary in GL(E).

Lattices might be thought of as “ellipsoids” centered at 0. They form a class of special
neighborhoods of 0 that we will use afterwards to model the precision (see §3.3). From this
perspective, they will appear as the natural generalization to higher dimension of the notion of
bounded interval (centered at 0) of Qp we have introduced in §1.1.5 and already widely used in
§2.1 to model precision in zealous arithmetic.

Figure 3.1 shows a possible picture of a lattice drawn in the p-adic plane Q2
p (endowed with

the infinite norm). Nevertheless, we need of course to be very careful with such representations
because the topology of Qp has nothing to do with the topology of the paper sheet (or the screen).
In particular, it is quite difficult to reflect ultrametricity.

Here is another purely algebraic definition of lattices which justifies the wording (compare
with the case of Z-lattice in R-vector spaces).

Definition 3.2. Let E be a finite-dimensional vector space over Qp. A lattice in E is a Zp-module
generated by a basis of E over Qp.

The fact that a lattice in the sense of Definition 3.2 is a lattice in the sense of Definition 3.1 is
rather easy: if (e1, . . . , ed) is a basis of E over Qp, the Zp-span of the ei’s is the closed unit ball
for the norm ‖ · ‖E defined by:

‖λ1ei + · · ·+ λded‖E = max
(
|λ1|, . . . , |λd|

)
.

As for the converse, it follows from the next proposition.

Proposition 3.3. Let E be a d-dimensional normed vector space over Qp. There exists a basis
(e1, . . . , ed) of E over Qp such that BE(1) is the Zp-module generated by the ei’s.

Proof. Set L = BE(1). We have already seen that L is a module over Zp; thus the quotient L/pL
makes sense and is a vector space over Fp = Z/pZ. Consider (ēi)i∈I a basis of L/pL. (We shall
see later that L/pL is finite dimensional of dimension d over Fp but, for now, we do not know
this and we do not assume anything on the set I indexing the basis.) For all i ∈ I, consider ei ∈ L
which reduces to ēi modulo p.

We first claim that the family (ei)i∈I (where ei is considered as an element of E) is free over
Qp. Indeed consider a relation of the form

∑
i∈I λiei = 0 with λi ∈ Qp and λi = 0 for almost all

i. Assume by contradiction that this relation is non trivial. Then v = mini valp(λi) is finite. Up
to multiplying the λi’s by p−v, we may assume that λi ∈ Zp for all i ∈ I and that there exists at
least one index i for which λi does not reduce to 0 modulo p. Now reducing our dependency
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relation modulo p, we get
∑

i∈I λ̄iēi = 0 where λ̄i ∈ Fp is the class of λi modulo p. Since the
family (ēi)i∈I is free over Fp by construction, we derive λ̄i = 0 which contradicts our assumption.

It follows from the freedom of the ei’s that I is finite of cardinality at most d. Let us then
write I = {1, 2, . . . , d′} with d′ 6 d. We now prove that (e1, . . . , ed′) generates L over Zp. Let
then x ∈ L. Using that the ēi’s generate L/pL, we find p-adic integers λi,1 (0 6 i 6 d′) such that:

x ≡ λ1,1e1 + λ2,1e2 + · · ·+ λd′,1ed′ (mod pL)

i.e. x = λ1,1e1 + λ2,1e2 + · · ·+ λd′,1ed′ + px1 (3.1)

for some x1 ∈ L. Applying the same reasoning to x1 and re-injecting in Eq. (3.1), we end up
with an equality of the form x = λ1,2e1 + λ2,2e2 + · · ·+ λd′,2ed′ + px2 with x2 ∈ L and λi,2 ≡ λi,1
(mod p) for all i. Continuing this process we construct d′ sequences (λi,n)n>0 with the property
that

x ≡ λ1,ne1 + λ2,ne2 + · · ·+ λd′,ned′ (mod pnL)

and λi,n+1 ≡ λi,n (mod pn) for all n and i. The latter congruence shows that, for all i, the
sequence (λi,n)n>0 is Cauchy and then converges to some λi ∈ Zp. Passing to the limit, we find
that these λi’s furthermore satisfy x = λ1e1 + · · ·+ λd′ed′ .

It now remains to prove that the ei’s generate E over Qp. For this, remark that any vector
x ∈ E can be written as x = pvy with ‖y‖E 6 1, i.e. y ∈ BE(1). By what we have done before,
we know that y can be written as a linear combination of the ei’s. Hence the same holds for
x.

Remark 3.4. Proposition 3.3 is a particular case of Nakayama’s Lemma (which is a classical
result of commutative algebra). We refer to [27] for a general introduction to commutative
algebra including an exposition of Nakayama’s Lemma in a much more general context.

Proposition 3.3 has other important consequences. It shows for instance that the inclusion of
a lattice H in the ambient space E is homeomorphic to the inclusion of Zdp in Qd

p (where d is the
dimension of E). In particular lattices are all open and compact at the same time.

Three other consequences are enumerated in the next corollary.

Corollary 3.5. (i) All finite dimension normed vector spaces over Qp are complete.

(ii) All norms over a given finite dimension vector space over Qp are equivalent.

(iii) All linear applications between finite dimensional vector spaces over Qp are continuous.

Proof. Let E be a finite dimension normal vector space over Qp. Use Proposition 3.3 to pick a
basis e1, . . . , ed of E whose Zp-span is BE(1). We claim that an element x ∈ E lies in the ball
BE(p−n) if and only if all its coordinates on the basis (e1, . . . , ed) are divisible by pn. Indeed the
latter assertion implies easily the former by factoring out pn. Conversely, let x ∈ BE(p−n). Then
p−nx has norm at most 1 and thus can be written as p−nx = λ1e1 + · · ·+ λded with λi ∈ Zp for
all i. Multiplying by pn on both side and identifying coefficients, we get the claim.

Let (xn)n>0 be a Cauchy sequence with values in E. For all n, write xn = λn,1e1 + · · ·+λn,ded
with λn,i ∈ Qp. It follows from the result we have proved in the previous paragraph that the
sequences (λn,i)n>0 are Cauchy for all i. They thus converge and hence so does (xn)n>0. This
proves (i).

The two other assertions are easy (after Proposition 3.3) and left to the reader.

3.1.2 Computation with lattices

The algebraic side of lattices provides the tools for representing and manipulating p-adic lattices
on computers (at least if the underlying vector space E is reasonable) in a quite similar fashion
as usual integral lattices are represented and manipulated via integral matrices.
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For simplicity, let us expose the theory in the case where E = Qd
p (endowed with the infinite

norm). We then represent a lattice H ⊂ E by the matrix whose row vectors form a basis of L (in
the sense of Definition 3.2). Equivalently, we can take the matrix, in the canonical basis, of the
linear transformation f mentioned just above Definition 3.1.

For example, if d = 4 and H is generated by the vectors:

e1 =
(
. . . 0101110000, . . . 0011100000, . . . 1011001000, . . . 0011000100

)
e2 =

(
. . . 1101011001, . . . 1101000111, . . . 0111001010, . . . 0101110101

)
e3 =

(
. . . 0111100011, . . . 1011100101, . . . 0010100110, . . . 1111110111

)
e4 =

(
. . . 0000111101, . . . 1101110011, . . . 0011010010, . . . 1001100001

)
we build the matrix

M =

 . . . 0101110000 . . . 0011100000 . . . 1011001000 . . . 0011000100
. . . 1101011001 . . . 1101000111 . . . 0111001010 . . . 0101110101
. . . 0111100011 . . . 1011100101 . . . 0010100110 . . . 1111110111
. . . 0000111101 . . . 1101110011 . . . 0011010010 . . . 1001100001

 (3.2)

Remark 3.6. By convention, our vectors will always be row vectors.

The matrix M we obtain this way is rather nice but we can further simplify it using Hermite
reduction [22, §2.4]. In the p-adic setting, Hermite reduction takes the following form.

Theorem 3.7 (p-adic Hermite normal form). Any matrix M ∈ GLd(Qp) can be uniquely written
as a product M = UA where U ∈ GLd(Zp) and A has the shape:

A =



pn1 a1,2 · · · · · · a1,d

0 pn2
. . .

...
...

. . . . . . . . .
...

...
. . . pnd−1 ad−1,d

0 · · · · · · 0 pnd


where the ni’s are relative integers and the ai,j ’s are rational numbers of the form ai,j =

bi,j
pvi,j

with
0 6 bi,j < pnj+vi,j .

The matrix A is called the Hermite normal form of M .

Remark 3.8. The left multiplication by the matrix U corresponds to operations on the rows of
M , that are operations on the vectors ei. The invertibility of U over Zp ensures that the row
vectors of A continue to generate the lattice H we have started with.

The proof of Theorem 3.7 is constructive and can be done by row-echelonizing the matrix M .
Instead of writing it down for a general M , let us just show how it works on the example (3.2).
We first select in the first column an entry with minimal valuation, we then move it to the top
left corner by swapping rows and we normalize it so that it becomes a power of p by rescaling
the first row by the appropriate invertible element of Zp. In our example, one can for instance
choose the second entry of the first column. After swap and renormalization, we get: 1 . . . 1110011111 . . . 0011011010 . . . 1101111101

. . . 0101110000 . . . 0011100000 . . . 1011001000 . . . 0011000100

. . . 0111100011 . . . 1011100101 . . . 0010100110 . . . 1111110111

. . . 0000111101 . . . 1101110011 . . . 0011010010 . . . 1001100001


We now use the top left entry as pivot to clear the other entries of the first column, obtaining this
way the new matrix: 1 . . . 1110011111 . . . 0011011010 . . . 1101111101

0 . . . 0001010000 . . . 0101101000 . . . 0100010100
0 . . . 0111101000 . . . 0101011000 . . . 1100100000
0 . . . 1010010000 . . . 0011100000 . . . 0011011000


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Remark that these row operations do not affect the Zp-span of the row vectors (i.e. they
correspond to a transformation matrix U which lies in GLd(Zp)). We continue this process with
the 3×3 matrix obtained by erasing the first row and the first column. Since we have forgotten the
first row, the smallest valuation of an entry of the second column is now 3 and the corresponding
entry is located on the third row. We then swap the second and the third rows, rescale the
(new) second row in order to put 23 on the diagonal and use this value 23 as pivot to cancel the
remaining entries on the second column. After these operations, we find: 1 . . . 1110011111 . . . 0011011010 . . . 1101111101

0 23 . . . 0000111000 . . . 0110100000
0 0 . . . 1100111000 . . . 0011010100
0 0 . . . 1011110000 . . . 0001011000


Iterating again one time this process, we arrive at: 1 . . . 1110011111 . . . 0011011010 . . . 1101111101

0 23 . . . 0000111000 . . . 0110100000
0 0 23 . . . 000001100
0 0 0 . . . 111110000


Interestingly, observe that the precision on the last two entries of the last column has decreased
by one digit. This is due to the fact that the pivot 23 was not the element with the smallest
valuation on its row. This loss of precision may cause troubles only when the initial matrix M is
known at precision O(pN ) with N 6 maxi ni; in practice such a situation very rarely happen and
will never appear in this course.

The next step of Hermite reduction is the normalization of the bottom right entry: 1 . . . 1110011111 . . . 0011011010 . . . 1101111101
0 23 . . . 0000111000 . . . 0110100000
0 0 23 . . . 000001100
0 0 0 24


It remains now to clean up the upper triangular part of the matrix. For this, we proceed again
column by column by using the pivots on the diagonal. Of course there is nothing to do for the
first column. We now reduce the (1, 2) entry modulo 23 which is the pivot located on the same
column. In order to do so, we add to the first row the appropriate multiple of the second row. We
obtain this way the new matrix: 1 7 . . . 1110110010 . . . 0010011101

0 23 . . . 0000111000 . . . 0110100000
0 0 23 . . . 000001100
0 0 0 24


We emphasize that the (1, 2) entry of the matrix is now exact! Repeating this procedure several
times we end up finally with  1 7 2 5

0 23 0 12
0 0 23 12
0 0 0 24


which is the expected Hermite normal form.

Remark 3.9. The algorithmic problem of computing the Hermite normal form has been widely
studied over the integers and we now know much more efficient algorithms (taking advantage of
fast matrix multiplication) to solve it [47]; these algorithms extend without trouble to the case of
Zp (with the same complexity). Other algorithms specially designed for the p-adic setting are
also available [16].

Here is a remarkable corollary of Theorem 3.7 (compare with Proposition 2.1):
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Corollary 3.10. Lattices in Qd
p are representable on computers by exact data.

Operations on lattices can be performed on Hermite forms without difficulty. The sum of two
lattices, for example, is computed by concatenating the two corresponding Hermite matrices and
re-echelonizing. In a similar fashion, one can compute the image of a lattice under a surjective18

linear mapping f : we apply f to each generator and echelonize the (possibly rectangular) matrix
obtained this way.

3.1.3 A small excursion into p-adic analysis

Another important ingredient we will need is the notion of differentiable functions in the p-adic
world. All the material presented in this section is classical. We refer to [69, §I.4] and [24] for a
much more detailed and systematic exposition.

The case of univariate functions

The notion of differentiability at a given point comes with no surprise: given an open subset
U ⊂ Qp, x ∈ U and a function f : U → Qp, we say that f is differentiable at x if f(x)−f(y)

x−y has a
limit when y tends to x. When f is differentiable at x, we define:

f ′(x) = lim
y→x

f(x)− f(y)

x− y
.

Alternatively one can define the derivative using Taylor expansion: one says that f is differentiable
at x is there exists f ′(x) ∈ Qp for which:∣∣f(y)− f(x)− (y−x)f ′(x)

∣∣ = o
(
|y−x|

)
for y → x. (3.3)

Usual formulas for differentiating sums, products, composed functions, etc. extend verbatim to
the p-adic case.

The fact that Qp is (highly) disconnected has however unpleasant consequences. For instance,
the vanishing of f ′ on an interval does not imply the constancy of f . Indeed, consider as an
example the indicator function of Zp: it is a locally constant function defined on Qp. It is then
differentiable with zero derivative but it is not constant on Qp. One can cook up even worse
examples. Look for instance at the function f : Zp → Zp defined by:

a0 + a1p+ · · ·+ anp
n + · · · 7→ a0 + a1p

2 + · · ·+ anp
2n + · · ·

where the ai’s are the digits, i.e. they lie in the range [0, p−1]. A straightforward computation
shows that |f(x)− f(y)| = |x− y|2, i.e. f is 2-Hölder. In particular, f is differentiable everywhere
and f ′ vanishes on Zp. Yet f is apparently injective and a fortiori not constant on any interval.

The notion of p-adic function of class C1 is more subtle. Indeed the notion of differentiable
function with continuous derivative is of course well defined but not that interesting in the p-adic
setting. Precisely, this definition is too weak and encompasses many “irregular” functions. A more
flexible definition is the following.

Definition 3.11. Let U be an open subset of Qp and f : U → Qp be a function. We say that f is
of class C1 on U if there exists a function f ′ : U → Qp satisfying the following property: for all
a ∈ U and all ε > 0, there exists a neighborhood Ua,ε ⊂ U of a on which:∣∣f(y)− f(x)− (y−x)f ′(a)

∣∣ 6 ε · |y−x|. (3.4)

18Surjectivity ensures that the image remains a lattice in the codomain.
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Given a function f : U → Qp of class C1 on U , it is clear that f is differentiable on U and
that the function f ′ appearing in Definition 3.11 has to be the derivative of f . Moreover f ′ is
necessarily continuous on U . Indeed consider a ∈ U and ε > 0. Let b ∈ Ua,ε. The intersection
U = Ua,ε ∩ Ub,ε is open and not empty. It then contains at least two different points, say x and y.
It follows from the definition that:∣∣f(y)− f(x)− (y−x)f ′(a)

∣∣ 6 ε · |y − x|
and

∣∣f(y)− f(x)− (y−x)f ′(b)
∣∣ 6 ε · |y − x|.

Combining these inequalities, we derive
∣∣f ′(b) − f ′(a)

∣∣ 6 ε which proves the continuity of f ′

at x. In the real setting, the continuity of f ′ implies conversely the inequality (3.4)19 but this
implication fails in the p-adic world. A counter-example is given by the function f : Zp → Qp

defined by:

x = avp
v + av+1p

v+1 + · · ·+ a2vp
2v + a2v+1p

2v+1 + · · ·
7→ f(x) = avp

2v +
(
a2vp

2v + a2v+1p
2v+2 + a2v+2p

2v+4 + · · ·
)

where the ai’s are integers between 0 and p−1 with av 6= 0. One checks that |f(x)| 6 |x|2 and
|f(x)− f(y)| = |x−y|2

|x|2 if |x− y| 6 |x|2 < 1. These inequalities ensure that f is differentiable on
Zp and that its derivative vanishes everywhere (and thus is continuous). On the other hand when
|x− y| = |x|2 < 1, we have |f(x)− f(y)| = |x− y|, showing that f cannot be of class C1.

Remark 3.12. Alternatively, following [24], one may define the notion of class C1 for a function
f : U → F by requiring the existence of a covering (Ui)i∈I of U and of continuous real-valued
functions εi : R+ → R+ with εi(0) = 0 such that:

∀i ∈ I, ∀x, y ∈ Ui,
∣∣f(y)− f(x)− (y−x)f ′(x)

∣∣ 6 |y−x| · εi(|y−x|) (3.5)

(compare with (3.4)). In brief, a function f is of class C1 when the estimation (3.3) is locally
uniform on x. When the domain U is compact (e.g. U = Zp), one can remove the word “locally”,
i.e. one can forget about the covering and just take I = {?} and U? = U .

Proof of the equivalence between the two definitions. Assume first that f satisfies the definition of
Remark 3.12. Let a ∈ U and ε > 0. We have a ∈ Ui for some i. Let δ be a positive real number
such that εi < ε on the interval [0, δ). Define Ua,ε as the intersection of Ui with the open ball of
centre a and radius δ. On Ua,ε, the estimation:∣∣f(y)− f(x)− (y−x)f ′(x)

∣∣ 6 ε · |y−x| (3.6)

holds. It remains then to relate f ′(x) to f ′(a). In order to do so, we write:∣∣f(x)− f(a)− (x−a)f ′(a)
∣∣ 6 ε · |x−a|∣∣f(a)− f(x)− (a−x)f ′(x)
∣∣ 6 ε · |a−x|.

Combining these inequalities, we obtain |f ′(x)− f ′(a)| 6 ε. Re-injecting this new input in (3.6),
we finally get (3.4) as desired.

Conversely, assume that f is of class C1 in the sense of Definition 3.11. Since the problem
is local on the domain, we may assume that U is an open ball. Up to translating and rescaling
f , one may further suppose without loss of generality that U = Zp. In particular, note that U is
compact. We define the function ε on (0,∞) by:

ε(δ) = sup
x,y∈Zp

0<|y−x|6δ

|f(y)− f(x)− f ′(x)(y−x)|
|y−x|

.

19Indeed, by the mean value theorem we can write f(y)− f(x) = (y − x)f ′(g(x, y)) for some g(x, y) ∈ [x, y]. Thus
|f(y)− f(x)− (y − x)f ′(a)| = |y − x| · |f ′(g(x, y))− f ′(a)| and the conclusion follows from Heine–Cantor Theorem.
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Compacity ensures that the supremum is finite, so that ε is well defined. We have to show that
ε goes to 0 when δ goes to 0. Let ε′ > 0. By assumption, for all a ∈ Zp, there exists an open
neighborhood Ua,ε′ of a on which |f(y)−f(x)−f ′(x)(y−x)|

|y−x| 6 ε′. Up to shrinking Ua,ε′ , one may
assume that Ua,ε′ = a+ pnaZp for some positive integer na. Now observe that the family of all
Ua,ε′ when a varies is a covering of Zp; by compacity, one can extract from it a finite subcovering
(Uai,ε′)16i6m that continues to cover Zp. If n denotes the supremum of the nai ’s (1 6 i 6 m), we
thus derive ε(δ) 6 ε′ for δ 6 p−n and we are done.

The case of multivariate functions

Let E and F be two finite dimensional normed vector spaces over Qp. We denote by L(E,F )
the space of Qp-linear mappings from E to F . The definition of differentiability and “of class C1”
is mimicked from the univariate case.

Definition 3.13. Let U be an open subset of E.
A function f : U → F is differentiable at the point x ∈ U if there exists a linear mapping

dfx ∈ L(E,F ) such that:

‖f(y)− f(x)− dfx(y−x)‖F = o
(
‖y−x‖E

)
when y → x.

A function f : U → F is of class C1 on U if there exists a function df : U → L(E,F ), x 7→ dfx
satisfying the following property: for all v ∈ U and all ε > 0, there exists a neighborhood
Ua,ε ⊂ U of a on which:

‖f(y)− f(x)− dfa(y−x)‖F 6 ε · ‖y−x‖E . (3.7)

Of course, if f is of class C1 on U , it is differentiable at every point x ∈ U . When E = Qn
p and

F = Qm
p (or more generally when E and F are equipped with distinguished bases) the matrix of

the linear mapping dfx is the Jacobian matrix J(f)x defined by:

J(f)x =

(
∂fj
∂xi

(x)

)
16i6n, 16j6m

where x1, . . . , xn are the coordinates of E and f1, . . . , fm are the components of f .

Remark 3.14. Similarly to the univariate case (see Remark 3.12), a function f : U → F is
of class C1 if and only if there exist a covering (Ui)i∈I of U and some continuous real-valued
functions εi : R+ → R+ with εi(0) = 0 such that:

∀i ∈ I, ∀x, y ∈ Ui, ‖f(y)− f(x)− (y−x)f ′(x)‖F 6 ‖y−x‖E · εi
(
‖y−x‖E

)
. (3.8)

and one can just take I = {?} and U? = U when U is compact.

3.1.4 The precision Lemma

The precision Lemma is a result of p-adic analysis controlling how lattices transform under
sufficiently regular mappings. Before stating it, we need a definition.

Definition 3.15. Let E be a normed vector space over Qp. Given ρ ∈ (0, 1] and r > 0, we say
that a lattice H ⊂ E is ρ-rounded, r-small if BE(ρr) ⊂ H ⊂ BE(r).

When E = Qd
p (endowed with the infinite norm), one can determine ρ and r satisfying the

conditions of Definition 3.15 by looking at any matrix M representing the lattice H (see §3.1.2).
Indeed, if n is an integer for which the matrix pnM has all its entries in Zp, the lattice pnH is
included in Znp = BE(1), meaning that H ⊂ BE(pn). Similarly BE(p−m) ⊂ H whenever m is an
integer such that pmM−1 ∈Md(Zp). Therefore if n is the smallest valuation of an entry of M and
m is the smallest valuation of an entry of M−1, the corresponding lattice H is (pn+m)-bounded,
pn-small.
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Theorem 3.16 (Precision Lemma). Let E and F be two finite-dimensional p-adic normed vector
spaces and let f : U → F be a function of class C1 defined on an open subset U of E.

Let v ∈ U be such that dfv is surjective. Then, for all ρ ∈ (0, 1], there exists a positive real number
δ such that, for any r ∈ (0, δ), any lattice ρ-bounded r-small lattice H satisfies:

f(v +H) = f(v) + dfv(H). (3.9)

Unfortunately the precision Lemma is a bit technical; understanding its precise content is then
probably not easy at first glance. In order to help the reader, let us say that the most important
part of the precision Lemma is the conclusion, namely Eq. (3.9). This equation explains how
f transforms a “shifted” lattice (i.e. a lattice translated by some vectors) and teaches us that f
transforms a shifted lattice into another shifted lattice! From people coming from the real world,
this result should appear as really amazing: in the real case, the image of an ellipsoid under a
function f is in general definitely not another ellipsoid (unless f is affine). In the p-adic case, this
happens for any function f of class C1 with surjective differential (this assumption is important)
and almost any lattice H (the assumptions on H are actually rather weak though technical). This
is the magic of ultrametricity.

Below, we give the proof of the precision Lemma and discuss several extensions. We advise
the reader who is more interested by applications (than by computations with ε) to skip the end
of the subsection and go directly to §3.2, page 53.

Proof of Theorem 3.16. Without loss of generality, we may assume v = 0 and f(0) = 0. From the
surjectivity of df0, we derive that there exists a positive constant C such that BF (1) ⊂ df0(BE(C)).
Pick ε < ρ

C , and choose a positive real number δ for which

‖f(b)− f(a)− df0(b−a)‖F 6 ε · ‖b−a‖E (3.10)

on the ball BE(δ). Let r ∈ (0, δ). We suppose that H is a lattice with BE(ρr) ⊂ H ⊂ BE(r). We
seek to show that f mapsH surjectively onto df0(H). We first prove that f(H) ⊂ df0(H). Suppose
x ∈ H. Applying Eq. (3.10) with a = 0 and b = x, we get ‖f(x) − df0(x)‖F 6 ε‖x‖E . Setting
y = f(x)− df0(x), we have ‖y‖F 6 εr. The definition of C implies that BF (εr) ⊂ df0(BE(ρr)).
Thus there exists x′ ∈ BE(ρr) such that df0(x′) = y. Then f(x) = df0(x− x′) ∈ df0(H).

We now prove surjectivity. Let y ∈ df0(H). Let x0 ∈ H be such that y = df0(x0). We
inductively define two sequences (xn) and (zn) by the following cross requirements:

• zn is an element of E satisfying df0(zn) = y − f(xn) and ‖zn‖E 6 C · ‖y − f(xn)‖F , and

• xn+1 = xn + zn.

For convenience, let us also define x−1 = 0 and z−1 = x0. We claim that the sequences (xn) and
(zn) are well defined and take their values in H. We do so by induction, assuming that xn−1 and
xn belong to H and showing that zn and xn+1 do as well. Noticing that

y − f(xn) = f(xn−1) + df0(zn−1)− f(xn)

= f(xn−1)− f(xn)− df0(xn−1 − xn)
(3.11)

we deduce using differentiability that ‖y − f(xn)‖F 6 ε · ‖xn − xn−1‖E . Since we are assuming
that xn−1 and xn lie in H ⊂ BE(r), we find ‖y − f(xn)‖ 6 εr. Thus ‖zn‖ 6 C · εr < ρr and then
zn ∈ H. From the relation xn+1 = xn + zn, we finally deduce xn+1 ∈ H.

Using (3.11) and differentiability at 0 once more, we get

‖y − f(xn)‖ 6 ε · ‖zn−1‖ 6 εC · ‖y − f(xn−1)‖,

for all n > 0. Therefore, ‖y − f(xn)‖ = O(an) and ‖zn‖ = O(an) for a = εC < ρ 6 1. These
conditions show that (xn)n>0 is a Cauchy sequence, which converges since E is complete (see
Corollary 3.5). Write x for the limit of the xn; we have x ∈ H because H is closed (see
again Corollary 3.5). Moreover, f is continuous on H ⊆ Uε since it is differentiable, and thus
y = f(x).
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For the applications we have in mind, Theorem 3.16 is actually a bit too weak because it is
not effective: the value of δ is not explicit whereas we will often need it in concrete applications.
In the most general case, it seems difficult to say much more about δ. Nevertheless, there are
many cases of interest where the dependence on δ can be made explicit. The simplest such case
is that of multivariate polynomials and is covered by the next proposition.

Proposition 3.17. Let f : Qn
p → Qm

p be a function whose coordinates are all multivariate polyno-
mials with coefficients in Zp. Let v ∈ Znp such that dfv is surjective. Then Eq. (3.9) holds as soon as
H ⊂ BE(r) and BF (pr2) ⊂ dfv(H) for some positive real number r.

Remark 3.18. The case where f is a multivariate polynomial with coefficients in Qp reduces to
the above proposition by multiplying f by an appropriate constant. Similarly, if the point v does
not lie in Znp but in Qn

p , we can shift and rescale the polynomial f in order to place ourselves
within the scope of application of Proposition 3.17.

The proof of Proposition 3.17 is based on the following Lemma.

Lemma 3.19. Let g : Qn
p → Qm

p be a function whose coordinates are all multivariate polynomials
with coefficients in Zp. Then

‖g(b)− g(a)− dg0(b−a)‖ 6 max
(
‖a‖, ‖b‖

)
· ‖b−a‖

for all a, b ∈ Znp .

Proof. We may assume m = 1. By linearity, we may further assume that g(x1, . . . , xn) =
xα1
1 · · ·xαn

n . If the sum of the αi’s is at most 1, the quantity g(b)− g(a)− dg0(b−a) vanishes and
the lemma is clear. Otherwise the differential dg0 vanishes and we write:

g(b1, . . . , bn)− g(a1, . . . , an)

= (bα1
1 − a

α1
1 )bα2

2 · · · bαn
n + aα1

1 (bα2
2 − a

α2
2 )bα3

3 · · · bαn
n + · · ·+ aα1

1 · · · a
αn−1

n−1 (aαn
n − bαn

n ).

Noting that bαi
i − a

αi
i = (bi − ai)

∑αi−1
k=0 bki a

αi−1−k
i and remembering that α1 + · · ·+ αn > 2, we

get the announced result by applying the ultrametric triangular inequality.

Proof of Proposition 3.17. Let H be a lattice satisfying the assumptions of the proposition. Let n
be the largest relative integer for which pn 6 r. ThenBE(r) = BE(pn) andBF (p2n+1) ⊂ BF (pr2),
so that H ⊂ BE(pn) and BF (p2n+1) ⊂ dfv(H).

SetH ′ = pnH; clearlyH ′ is a lattice contained inBE(1). Let ϕ : Qn
p → Qn

p be a linear mapping
taking bijectively BE(1) to H ′. Consider the composite g = f ◦ (v + ϕ). From H ′ ⊂ BE(1), we
deduce that the entries of the matrix of ϕ (in the canonical basis) lie in Zp. Since moreover
v ∈ Znp , we deduce that all the coordinates of g are given by multivariate polynomials with
coefficients in Zp. Furthermore, we have:

f(v +H) = f(v + p−nH ′) = f(v + ϕ(BE(pn)) = g(BE(pn))

and f(v) + dfv(H) = f(v) + dfv ◦ ϕ(BE(pn)) = g(0) + dg0(BE(pn)).

We then have to prove that g(BE(pn)) = g(0) + dg0(BE(pn)) knowing that g is a multivariate
polynomial function with coefficients in Zp and BF (pn+1) ⊂ dg0(BE(1)). This can be done by
following the lines of the proof of Theorem 3.16 and refining Eq. (3.10) by the estimation of
Lemma 3.19.

Other results concerning more general f and building on the machinery of Newton polygons
are available in the literature. We refer the reader to [18] for the case of locally analytic functions
and to [19] for the case of solutions of partial differential equations of order 1.
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3.2 Optimal precision and stability of algorithms

The precision Lemma (Theorem 3.16) provides the mathematical tools for finding the intrinsic
optimal loss/gain of precision of a given problem and then for studying the stability of numerical
p-adic algorithms.

3.2.1 The precision Lemma at work

Consider an “abstract p-adic problem” encoded by a mathematical function ϕ : U → F where U is
an open subset in a finite dimensional p-adic vector space E and F is another finite dimensional
p-adic vector space. The modelling is straightforward: the domain U is the space of inputs, the
codomain F is the space of outputs and ϕ is the mapping sending an input to the expected output.
Many concrete problems fit into this framework: for instance ϕ can be the function mapping a
pair of p-adic numbers to their sum or their product, but it can also be the function mapping a
polynomial (of a given degree) to its derivative, a matrix (of given dimensions) to its inverse, a
family of multivariate polynomials (of given size and degrees) to its reduced Gröbner basis, etc.

In order to apply the precision Lemma, we shall assume that ϕ is of class C1. This hypothesis
is not restrictive at all in practice since in many common cases, the function ϕ has much more
regularity than that: it is often obtained by composing sums, products, divisions and if-statements
so that it is locally given by multivariate rational fractions. We suppose furthermore that E
and F are endowed with distinguished bases (e1, . . . , en) and (f1, . . . , fm) respectively. This
choice models the way the elements of E and F are represented on the computer. For instance
if E = Qp[X]<n (the vector space of polynomials of degree less than n) and polynomials are
represented internally by the list of their coefficients, we will just choose the canonical basis. On
the contrary, if polynomials are represented as linear combinations of the shape:

λ0 + λ1X + λ2X(X−1) + · · ·+ λn−1X(X−1) · · · (X−n+2)

then the distinguished basis we will choose is (1, X,X(X−1), . . . , X(X−1) · · · (X−n+2)).

Context of zealous arithmetic

Recall that, in the zealous point of view, p-adic numbers are modeled by intervals of the form
a + O(pN ). As a consequence the input of the problem we are studying will not be an actual
element of U but a quantity of the form:(

a1 +O
(
pN1
))
· e1 +

(
a2 +O

(
pN2
))
· e2 + · · ·+

(
an +O

(
pNn

))
· en

which can be rewritten as the shifted lattice v +H with:

v = a1e1 + a2e2 + · · ·+ anen

H = SpanZp

(
pN1e1, p

N2e2, · · · , pNnen
)
.

Similarly the output takes the form:(
b1 +O

(
pM1

))
· f1 +

(
b2 +O

(
pM2

))
· f2 + · · ·+

(
bm +O

(
pMm

))
· fm

where the bj ’s are the coordinates of ϕ(v) and then do not depend (fortunately) on the algorithm
we are using to evaluate ϕ. On the other hand, the Mj ’s may — and do — depend on it. The
question we address here can be formulated as follows: what is the maximal value one can expect
for the Mj ’s? In other words: what is the optimal precision one can expect on the output (in
terms of the initial precision we had on the inputs)?

The precision Lemma provides a satisfying answer to this question. Indeed, for j ∈ {1, . . . ,m},
let prF,j : F → Qp be the linear mapping taking a vector to its j-th coordinate (in the distinguished

53



basis (f1, . . . , fm) we have fixed once for all). From the precision Lemma applied to the composite
ϕj = prF,j ◦ ϕ, we get:

ϕj(v +H) = ϕj(v) + dϕj,v(H) = bj + dϕj,v(H) (3.12)

as soon as dϕj,v is surjective (and H satisfies some additional mild assumptions that we will
ignore for now). Under these assumptions, Eq. (3.12) holds and the equality signs in it show
that the optimal precision O(pMj ) we were looking for is nothing but dϕj,v(H); note that the
latter is a lattice in Qp and then necessarily takes the form pMjZp = O(pMj ) for some relative
integer Mj . Note moreover that the surjectivity of dϕj,v is equivalent to its non-vanishing (since
dϕj,v takes its value in a one-dimensional vector space). Furthermore, by the chain rule, we have
dϕj,v = prF,j ◦ dϕv because prF,j is linear and then agrees with its differential at any point.

Finding the optimal precision O(pMj ) can then be done along the following lines: we first
compute the Jacobian matrix J(ϕ)v of ϕ at the point v and form the product:

A =

p
N1

. . .
pNn

 · J(ϕ)v (3.13)

whose rows generate dϕj,v(H). The integer Mj appears then as the smallest valuation of an
entry of the j-th column of A (unless this column vanishes in which case the precision Lemma
cannot be applied). Of course, the computation of the Jacobian matrix can be boring and/or time-
consuming; we shall see however in §3.2.2 below that, in many situations, simple mathematical
arguments provide closed formulas for J(ϕ)v, avoiding this way their direct computation.

The notion of diffused digits of precision. One important remark is that the lattice:

H ′ = SpanZp

(
pM1f1, p

M2f2, · · · , pMmem
)
⊂ F

(for the Mj ’s we have constructed) does satisfy f(v + H) ⊂ f(v) + H ′ but does not satisfy
f(v +H) = f(v) +H ′ in general. In other words, although we cannot expect more correct digits
on each component of the output separately, the precision on the output is globally not optimal.
Below is a very simple example illustrating this point.

Example. Assume that we want to evaluate an affine polynomial at the two points 0 and p. The
function ϕ modeling this problem is:

ϕ : Qp[X]61 → Q2
p, P (X) = aX + b 7→ (P (0), P (p)) = (b, ap+b).

It is a linear function so its Jacobian is easy to compute. We find J(ϕ) =
(

0 p
1 1

)
. We assume

furthermore that the inputs a and b are both given at precision O(pN ). We then find that the
optimal precision on P (0) and P (p) is O(pN ) as well. Nevertheless the determinant of J(ϕ) is
apparently p; hence J(ϕ) is not invertible in M2(Zp) and its row vectors generate a lattice which
is strictly smaller than Z2

p. What does happen concretely? The main observation is that the
difference P (p)−P (0) = ap can be computed at precision O(pN+1) because of the multiplication
by p. There is thus one more digit that we know but this digit is “diffused” between P (0) and
P (p) and only appears when we look at the difference.

The phenomenon enlighten in the above example is quite general: we cannot in general reach
the optimal precision by just giving individual precision on each coordinate of the output (we say that
some digits of precision are diffused over several coordinates)... but this becomes always20 possible
after a suitable base change (which recombines the diffused digits of precision into actual digits). In
order to make this sentence more precise, we first formulate a rigorous definition concerning the
diffusion of the digits of precision.

20At least when the precision Lemma applies...
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Definition 3.20. Let F be a finite dimensional vector space over Qp with basis (f1, . . . , fm).
We say that a lattice H is diagonal with respect to (f1, . . . , fm) if it has the shape H =
SpanZp

(
pν1f1, . . . , p

νmfm
)

for some relative integers ν1, . . . , νm.
The number of diffused digits (with respect to (f1, . . . , fm)) of a given lattice H is the logarithm in
base p of the index of H in the smallest diagonal lattice containing H.

Roughly speaking, the number of diffused digits of a lattice H with respect to the basis
(f1, . . . , fm) quantifies the quality of the basis for expressing the precision encoded by H: if H
has no diffused digit, it is represented by a diagonal matrix and the precision splits properly into
each coordinate. On the contrary, if H has diffused digits, writing the precision in the system of
coordinates associated with (f1, . . . , fm) leads to non optimal results. We remark furthermore
that there always exists a basis in which the number of diffused digits of a given lattice H is zero:
it suffices to take a basis whose Zp-span is H (such a basis always exists by Proposition 3.3).

Before going further, let us emphasize that, given a set of generators of H, it is not difficult
to compute effectively its number of diffused digits of precision. Indeed, let M be a matrix
whose row vectors span H. Pick in addition a diagonal lattice H ′ = SpanZp

(
pν1f1, . . . , p

νmfm
)

with H ⊂ H ′. By projecting on the j-th coordinate we see that νj is at least the smallest
valuation vj of an entry of the j-th column of M . Conversely, one easily checks that the diagonal
lattice SpanZp

(
pv1f1, . . . , p

vmfm
)

contains H. Thus the smallest diagonal matrix containing H is
SpanZp

(
pv1f1, . . . , p

vmfm
)
. It follows that the number of diffused digits of precision of H with

respect to the basis (f1, . . . , fm) is given by:

(v1 + v2 + · · ·+ vm)− valp(detM). (3.14)

If M is in Hermite normal form (see §3.1.2) this quantity vanishes if and only if M is indeed
diagonal.

We now go back to our initial question: we want to analyze the optimal precision for the
computation of ϕ(v) for v is given at precision H = SpanZp

(
pN1e1, p

N2e2, · · · , pNnen
)
. The

precision Lemma applied with ϕ itself (assuming that the hypotheses of the precision Lemma are
fulfilled of course) yields the equality:

ϕ(v +H) = ϕ(v) + dϕv(H).

The number of diffused digits of precision resulting from the computation of ϕ(v) is then the
number of diffused digits of the lattice dϕv(H). If we are working in the basis (f1, . . . , fn), this
number can be large, meaning that writing down the precision in this basis can be weak. However,
if we are allowing a change of basis on the codomain, we can always reduce the number of
diffused digits to 0; in such a basis, the precision can be made optimal!

Context of lazy/relaxed arithmetic

As we have explained in §2.4.1, the point of view of lazy/relaxed arithmetic differs from the
zealous one on the following point: instead of fixing the precision on the input and propagating it
to the outputs, it fixes a target precision and infers from it the precision needed on the inputs. Of
course, in order to save time and memory, we would like to avoid the computation of unnecessary
digits. Regarding precision, the question then becomes: what is the minimal number of digits we
have to compute on the inputs in order to ensure a correct output at the requested precision?

This question translates into our precision language as follows: we fix some relative integers
M1, . . . ,Mm and look for relative integers N1, . . . , Nn for which:

ϕ(v +H) ⊂ ϕ(v) +H ′ (3.15)

with H = SpanZp

(
pN1f1, . . . , p

Nnen
)

(the unknown) and H ′ = SpanZp

(
pM1f1, . . . , p

Mmfm
)
.

Assuming that the precision Lemma applies for ϕ and H, Eq. (3.15) is equivalent to dϕv(H) ⊂ H ′,
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i.e. H ⊂ dϕ−1v (H ′). The problem then reduces to find the largest diagonal lattice sitting in
dϕ−1v (H ′).

The comparison with the zealous situation is instructive: in the zealous case, one had the
lattice dϕv(HZeal) and we were looking for the smallest diagonal lattice containing it. The
problem is now “reversed” and can actually be related to the zealous problem using duality.
Before going further, we need to recall basic facts about duality and lattices.

Given V a finite dimensional Qp-vector space, we define its dual V ? as the space of Qp-linear
forms on V . We recall that there is a canonical isomorphism between V and its bidual V ??;
it maps an element x ∈ V to the linear form taking ` ∈ V ? to `(x). We recall also that each
basis (v1, . . . , vd) of V has a dual basis (v?1, . . . , v

?
d) defined by v?j (vi) = 1 if i = j and v?j (vi) = 0

otherwise.
If L ⊂ V is any Zp-module, its dual L? is defined by as the subset of V ? consisting of linear

forms ` : V → Qp for which `(L) ⊂ Zp. Clearly L? is a sub-Zp-module of V ?. One can check
that the construction L 7→ L? is involutive (i.e. L?? = L), order-reversing (i.e. if L1 ⊂ L2 then
L?2 ⊂ L?1) and preserves diagonal lattices (i.e. if L is a diagonal lattice with respect to some basis
then L? is a diagonal lattice with respect to the dual basis).

Remark 3.21. If L is a lattice, so is L?. More precisely, if (v1, . . . , vd) is a basis of V and M is a
square matrix whose rows span L (with respect to the above basis), it is easily checked that L?

is spanned by the rows of tM−1 (with respect to the dual basis). On the contrary if L does not
generate V as a Qp-vector space, the dual space L? contains a Qp-line; conversely if L contains a
Qp-line then L? does not generate V ? over Qp.

Applying the above formalism to our situation, we find that the condition H ⊂ dϕ−1v (H ′)
we want to ensure is equivalent to dϕ−1v (H ′)? ⊂ H?. Our problem then reduces to finding the
smallest diagonal lattice containing dϕ−1v (H ′)?. By the analysis we have done in the zealous
context, the integer Ni we are looking for then appears as the smallest valuation of an entry of
i-th column of a matrix whose rows span the space dϕ−1v (H ′)? (with respect to the dual basis
(e?1, . . . , e

?
n)). Computing dϕ−1v (H ′)? using Remark 3.21 (and taking care of the possible kernel of

dϕv), we finally find that Ni is the opposite of the smallest valuation of an entry of the i-th row
of the matrix:

J(ϕ)v ·

p
−M1

. . .
p−Mm


where J(ϕ)v is the Jacobian matrix of ϕ at v (compare with (3.13)).

3.2.2 Everyday life examples revisited

We revisit the examples of §2.4.3 in light of the theory of p-adic precision.

The p-power map

As a training example, let us first examine the computation of the p-power map (though
technically it was not treated in §2.4.3 but at the end of §2.4.2). Recall that we have seen that
raising an invertible p-adic integer x at the power p gains one digit of precision: if x is given at
precision O(pN ), one can compute xp at precision O(pN+1).

We introduce the function ϕ : Qp → Qp taking x to xp. It is apparently of class C1 and its
differential at x is the multiplication by ϕ′(x) = pxp−1. The Jacobian matrix of ϕ at x is then the
1× 1 matrix whose unique entry is pxp−1. By the results of §3.2.1 (see particularly Eq. (3.12)),
the optimal precision on xp is the valuation of

(pxp−1)× pN = pN+1xp−1.
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We recover this way the exponent N+1 thanks to the factor p which appears in the Jacobian.
Unlike Lemma 2.18, the method we have just applied here teaches us in addition that the
exponent N+1 cannot be improved.

Determinant

We take here ϕ = det : Md(Qp)→ Qp. We endow Md(Qp) with its canonical basis and let xi,j
denote the corresponding coordinate functions: for A ∈Md(Zp), xi,j(A) is the (i, j) entry of A.
Fix temporarily a pair (i, j). Expanding the determinant according to the i-th row, we find that
ϕ is an affine function of xi,j whose linear term is (−1)i+jxi,j · detGi,j where Gi,j is the matrix
obtained from the “generic” matrix G = (xi,j)16i,j6d by erasing the i-th row and the j-th column.
Therefore ∂ϕ

∂xi,j
= (−1)i+j detGi,j . Evaluating this identity at some matrix M ∈Md(Qp), we get

the well-known formula:
∂ϕ

∂xi,j
(M) = (−1)i+j detMi,j (3.16)

where Mi,j is the matrix obtained from M by erasing the i-th row and the j-th column. The
Jacobian matrix of ϕ at M is then the column matrix (whose rows are indexed by the pairs (i, j)
for 1 6 i, j 6 d) with entries (−1)i+j detMi,j . According to the results of §3.2.1 (see especially
Eq. (3.12)), the optimal precision for detM , when the (i, j) entry of M is given at precision
O(pNi,j ), is:

O
(
pN
′)

for N ′ = mini,j
(
Ni,j + val(Mi,j)

)
. (3.17)

Remember of course that this conclusion is only valid when the assumptions of the precision
Lemma are all fulfilled. Nonetheless, relying on Proposition 3.17 (after having noticed that the
determinant is a multivariate polynomial function), we can further write down explicit sufficient
conditions for this to hold. These conditions take a particularly simple form when all the entries
of M are given at the same precision O(pN ): in this case, we find that the precision (3.17) is
indeed the optimal precision as soon as N ′ > val(detM), i.e. as soon as it is possible to ensure
that detM does not vanish.

The general result above applies in particular to the matrix M considered as a running
example in §2.4.3 (see Eq. (2.7)):

M =

 . . . 0101110000 . . . 0011100000 . . . 1011001000 . . . 0011000100
. . . 1101011001 . . . 1101000111 . . . 0111001010 . . . 0101110101
. . . 0111100011 . . . 1011100101 . . . 0010100110 . . . 1111110111
. . . 0000111101 . . . 1101110011 . . . 0011010010 . . . 1001100001

 ∈M4(Z2). (3.18)

Recall that all the entries of M were given at the same precision O(210). A simple computation
(using zealous arithmetic) shows that the comatrix of M (i.e. the matrix whose (i, j) entry is
(−1)i+j detMi,j) is:

Comatrix(M) =

 . . . 1111000000 . . . 0001100000 . . . 1101000000 . . . 1001100000
. . . 0111000000 . . . 0011100000 . . . 1001000000 . . . 1011100000
. . . 0111000000 . . . 0001100000 . . . 0111000000 . . . 0011100000
. . . 1010000000 . . . 0111000000 . . . 1110000000 . . . 0011000000


We observe that the minimal valuation of its entries is 5 (it is reached on the second column),
meaning that the optimal precision on detM is O(215). Coming back to §2.4.3, we see that
the interval floating-point arithmetic reached this accuracy whereas zealous interval arithmetic
missed many digits (without further help).

Computation of determinants with optimal precision. It is worth remarking that one can design
a simple algorithm that computes the determinant of a p-adic matrix at the optimal precision
within the framework of zealous arithmetic when the coefficients of the input matrix are all given
at the same precision O(pN ). This algorithm is based on a variation of the Smith normal form
that we state now.
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Proposition 3.22. Any matrix M ∈Md(Qp) admits a factorization of the following form:

M = P ·

a1 . . .
ad

 ·Q (3.19)

where P and Q are have determinant ±1, the matrix in the middle is diagonal and its diagonal
entries satisfy val(a1) 6 · · · 6 val(ad).

The factorization (3.19) is quite interesting for us for two reasons. First of all, it reveals the
smallest valuation of an entry of the comatrix of M : it is

v = val(a1) + val(a2) + · · ·+ val(ad−1). (3.20)

Indeed, taking exterior powers, one proves the entries of Comatrix(M) and Comatrix(P−1MQ−1)
span the same Zp-submodule of Qp. Moreover, since P−1MQ−1 is diagonal, its comatrix is easily
computed; we find:

Comatrix(P−1MQ−1) =

b1 . . .
bd

 with bi = a1 · · · ai−1ai+1 · · · ad

(recall that Comatrix(A) = detA ·A−1 if A is invertible) and we are done. The direct consequence
of this calculation is the following: if the entries of M are all given at precision O(pN ), the optimal
precision on detM is O(pN+v) (assuming v < N).

The second decisive advantage of the factorization (3.19) is that it can be computed without
any loss of precision. The underlying algorithm basically follows the lines of the Hermite reduction
we have presented in §3.1.2, except on the three following points:

• instead of choosing the pivot as an entry of smallest valuation on the working column, we
choose as an entry of smallest valuation on the whole matrix,

• we do not only clear the entries behind the pivot but also the entries located on the right of
the pivot,

• in order to keep the transformation matrices of determinant ±1, we do not rescale rows.

For example, starting with our favorite matrix M (see Eq. (3.18) above), we first select the (2, 1)
entry (which has valuation 0), we put it on the top left corner and use it as pivot to clear the
entries on the first row and the first column. Doing so, we obtain the intermediate form: . . . 1101011001 0 0 0

0 . . . 0001010000 . . . 0101101000 . . . 0100010100
0 . . . 0111101000 . . . 0101011000 . . . 1100100000
0 . . . 1010010000 . . . 0011100000 . . . 0110011000


and we retain that we have swapped two rows, implying that the determinant of the above matrix
is the opposite to the determinant of M . We now select the (2, 4) entry (which as valuation 2)
and continue the reduction: . . . 1101011001 0 0 0

0 . . . 0100010100 0 0
0 0 . . . 0100011000 . . . 0101101000
0 0 . . . 0000110000 . . . 0000110000


We observe that we have not lost any precision in this step (all the entries of the matrix above
are known at precision O(210)), and this even if our pivot had positive valuation. It is actually
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a general phenomenon due to the fact that we always choose the pivot of smallest valuation.
Continuing this process, we end up with the matrix: . . . 1101011001 0 0 0

0 . . . 0100010100 0 0
0 0 . . . 0100011000 0
0 0 0 . . . 1101100000


Now multiplying the diagonal entries, we find detM = 210 × ...01101 with precision O(215)!

For a general M , the same precision analysis works. Indeed, when the entries of M are all
given at precision O(pN ), the reduction algorithm we have sketched above outputs a diagonal
matrix whose determinant is the same as the one of M and whose diagonal entries a1, . . . , ad are
all known at precision O(pN ). By Proposition 2.3 (see also Remark 2.4), zealous arithmetic can
compute the product a1a2 · · · ad at precision O(pN+w) with

w = val(a1) + · · ·+ val(ad)−maxival(ai).

We then recover the optimal precision given by Eq. (3.20).

Characteristic polynomial

The case of characteristic polynomials has many similarities with that of determinants. We
introduce the function ϕ : Md(Qp) → Qp[X]<d that maps a matrix M to ϕ(M) = det(XId −
M)−Xd where Id is the identity matrix of size d. The renormalization (consisting in subtracting
Xd) is harmless but needed in order to ensure that ϕ takes its values in a vector space (and not
an affine space) and has a surjective differential almost everywhere. The partial derivatives of ϕ
are:

∂ϕ

∂xi,j
(M) = (−1)i+j · det(XId −M)i,j

where (XId −M)i,j is the matrix obtained from XId−M by deleting the i-th row and the j-th
column (compare with Eq. (3.16)). The Jacobian matrix J(ϕ)M of ϕ at M is then a matrix with
d2 rows, indexed by pairs (i, j) with 1 6 i, j 6 d, and d columns whose row with index (i, j)
contains the coefficients of the polynomial (−1)i+j · det(XId −M)i,j . Using again the results of
§3.2.1, the optimal precision on each coefficient of the characteristic polynomial of M can be
read off from J(ϕ)M .

Let us explore further our running example: the matrix M given by Eq. (3.18) whose entries
are all known at precision O(210). A direct computation leads to the Jacobian matrix displayed
on the left of Figure 3.2. We observe that the minimal valuation of an entry of the column of Xj

is 0, 0, 2 and 5 when j is 3, 2, 1 and 0 respectively. Consequently the optimal precision on the
coefficients of X3, X2, X and on the constant coefficient are O(210), O(210), O(212) and O(215)
respectively. Coming back to §2.4.3, we notice that floating-point arithmetic found all the correct
digits.

We observe moreover that the Hermite normal form of the Jacobian matrix (shown on the
right on Figure 3.2) is diagonal. There is therefore no diffused digit of precision for this example;
in other words the precision written as O(p10)X3 +O(p10)X2 +O(p12)X +O(p15) is sharp.

Let us now have a look at the matrix N = I4+M . Playing the same game as before, we obtain
the Jacobian matrix displayed on the left of Figure 3.3. Each column of this matrix contains an
entry of valuation zero. The optimal precision on each individual coefficient of the characteristic
polynomial of N is then no more than O(p10). However the Hermite reduced form of the Jacobian
is now no longer diagonal, meaning that diffused digits of precision do appear. One can moreover
count them using Eq. (3.14) (applied to the Hermite normal form of the Jacobian): we find 7.
This means that the precision

O(p10)X3 +O(p10)X2 +O(p10)X +O(p10)
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(i, j) X3 X2 X 1

(1, 1)


1 . . . 0110110010 . . . 0111111000 . . . 0001000000


(1, 2) 0 . . . 0011100000 . . . 1011010100 . . . 1110100000
(1, 3) 0 . . . 1011001000 . . . 1001001000 . . . 0011000000
(1, 4) 0 . . . 0011000100 . . . 1111100100 . . . 0110100000
(2, 1) 0 . . . 1101011001 . . . 1010010000 . . . 1001000000
(2, 2) 1 . . . 1110001001 . . . 1001001100 . . . 1100100000
(2, 3) 0 . . . 0111001010 . . . 0110011000 . . . 0111000000
(2, 4) 0 . . . 0101110101 . . . 0111111100 . . . 0100100000
(3, 1) 0 . . . 0111100011 . . . 1010000000 . . . 1001000000
(3, 2) 0 . . . 1011100101 . . . 1110100000 . . . 1110100000
(3, 3) 1 . . . 0011101000 . . . 1001000100 . . . 1001000000
(3, 4) 0 . . . 1111110111 . . . 1111100100 . . . 1100100000
(4, 1) 0 . . . 0000111101 . . . 0010111000 . . . 0110000000
(4, 2) 0 . . . 1101110011 . . . 1101011000 . . . 1001000000
(4, 3) 0 . . . 0011010010 . . . 1101001000 . . . 0010000000
(4, 4) 1 . . . 1010100011 . . . 0111010000 . . . 1101000000

Hermite−→

X3 X2 X 1

1 0 0 0


0 1 0 0
0 0 22 0
0 0 0 25

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Figure 3.2: The Jacobian of the characteristic polynomial at M

(i, j) X3 X2 X 1

(1, 1)


1 . . . 0110101111 . . . 1010010111 . . . 1111111001


(1, 2) 0 . . . 0011100000 . . . 0100010100 . . . 0110101100
(1, 3) 0 . . . 1011001000 . . . 0010111000 . . . 0101000000
(1, 4) 0 . . . 0011000100 . . . 1001011100 . . . 1010000000
(2, 1) 0 . . . 1101011001 . . . 1111011110 . . . 1100001001
(2, 2) 1 . . . 1110000110 . . . 1100111101 . . . 0001011100
(2, 3) 0 . . . 0111001010 . . . 1000000100 . . . 0111110010
(2, 4) 0 . . . 0101110101 . . . 1100010010 . . . 0010011001
(3, 1) 0 . . . 0111100011 . . . 1010111010 . . . 0110100011
(3, 2) 0 . . . 1011100101 . . . 0111010110 . . . 1011100101
(3, 3) 1 . . . 0011100101 . . . 0001110111 . . . 0011100011
(3, 4) 0 . . . 1111110111 . . . 1111110110 . . . 1100110011
(4, 1) 0 . . . 0000111101 . . . 0000111110 . . . 0100000101
(4, 2) 0 . . . 1101110011 . . . 0001110010 . . . 1001011011
(4, 3) 0 . . . 0011010010 . . . 0110100100 . . . 1000001010
(4, 4) 1 . . . 1010100000 . . . 0010001101 . . . 0000010010

Hermite−→

X3 X2 X 1

1 0 1 30


0 1 2 29
0 0 22 28
0 0 0 25

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Figure 3.3: The Jacobian of the characteristic polynomial at I4+M
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(2, 1) (3, 1) (3, 2) (4, 1) (4, 2) (4, 3)

(1, 1) 

. . . 11,00110111 . . . 11,01001101 . . . 1100101 . . . 00,10010011 . . . 1100010 . . . 001,01 

(1, 2) 0 0 . . . 110101,1 0 . . . 011111 . . . 100,01
(1, 3) 0 0 0 0 0 . . . 1011,1
(1, 4) 0 0 0 0 0 0
(2, 1) . . . 111010,0111 . . . 000000 . . . 0111001110 . . . 000 . . . 11100010 . . . 0110,111
(2, 2) 0 0 . . . 0100001001 0 . . . 0011111 . . . 1111,011
(2, 3) 0 0 0 0 0 . . . 10111,01
(2, 4) 0 0 0 0 0 0
(3, 1) 0 . . . 111010,0111 . . . 00110100110 . . . 000 . . . 00000000 . . . 1111,11
(3, 2) 0 0 . . . 0111011101 0 . . . 0000000 . . . 1000,11
(3, 3) 0 0 0 0 0 . . . 11010,1
(3, 4) 0 0 0 0 0 0
(4, 1) 0 0 0 . . . 111010,0111 . . . 00110100110 . . . 1010,011
(4, 2) 0 0 0 0 . . . 0111011101 . . . 0100,111
(4, 3) 0 0 0 0 0 . . . 00100,01
(4, 4) 0 0 0 0 0 0

Hermite−→



2−8 2−8 × 11 0 2−8 × 5 0 0


0 2−4 0 0 0 0

0 0 2−1 0 0 2−3

0 0 0 2−4 0 2−3

0 0 0 0 1 2−3

0 0 0 0 0 2−2

Figure 3.4: The Jacobian of the L-part of the LU factorization at M

is not sharp; more precisely, after a suitable base change on Qp[X]<d, it should be possible to
visualize seven more digits. Given that χN (X) = χM (X−1), this base change is of course the
one which is induced by the change of variable X 7→ X−1.

LU factorization

Given a positive integer d, define Ld(Zp) as the subspace of Md(Zp) consisting of lower
triangular matrices with zero diagonal. Similarly let Ud(Zp) be the subspace space of Md(Zp)
consisting of upper triangular matrices. Clearly Ld(Zp) and Ud(Zp) are p-adic vector spaces of
respective dimensions d(d−1)

2 and d(d+1)
2 . Let U be the open subset of Md(Zp) defined by the

non-vanishing of all principal minors. We define two mappings:

ϕ : U → Ld(Zp), M 7→ L−Id and ψ : U → Ld(Zp), M 7→ U

where M = LU is the (unique) LU factorization of M . In order to compute the differentials of
ϕ and ψ21, we simply differentiate the defining relation M = LU . We get this way the relation
dM = dL · U + L · dU . We rewrite it as:

L−1 · dM · U−1 =
(
L−1 · dL

)
+
(
dU · U−1

)
and observe that the first summand of the right hand side is strictly lower triangular whereas
the second summand of upper triangular. We therefore derive dL = L · Lo

(
L−1 · dM · U−1

)
and

dU = Up
(
L−1 · dM · U−1

)
· U where Lo (resp. Up) is the projection on the first factor (resp. on

the second factor) of the decomposition Md(Zp) = Ld(Zp)⊕Ud(Zp). The differentials of ϕ and ψ
at M ∈ U are then given by the linear mappings:

dϕM : Md(Zp)→ Ld(Zp), dM 7→ L · Lo
(
L−1 · dM · U−1

)
dψM : Md(Zp)→ Ud(Zp), dM 7→ Up

(
L−1 · dM · U−1

)
· U

where L and U are the “L-part” and the “U-part” of the LU factorization of M respectively.

As an example, take again the matrix M given by Eq. (3.18). The Jacobian matrix of ϕ at this
point is the matrix displayed on Figure 3.4. Looking at the minimal valuation of the entries of
J(ϕ)M column by column, we find the optimal precision for each entry of the matrix L (defined

21These two functions are indeed differentiable. One can prove this by noticing for instance that the entries of L
and U are given by explicit multivariate rational fractions [45, §1.4].
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as the L-part L of the LU factorization of M):
− − − −

O(22) − − −
O(22) O(29) − −
O(22) O(210) O(27) −

 (3.21)

(we recall that the entries of M were all initially given at precision O(210)). Comparing with the
numerical results obtained in §2.4.3 (see Eq. (2.8)), we see that floating-point arithmetic, one
more time, found all the relevant digits.

A closer look at Figure 3.4 shows that the lattice dϕM (210M4(Z2)) = 210 · dϕM (M4(Z2)) has
exactly 9 diffused digits (apply Eq. (3.14)). The precision (3.21) is then globally not optimal
although it is on each entry separately. For example, if `i,j denotes the (i, j) entry of L, the linear
combination `3,2 − 11 · `3,1 can be known at precision O(26) although `3,2 and `3,1 cannot be
known at higher precision than O(22). It is remarkable that floating-point arithmetic actually
“saw” these diffused digits; indeed, taking the values computed in floating-point arithmetic for
`3,2 and `3,1, we compute:

`3,2 − 11 · `3,1 = . . . 0000010111.

It turns out that the last six digits of the latter value are correct!

Bézout coefficients

We now move to commutative algebra. We address the question of the computation of the
Bézout coefficients of two monic polynomials of degree d which are supposed to be coprime.
Let U be the subset of Qp[X]<d ×Qp[X]<d consisting of pairs (P̃ , Q̃) for which P = Xd + P̃ and
Q = Xd + Q̃ are coprime. Observe that U is defined by the non-vanishing of some resultant and
so is open. We introduce the function:

ϕ : U −→ Qp[X]<d ×Qp[X]<d

(P̃ , Q̃) 7→ (U, V ) s.t. UP + V Q = 1

for P = Xd + P̃ and Q = Xd + Q̃. (Note that U and V are uniquely determined thanks to
the conditions on the degree.) Once again, the differential of ϕ can be easily computed by
differentiating the defining relation UP + V Q = 1; indeed doing so, we immediately get:(

dU · P
)

+
(
dV ·Q

)
= dR (3.22)

for dR = −U ·dP − V ·dQ. Eq (3.22) gives dU ·P ≡ dR (mod Q) for what we derive dU ≡ U ·dR
(mod Q). Comparing degrees we find dU = U ·dR mod Q. Similarly dV = V ·dR mod P . The
differential of ϕ at a pair (P̃ , Q̃) is then the linear mapping:

dϕ(P̃ ,Q̃) : Qp[X]<d ×Qp[X]<d −→ Qp[X]<d ×Qp[X]<d

(dP, dQ) 7→ (dU, dV ) =
(
U ·dR mod Q, V ·dR mod P

)
where dR = −U · dP − V · dQ.

It is important to note that dϕ(P̃ ,Q̃) is never injective because it maps (−V,U) to 0. Consequently,
it is never surjective either and one cannot apply the precision Lemma to it. The easiest way
to fix this issue is to decompose ϕ as ϕ = (ϕU , ϕV ) and to apply the precision Lemma to each
component separately (though this option leads to less accurate results).

For the particular example we have studied in §2.4.3, namely:

P = X4 + (. . . 1101111111) X3 + (. . . 0011110011) X2

+ (. . . 1001001100) X + (. . . 0010111010)

Q = X4 + (. . . 0101001011) X3 + (. . . 0111001111) X2

+ (. . . 0100010000) X + (. . . 1101000111)
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dU dV

(dP,dQ) X3 X2 X 1 X3 X2 X 1

(X3,0)


. . . 0100111 . . . 0001000 . . . 1000000 . . . 1010000 . . . 1011001 . . . 0100000 . . . 1000000 . . . 0100000


(X2,0) . . . 1010000 . . . 0010111 . . . 0111000 . . . 1000000 . . . 0110000 . . . 0101001 . . . 0110000 . . . 0000000
(X,0) . . . 1000000 . . . 0010000 . . . 1010111 . . . 0111000 . . . 1000000 . . . 1110000 . . . 1101001 . . . 0110000
(1,0) . . . 1111000 . . . 1101000 . . . 0011000 . . . 1010111 . . . 0001000 . . . 0111000 . . . 0001000 . . . 1001001

(0,X3) . . . 1011001 . . . 1111000 . . . 0010000 . . . 1110000 . . . 0100111 . . . 1100000 . . . 1100000 . . . 1100000

(0,X2) . . . 1110000 . . . 0101001 . . . 0001000 . . . 0010000 . . . 0010000 . . . 0010111 . . . 0010000 . . . 0100000
(0,X) . . . 0010000 . . . 0100000 . . . 0011001 . . . 0001000 . . . 1110000 . . . 0100000 . . . 1100111 . . . 1010000
(0,1) . . . 1001000 . . . 0101000 . . . 1011000 . . . 0011001 . . . 0111000 . . . 0111000 . . . 1001000 . . . 0000111

Figure 3.5: The Jacobian of the “Bézout function” at (P,Q)

the Jacobian matrix we find is shown on Figure 3.5. Each column of this matrix contains an entry
of valuation zero, meaning that the optimal precision on each coefficient of U and V is O(210).
Observe that it was not reached by interval arithmetic or floating-point arithmetic! Continuing
our analysis, we further observe that the lattice generated by the dU -part (resp. the dV -part) of
J(ϕ)(P̃ ,Q̃) has no diffused digit. The precision

O(210)X3 +O(210)X2 +O(210)X +O(210)

on both U and V is then optimal (but the joint precision induced on the pair (U, V ) is not).

Polynomial evaluation and interpolation

Recall that the last example considered in §2.4.3 was about evaluation and interpolation
of polynomials: precisely, starting with a polynomial P ∈ Zp[X] of degree d, we first eval-
uated it at the points 0, 1, . . . , d and then reconstructed it by interpolation from the values
P (0), P (1), . . . , P (d). We have observed that this problem seemed to be numerically highly
unstable: for example, for d = 19 and an initial polynomial P given at precision O(210), we were
only able to reconstruct a few number of digits and even found not integral coefficients in many
places (see Figure 2.3). We propose here to give a theoretical explanation of this phenomenon.

Consider the function ϕ : Qp[X]6d → Qd+1
p , P 7→ (P (0), P (1), . . . , P (d)). Note that it is

linear, so that dϕP = ϕ for all P . The numerical stability of our evaluation problem is governed
by the lattice H = ϕ(pNZp[X]6d) = pN · ϕ(Zp[X]6d) where O(pN ) is the initial precision we
have on each coefficient of P (assuming for simplicity that it is the same for all coefficients).
Applying ϕ to the standard basis of Zp[X]6d, we find that H is generated by the row vectors of
the Vandermonde matrix:

M =


1 1 1 · · · 1
0 1 2 · · · d
0 1 22 · · · d2

...
...

...
...

0 1 2d · · · dd

 .

According to Eq. (3.14), the number of diffused digits of H is then equal to the p-adic valuation
of the determinant of M whose value is:

detM =
∏

06i<j6d

(j − i) = 1!× 2!× · · · × d!.

In order to estimate its p-adic valuation, we recall the following result.

Proposition 3.23 (Legendre’s formula). For all positive integer n, we have:

valp(n!) =
⌊n
p

⌋
+
⌊ n
p2

⌋
+ · · ·+

⌊ n
pk

⌋
+ · · ·

where b·c is the usual floor function.
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Proof. Exercise.

It follows in particular from Legendre’s formula that valp(i!) > i
p − 1, from what we derive:

valp(detM) >
d∑
i=1

(
i
p − 1

)
=
d(d+ 1)

2p
− d.

When d is large compared to p, the number of diffused digits is much larger than the number of p-
adic numbers on which these diffused digits “diffuse” (which are the d+1 values P (0), . . . , P (d)).
They will then need to have an influence at high precision22. This is why it is so difficult to get
a sharp precision on the tuple (P (0), . . . , P (d)). Concretely the n-th digits of the coefficients of
P may influence the (n+ d

2p)-th digit of some linear combination of the P (i)’s and conversely
the n-th digits of the P (i)’s may influence the (n− d

2p)-th digits of the coefficients of P . In other
words, in order to be able to recover all the coefficients of P at the initial precision O(pN ), one
should have used at least N + d

2p digits of precision (in the model of floating-point arithmetic).

3.2.3 Newton iteration

We have already seen that Hensel’s Lemma is a powerful tool in the p-adic context. However,
as highlighted in §2.1.3, it may have a strange behavior regarding precision. Below we use the
precision Lemma in order to study carefully this phenomenon. We also take the opportunity to
extend the Newton scheme (on which Hensel’s Lemma is based) to the framework of multivariate
functions of class C2.

Functions of class C2 in the p-adic setting

Recall that, given two Qp-vector spaces E and F , we denote by L(E,F ) the space of linear
mappings from E to F . Similarly, Given three Qp-vector spaces E1, E2 and F , we denote by
B(E1×E2, F ) the space of bilinear functions E1×E2 → F . We recall that there exist canonical iso-
morphisms — the so-called curryfication isomorphisms — between B(E1×E2, F ), L(E1,L(E2, F ))
and L(E2,L(E1, F )). When E1 = E2 = E, we define further Bs(E×E) as the subspace of
B(E×E,F ) consisting of symmetric bilinear functions.

We recall also that when E and F are endowed with norms, the space L(E,F ) inherits the
norm operator defined by ‖f‖L(E,F ) = supx∈BE(1) ‖f(x)‖F . Similarly, we endow B(E1×E2, F )
with the norm ‖·‖B(E1×E2,F ) defined by ‖b‖B(E1×E2,F ) = supx1∈BE1

(1),x2∈BE2
(1) ‖b(x1, x2)‖F . The

curryfication isomorphisms do preserve the norm.
The definition of “being of class C2” is inspired from the alternative definition of “being of

class C1” provided by Remark 3.14 (see also Remark 3.12).

Definition 3.24. Let E and F be two normed finite dimensional vector spaces and let U be an
open subset of E. A function f : U → F is of class C2 if there exist:

• a function df : U → L(E,F ), x 7→ dfx

• a function d2f : U → Bs(E×E,F ), x 7→ d2fx

• a covering (Ui)i∈I of U , and

• for all i ∈ I, a continuous real-valued function εi : R+ → R+ vanishing at 0

such that, for all i ∈ I and all x, y ∈ Ui:

‖f(y)− f(x)− dfx(y−x)− 1
2d

2fx(y−x, y−x)‖F 6 ‖y−x‖2E · εi
(
‖y−x‖E

)
(3.23)

22Roughly speaking, if we want to dispatch n (diffused) digits between m places, we have to increase the precision
by at least d n

m
e digits; this is the pigeonhole principle.
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Proposition 3.25. Let E and F be two normed finite dimensional vector spaces and let U be an
open subset of E. Let f : U → F be a function of class C2. Then:

(i) The function f is of class C1 on U and its differential is the function df of Definition 3.24;

(ii) the function df is of class C1 on U as well and its differential is the function d2f (viewed as a
element of L(E,L(E,F ))) of Definition 3.24.

Proof. We consider the data df , d2f , Ui, εi given by Definition 3.24. Without loss of generality,
we may assume that the Ui’s are all balls and that the εi’s are all non-decreasing functions. By
this additional assumption, Ui is compact; the function x 7→ ‖d2fx‖B(E×E,F ) is then bounded on
Ui by a constant Ci. Therefore Eq. (3.23) implies:

‖f(y)− f(x)− dfx(y−x)‖F 6 ‖y−x‖2E ·max
(
Ci, εi

(
‖y−x‖E

))
for all x, y ∈ Ui. The first assertion of the Proposition follows.

We now prove the second assertion. We fix i ∈ I. Let x, y ∈ Ui. We set δ = ‖y−x‖E ,

` = dfx − dfy − d2fx(y − x) ∈ L(E,F )

and b = 1
2

(
d2fx − d2fy

)
∈ Bs(E×E,F ).

Observe that, thanks to our assumption on Ui (and ultrametricity), the ball BE(y, δ) of centre y
and radius δ is included in Ui. For z ∈ BE(y, δ), we define:

δz,x = f(z)− f(x)− dfx(z−x)− 1
2d

2fx(z−x, z−x)

δz,y = f(z)− f(y)− dfy(z−y)− 1
2d

2fy(z−y, z−y)

δy,x = f(y)− f(x)− dfx(y−x)− 1
2d

2fx(y−x, y−x).

By our assumptions, these three vectors have norm at most δ2 · εi(δ). A simple computation using
linearity and bilinearity yields δz,x − δz,y − δy,x = `(z−y)− b(z−y, z−y). Consequently, we get
the estimation:

‖`(h)− b(h, h)‖F 6 δ2 · εi(δ)

for all h ∈ E with ‖h‖E 6 δ. Applying it with (p+1)h in place of h, we find:

‖`(h)− (p+1) · b(h, h)‖F 6 δ2 · εi(δ)

and combining now the two above inequalities, we end up with ‖b(h, h)‖F 6 pδ2 · εi(δ) and
so ‖`(h)‖F 6 pδ2 · εi(δ) as well. This inequality being true for all h ∈ BE(α), we derive
‖`‖L(E,F ) 6 p2δ · εi(δ). This proves the differentiability of df together with the fact that its
differential is d2f .

Hensel’s Lemma for functions of class C2

We want to develop an analogue of Hensel’s Lemma (see Theorem 1.6) for a function
f : U → F of class C2 whose domain U is an open subset of a finite dimensional p-adic vector
space E and whose codomain F is another p-adic vector space of the same dimension. For
simplicity, we assume further that U = BE(1) (the general case is deduced from this one by
introducing coverings). Under this additional assumption, the function d2f is bounded, i.e. there
exists a constant C such that ‖d2fx‖B(E×E,F ) 6 C for all x ∈ BE(1). Plugging this into Eq. (3.23)
and possibly enlarging a bit C, we derive the two estimations:

∀x, y ∈ BE(1), ‖f(y)− f(x)− dfx(y−x)‖F 6 C · ‖y−x‖2E (3.24)

‖dfy − dfx‖L(E,F ) 6 C · ‖y−x‖E (3.25)
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which are the key points for making Newton iteration work. We consider a point v ∈ BE(1) for
which:

dfv is invertible and ‖f(v)‖F · ‖df−1v ‖2L(F,E) < C−1 6 ‖df−1v ‖L(F,E). (3.26)

We set r =
(
C · ‖df−1v ‖L(F,E)

)−1 and denote by V the open ball of centre v and radius r. Observe
that r 6 1, so that V ⊂ BE(1).

Lemma 3.26. Under the assumptions (3.24), (3.25) and (3.26), the linear function dfx is invertible
and ‖df−1x ‖L(F,E) = ‖df−1v ‖L(F,E) for all x ∈ V . Moreover, the Newton iteration mapping N : V →
E, x 7→ x− df−1x (f(x)) takes its values in V and satisfies:

‖f(N (x))‖F 6 C · ‖df−1v ‖2L(F,E) · ‖f(x)‖2F . (3.27)

Proof. Let x ∈ V . Set g = dfv − dfx. By the inequality (3.25), we have:

‖g‖L(E,F ) = ‖dfv − dfx‖L(E,F ) 6 C · ‖v−x‖E < Cr =
(
‖df−1v ‖L(F,E)

)−1
.

Write dfx = dfv − g = dfv ◦ (idE − df−1v ◦ g). The above estimation shows that the norm of
df−1v ◦ g is strictly less than 1. Therefore the series

∑∞
n=0(df

−1
v ◦ g)◦n converges to an inverse of

(idE − df−1v ◦ g). In particular (idE − df−1v ◦ g) is invertible and so is dfx. Remark in addition that
the norm of

∑∞
n=0(df

−1
v ◦ g)◦n is at most 1 and so ‖df−1x ‖L(F,E) 6 ‖df−1v ‖L(F,E). Reverting the

roles of v and x, we find even better that equality does hold. Applying now (3.24), we get:

‖f(v)− f(x)− dfx(v−x)‖F 6 C · ‖v−x‖2E < Cr2 =
r

‖df−1v ‖2L(F,E)

.

Applying df−1x , we deduce ‖df−1x (f(v)) − df−1x (f(x)) − (v−x)‖F < r. Notice furthermore that
‖v−x‖E < r by assumption and ‖df−1x (f(v))‖F 6 ‖df−1v ‖L(F,E) · ‖f(v)‖F < r. Consequently we
find ‖df−1x (f(x))‖F < r as well, for what we derive N (x) ∈ V . Eq. (3.27) finally follows by
applying again Eq. (3.24) with x and N (x).

Corollary 3.27 (Hensel’s Lemma for function of class C2). Under the assumptions (3.24), (3.25)
and (3.26), the sequence (xi)i>0 defined by the recurrence

x0 = v ; xi+1 = N (xi) = xi − df−1xi (f(xi))

is well defined and converges to x∞ ∈ V such that f(x∞) = 0. The rate of convergence is given by:

‖xi − x∞‖E 6 r ·
(
C · ‖f(v)‖F · ‖df−1v ‖2L(F,E)

)2i
=

(
C · ‖f(v)‖F · ‖df−1v ‖2L(F,E)

)2i
C · ‖df−1v ‖L(F,E)

.

Moreover x∞ is the unique solution in V to the equation f(x) = 0.

Proof. We define ρ = C · ‖f(v)‖F · ‖df−1v ‖2L(F,E) By Lemma (3.26), all the xi’s lie in V and:

‖f(xi+1)‖F 6 C · ‖df−1v ‖2L(F,E) · ‖f(xi)‖2F (3.28)

for all i. By induction, we derive ‖f(xi)‖F 6
(
C · ‖df−1v ‖2L(F,E)

)−1 · ρ2i . Therefore:

‖xi+1 − xi‖E = ‖df−1xi (f(xi))‖E 6 ‖df−1v ‖L(F,E) · ‖f(xi)‖F 6 r · ρ2i . (3.29)

The sequence (xi)i>0 is a Cauchy sequence and therefore converges to some x∞ for which
f(x∞) = 0. Eq. (3.29) implies moreover the announced rate of convergence together with the
fact that x∞ belongs to V . It then only remains to prove the uniqueness of the solution to the
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equation f(x) = 0 in V . For this, assume that y ∈ V satisfies f(y) = 0. Instantiating Eq. (3.24)
with x = x∞, we obtain ‖dfx∞(y−x∞)‖F 6 C · ‖y−x∞‖2E . Hence:

‖y−x∞‖E = ‖df−1x∞
(
dfx∞(y−x∞)

)
‖E 6 C · ‖df−1v ‖L(F,E) · ‖y−x∞‖2E = r−1 · ‖y−x∞‖2E .

Since moreover ‖y − x∞‖E has to be strictly less than r by our assumptions, we derive y = x∞
and uniqueness follows.

Remark 3.28. Hensel’s Lemma is stable in the sense that its conclusion remains correct for a
sequence (xi)i>0 satisfying the weaker recurrence:

xi+1 = xi − df−1xi (f(xi)) + (some small perturbation)

as soon as the perturbation is small enough to continue to ensure that the estimation (3.28)
holds.

Precision

In practice, the function f of which we want to find a root is often not exact but given
with some uncertainty; think typically of the case where f is a polynomial (of given degree)
with coefficients in Qp given at some finite precision. In order to model this, we introduce
C2(BE(1), F ), the set of functions f : BE(1) → F of class C2. We endow it with the C2-norm
defined by

‖f‖C2 = max
(
‖f‖∞, ‖df‖∞, ‖d2f‖∞

)
where the infinite norm of a function is defined as usual as the supremum of the norms of its
values. We consider in addition a finite dimensional subspace F of C2(BE(1), F ). The uncertainty
on f will be modeled by some lattice in F .

We fix v ∈ BE(1) together with two positive real numbers C and r. We assume r 6 1. Let V
be the open ball in E of centre v and radius r; clearly V ⊂ BE(1). Let U be the open subset of F
consisting of function f for which Eqs. (3.24), (3.25) and (3.26) hold and ‖df−1v ‖L(F,E) = r

C . By
Hensel’s Lemma (Corollary 3.27), any f ∈ U has a unique zero in V . The function:

Z : U −→ V
f 7→ x s.t. x ∈ V and f(x) = 0

is then well defined. In the idea of applying the precision Lemma, we study its differentiability.

Lemma 3.29. The function Z is differentiable on U . Moreover, its differential at f ∈ U is the linear
mapping dZf : ϕ 7→ −df−1Z(f)(ϕ(Z(f))).

Proof. The lemma can be seen as an application of the p-adic implicit functions Theorem (see [69,
Proposition 4.3]). Below, we give a direct proof avoiding it. Let f, g ∈ U . We set x = Z(f),
ϕ = g−f and y = x− df−1x (ϕ(x)). Since f(x) vanishes, Eq. (3.24) reads:

‖g(y)− (idE − dgx ◦ df−1x )(ϕ(x))‖F 6 C · ‖y−x‖2E 6 C · ‖df−1x ‖2L(F,E) · ‖ϕ‖
2
∞. (3.30)

From the identity idE − dgx ◦ df−1x = (dfx − dgx) ◦ df−1x , we deduce moreover that

‖idE − dgx ◦ df−1x ‖L(E,E) 6 ‖df−1x ‖L(F,E) · ‖dfx − dgx‖L(E,F ) 6 ‖df−1x ‖L(F,E) · ‖dϕ‖∞. (3.31)

Combining (3.30) and (3.31), we derive ‖g(y)‖F 6 ‖df−1x ‖L(F,E) · ‖ϕ‖2C2 . Corollary 3.27 then
implies ‖y−Z(g)‖E 6 ‖df−1x ‖2L(F,E) ·‖ϕ‖

2
C2 = ‖df−1v ‖2L(F,E) ·‖ϕ‖

2
C2 , which proves the lemma.

Applying the precision Lemma, we end up with the next corollary.
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Corollary 3.30. If the uncertainty on f is given by a (sufficiently rounded and small) lattice H ⊂ U ,
then the optimal precision on x = Z(f) is df−1x ◦ evx(H) where evx : H → F is the evaluation
morphism at x.

It is quite instructive to compare this result with the optimal precision we get after a single
iteration of the Newton scheme. In order to do so, we introduce the map:

N : U × V −→ V
(f, x) 7→ f(x)− df−1x (f(x))

which is well defined thanks to Lemma 3.26. It is moreover clear that N is differentiable since it
appears as a composite of differentiable functions. A straightforward (but tedious) calculation
shows that its differential at (f, x) is given by:

dN(f,x) : (ϕ, ξ) 7→ −df−1x
(
ϕ(x)

)
+ df−1x

(
d2fx(ξ, f(x))

)
+ df−1x

(
dϕx(f(x))

)
.

In particular, we observe that if f(x) = 0, the last two terms vanish as well, so that the linear
mapping dN(f,x) does not depend on the second variable ξ and agrees with dZf . In the language
of precision, this means that the optimal precision on Z(f) is governed by the last iteration of
the Newton scheme.

In practice, this result suggests the following strategy: in order to compute Z(f), we start with
some v satisfying the requirements of Hensel’s Lemma (Corollary 3.27), we iterate the Newton scheme
without taking care (so much) of precision until the obtained approximation looks correct and we
finally perform a last iteration reintroducing the machinery for tracking precision. By Remark 3.28,
the omission of precision tracking is harmless while the equality dZf = dN(f,Z(f)) shows (under
mild assumptions on the lattice H) that the precision we will get at the end (using the above
strategy) will be very good because the loss of precision will just come from the last iteration and
so will be limited.

This behavior is very well illustrated by the example of the computation of square roots
detailed in §2.1.3. (We then encourage the reader to read it and study it again in light of the
discussion of this paragraph.) More recently Lairez and Vaccon applied this strategy for the
computation of the solutions of p-adic differential equations with separation of variables [52];
they managed to improve this way a former algorithm by Lercier and Sirvent for computing
isogenies between elliptic curves in positive characteristic [56].

3.3 Lattice-based methods for tracking precision

Until now, we have explained how the precision Lemma can be used for finding the optimal
precision and analyzing this way the stability of algorithms. It turns out that the precision Lemma
is also useful for stabilizing algorithms, i.e. for producing a stable procedure by altering slightly
another given procedure which might be highly unstable.

3.3.1 The method of adaptive precision

We place ourselves in the following general setting. Let Phi be a routine that computes a
mathematical function ϕ : U → V whose domain U is an open subset of a finite dimensional
Qp-vector space E (i.e. Phi takes as input a tuple of p-adic numbers but may possibly fails for
particular instances lying a closed subset) and whose codomain V is an open subset of another
finite dimensional Qp-vector space (i.e. Phi outputs a tuple of p-adic numbers as well). We
assume that f is of class C1 on U . We moreover fix an input x ∈ U for which the differential dfx
is surjective.

Remark 3.31. While the C1-assumption is usually harmless, the surjectivity assumption is often
more serious. For instance, observe that it implies that the dimension of F (i.e. the size of the
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output) is not greater than the dimension of E (i.e. the size of the input). Clearly there exist
many interesting algorithms that do not satisfy this requirement and therefore do not fit into
our framework. One can always however workaround this issue as follows. We write the space
of outputs F as a direct sum F = F1 ⊕ · · · ⊕ Fm and decompose the procedure Phi accordingly,
i.e. for each i, we introduce the algorithm Phii that outputs only the i-th part of Phi. Clearly
Phii is modeled by the mathematical function ϕi = pri ◦ ϕ where pri : F → Fi is the canonical
projection. As a consequence dϕi,x = pri ◦ dϕx; if the Fi’s are small enough, it will then be
unlikely that one of them is not surjective. For instance, in the special case where the Fi’s are all
lines, the writing F = F1 ⊕ · · · ⊕ Fm corresponds to the choice of a basis of F and the surjectivity
of the dϕi,x’s is equivalent to the fact that each column of the Jacobian matrix has a nonzero
entry (which is clearly much weaker than requiring its surjectivity).

Our aim is to compute ϕ(x) using the procedure Phi; we would like moreover to be sharp
in terms of precision and get proved results. We have seen that neither zealous arithmetic, nor
floating-point arithmetic can ensure these two requirements at the same time: zealous arithmetic
is usually not sharp (see §2.4.3, §3.2.2 for many examples) while floating-point arithmetic is not
proved. The case of lazy/relaxed arithmetic is a bit aside but it is not quite satisfactory either.
Indeed recall that in the lazy approach, we are fixing a target precision; the output of Phi will
then be sharp by design. The issue is elsewhere and comes from the fact that the lazy/relaxed
machinery will generally compute the input x at a higher precision than needed, consuming then
more resources than necessary (see §3.2.1 for a theoretical discussion about this and/or §3.3.2
below for a concrete example).

Context of zealous arithmetic: precision on inputs

We assume that the input x is given at some precision which is represented by a lattice H in
E: if the i-th coordinate of x is given at precision O(pNi), the lattice H is the diagonal lattice

H = pN1Zp ⊕ pN2Zp ⊕ · · · ⊕ pNdZp (with d = dimE)

(see also §3.2.1). We underline nevertheless that non diagonal lattices H (corresponding to
precision data with diffused digits, see Definition 3.20) are also permitted. We assume that H is
nice enough so that the precision Lemma applies, giving:

ϕ(x+H) = ϕ(x) + dϕx(H). (3.32)

Separation of approximation and precision. The formula above strongly suggests to split the com-
putation of ϕ(x+H) into two independent parts corresponding to the two summands. Concerning
precision, we have to compute the lattice dϕx(H). One option for this is to rely on automatic
differentiation techniques [3, 63]; this approach however often leads to costly computations
and really affects the complexity of our algorithm. For this reason, alternative strategies are
often preferable (when available). The simplest one is probably to precompute dϕx by hand (we
have seen in §3.2.2 that it is tractable in many situations) and plug the obtained result into our
algorithm. On the other hand, we observe that dϕx(H) is a lattice in F and is therefore encoded
by a dimF × dimF matrix, which might be quite a large object (compare with dimF which is
the size of the output). Therefore, if we do not need to be extremely careful on precision, we
could prefer replacing dϕx(H) by a slightly larger lattice Hmax which is more easily representable,
e.g. Hmax could be a diagonal lattice.

For now on, we assume that we have at our disposal a lattice Hmax containing dϕx(H) and
we focus on the computation of the first term of Eq. (3.32), that is the approximation. Since
dϕx(H) is stable under addition, Eq. (3.32) yields ϕ(x + H) = y + dϕx(H) ⊂ y + Hmax for
any y lying in ϕ(x+H). Using now that Hmax is stable under addition as well, we end up with
ϕ(x+H) ⊂ y+Hmax as soon as y ∈ ϕ(x+H) +Hmax. To conclude, it is then enough to compute
the value of any element of ϕ(x+H) at precision Hmax. For doing so, we can rely on zealous
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Figure 3.6: The method of adaptive precision: first attempt

arithmetic: we increase sufficiently the precision on x (picking arbitrary values for digits) so
that ϕ(x) can be computed at precision at least Hmax and we output ϕ(x) at precision Hmax. In
more conceptual terms, what we do is to choose an element x′ ∈ x+H together with a diagonal
lattice H ′ ⊂ H having the property that zealous arithmetic computes y and H ′Zeal such that
f(x′ +H ′) ⊂ y +H ′Zeal and H ′Zeal ⊂ Hmax. We thus have:

y ∈ ϕ(x′ +H ′) +H ′Zeal ⊂ ϕ(x+H) +Hmax

as wanted (see also Figure 3.6). These ideas lead to the following implementation:

def Phi_stabilized_v1(x):

l i f t x at precision H ′

y = Phi(x) # here y is computed at precision H ′Zeal
return y at precision Hmax

The method presented above works but has a serious drawback: in practice, if often happens that
the precision encoded by H ′ is very high, leading then to very costly computations. In the next
paragraph, we explain a strategy for dealing with this issue.

Viewing Phi as a sequence of steps. Roughly speaking, the problem with the above approach
comes from the fact that the precision is tracked using interval arithmetic all along the execution
of Phi. In order to avoid this, the idea consists in decomposing Phi into several steps; we then
let interval arithmetic do the job of tracking precision within each individual step but we readjust
the precision (using informations coming from the precision Lemma) each time we switch from
one step to the next one. Concretely the readjustment is made by applying the method of the
previous paragraph to each individual step.

Let us now go further into the details. As said above, we view the routine Phi as a finite
sequence of steps Step1, . . . , Stepn. Let σi : Ui−1 → Ui be the mathematical function modeling
the i-th step; its codomain Ui is the space of outputs of the i-th step, that is the space of
“active” variables after the execution of i-th step. Mathematically, it is an open subset in a finite
dimensional Qp-vector space Ei. For i ∈ {0, . . . , n}, we set ϕi = σi ◦ · · · ◦ σ1 and xi = ϕi(x); they
are respectively the function modeling the execution of the first i steps of Phi and the state of the
memory after the execution of the i-th step of Phi on the input x. In what follows, we always
assume that dϕi,x is surjective23 and, even more, that the precision Lemma applies with ϕi, x
and H, meaning that, for all i:

ϕi(x+H) = xi + dϕi,x(H). (3.33)
23This assumption is rather restrictive but really simplifies the discussion.
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Figure 3.7: The method of adaptive precision: second tentative

We define Hi = dϕi,x(H) and we assume that we are given a “simple” lattice Hi,max containing
Hi. However, for the application we have in mind, this datum will not be sufficient; indeed, we
shall need to be extremely careful with precision at intermediate levels. In order to do so without
having to manipulate the “complicated” lattice Hi, we assume that we are given in addition another
“simple” lattice Hi,min which is contained in Hi. With these notations, the stabilized version of
Phi takes the following schematic form:

def Phi_stabilized_v2(x):

y0 = x

f o r i in 1, 2, . . . , n:
l i f t yi−1 at enough precision
yi = Stepi(yi−1) # here we want yi to be computed at precision at least Hi,min

return yn at precision Hn,max

The locution “enough precision” in the above code means that we want to ensure that zealous
arithmetics is able to compute yi at precision Hi,min. Let H ′i−1 be a lattice encoding such an
acceptable precision. Rigorously, it can be defined as follows. We set y0 = x and for i ∈ {1, . . . , n},
we define inductively H ′i−1, yi and H ′i,Zeal by requiring that the routine Stepi called on the input
yi−1 given at precision H ′i−1 computes yi at precision H ′i,Zeal with H ′i,Zeal ⊂ Hi,min (see Figure 3.7).
Of course the value yi we have just defined corresponds exactly to the variable yi of the procedure
Phi stabilized. The following lemma is the key for proving the correctness of the algorithm
Phi stabilized v2.

Lemma 3.32. For all i ∈ {1, . . . , n}, we have yi ∈ xi +Hi.

Proof. We argue by induction on i. The initialization is obvious given that y0 = x = x0. We now
assume that yi−1 ∈ xi−1 +Hi−1. Applying σi, we derive

σi(yi−1) ∈ σi(xi−1 +Hi−1) = σi ◦ ϕi−1(x+H) = ϕi(x+H) = xi +Hi (3.34)

thanks to Eq. (3.33) applied twice. Moreover, by construction, we know that σi(yi−1) ∈ yi +
H ′i,Zeal ⊂ yi +Hi,min ⊂ yi +Hi. As a consequence the difference σi(yi−1)− yi lies in the lattice Hi;
this can be rewritten again as yi ∈ σi(yi−1) +Hi. Combining with Eq. (3.34), we get yi ∈ xi +Hi

as desired.

We derive from Lemma 3.32 that xn +Hn = yn +Hn. Combining this equality with Eq. (3.33),
we obtain ϕ(x + H) = xn + Hn = yn + Hn ⊂ yn + Hmax,n. This inclusion exactly means that
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Phi stabilized called on the input x given at precision H outputs an approximation of ϕ(x) at
precision Hmax,n; in other words, the algorithm Phi stabilized is correct.

The main advantage of the algorithm Phi stabilized v2 (compared to Phi stabilized v1)
is that the precision encoded by the lattices H ′i−1 are usually acceptable (compared to the
precision encoded by H ′). Actual computations are then carried out at a reasonable precision
and then consume moderated resources.

Remark 3.33. Interestingly, observe that the spirit of algorithm Phi stabilized v2 is close to the
behavior of p-adic floating-point arithmetic; precisely, in p-adic floating-point arithmetic, we are
decomposing Phi as a sequence of elementary steps (each of them consists of a single arithmetic
operation) and the lattices Hi,min are chosen in such a way that the number of significand digits
of each p-adic variable is kept constant. For this reason, the method of adaptive precision can be
also used to derive proofs on the results obtained via p-adic floating-point arithmetic.

Context of lazy/relaxed arithmetic: target precision

We recall that the question addressed in the context of lazy/relaxed arithmetic is formulated
as follows: we fix a target precision on the output and we want to avoid as much as possible the
computation with unnecessary digits of the input, that are the digits that do not influence the
output at the requested precision. For simplicity, it is convenient to assume that the output of
Phi consists of a single p-adic number24, that is F = Qp. The target precision is then given by a
single integer N .

We recall from §3.2.1 that, if H ′ is a lattice in E, then the condition:

ϕ(x+H ′) ⊂ ϕ(x) + pNZp (3.35)

ensures that the knowledge of x at precision H ′ is enough to compute ϕ(x) at precision O(pN ).
Moreover, assuming that H ′ is nice enough so that the precision Lemma applies, the inclusion
(3.35) is equivalent to H ′ ⊂ dϕ−1x (pNZp). We draw the attention of the reader to the fact that
dϕ−1x (pNZp) itself is usually not a lattice because dϕ−1x often has a nontrivial kernel. Anyway, the
above analysis gives a theoretical answer to the question we are interested in: the unnecessary
digits on the inputs are those lying in some nice enough lattice contained in dϕ−1x (pNZp).

Mimicking what we have done before in the zealous context, we can use the above result
to write down a first stabilized version of Phi. Set H = dϕ−1x (Zp) and choose a lattice Hmin
contained in H. Clearly pNHmin is a lattice contained in dϕ−1x (pNZp). Moreover, examining
closely the statement of the precision Lemma, we find that there exists an integer N0 such that:

ϕ(x+ pNH) = ϕ(x) + pNdϕx(H) ⊂ ϕ(x) + pNZp (3.36)

for all N > N0. The first stabilized version of Phi then can be described as follows.

def Phi_stabilized_v1(x):

def Phi_of_x(N):

xapp = x(pmax(N,N0)H) # Evaluation of x at precision pmin(N,N0)H

return Phi(xapp) % pN

return Phi_of_x

Remark 3.34. In the code above, the variable x is a tuple of lazy p-adic numbers (as described
in §2.2), not a tuple of relaxed p-adic numbers. Making the method of adaptive precision work
within the framework of relaxed arithmetic is possible but tedious; for simplicity, we shall omit
these technicalities and restrict ourselves to lazy p-adic numbers in this course.

The attentive reader has certainly noticed that the value N0 has appeared explicitly in the
function Phi stabilized v1 above. This implies that we need to precompute it. This has to be

24This assumption is harmless since one can always reduce to this case by projection on each coordinate.

72



done by hand a priori by explicating the constants in the precision Lemma in the special case we
are considering; we do not hide that this may require some effort (through general techniques
for that are available [18, 19]).

Eq. (3.36) shows that the nested function Phi of x returns the correct answer. The main
benefit of Phi stabilized v1 is that it asks for the computation of the input at sharp precision.
Nevertheless, it carries all the computations with exact rational numbers and so still consumes a
lot of resources.

In order to get rid of this disadvantage, we can follow the strategy already used with
success in the zealous context: we decompose Phi into n steps Step1, . . . , Stepn. Again we call
σi : Ui−1 → Ui the mathematical function modeling Stepi. We set ϕi = σi ◦ · · · ◦ σ1, xi = ϕi(x)
and introduce moreover the function ψi = σn ◦· · ·◦σi+1. Clearly ϕ = ψi ◦ϕi for all i. Interestingly,
observe that the relation dϕx = dψi,xi ◦dϕi,x implies that all the differentials dψi,xi ’s are surjective
without any further assumption. For each i ∈ {0, . . . , n}, we define Hi = dψ−1i,xi(Zp) (which is
generally not a lattice) and choose a lattice Hi,min contained in Hi. The optimized form of the
stabilized version of Phi then writes as follows.

def Phi_stabilized_v2(x):

def Phi_of_x(N):

y0 = x(pNH0,min) # Evaluation of x at precision pNH0,min
f o r i in 1, 2, . . . , n:

yi = Stepi(yi−1) % pNHi,min

return yn % pN

return Phi_of_x

Roughly speaking, the above optimization allows us to “do the modulo” after each step, avoiding
then the explosion of the size of the intermediate values.

Proposition 3.35. There exists an integer N0 (which can be made explicit with some effort) such
that the nested function Phi of x outputs a correct answer on the inputs N > N0.

Remark 3.36. We underline that Proposition 3.35 does not assume the surjectivity of the
differentials dϕi,x; recall that this assumption was unavoidable in the case of zealous arithmetic
and appeared as a serious limitation of the method. We have to mention however that the analysis
of the algorithm Phi stabilized v2 is easier under this additional hypothesis (see §3.3.2 below
for a concrete example).

Sketch of the proof of Proposition 3.35. Given an integer N , we let (yN,i)06i6n be a sequence such
that yN,0 = x and yN,i = σi(yN,i−1) + pNHi,min. The value yN,i corresponds to the value of the
variable yi computed by the function Phi of x called on the input N . Moreover, for all fixed i,
the sequence (yN,i)N>0 converges to xi when N goes to infinity. Since ψi is a function of class
C1, this implies that dψi,yN,i converges to dψi,xi when N goes to infinity. From this, we derive
that dψi,yN,i(Hi,min) = dψi,xi(Hi,min) for N large enough. On the other hand, analyzing closely
the proof of the precision Lemma, we find that there exists an integer N0 such that:

ψi
(
yN,i + pNHi,min

)
= ψi(yN,i) + dψi,yN,i

(
pNHi,min

)
= ψi(yN,i) + pNdψi,xi

(
Hi,min

)
(3.37)

for all i and all N > N0. We claim that Phi of x outputs a correct answer (i.e. that yN,n ≡ ϕ(x)
(mod pN )) whenever N > N0. More precisely, we are going to prove by induction on i that
ψi(yi,N ) ≡ ϕ(x) (mod pN ) for i ∈ {0, 1, . . . , n} and N > N0. This is obvious when i = 0 given
that ψ0 = ϕ and y0,N = x. Let us now assume ψi−1(yi−1,N ) ≡ ϕ(x) (mod pN ). Noting than
ψi ◦ σi = ψi−1, we derive from σi(yN,i−1) ∈ yN,i + pNHi,min that:

ψi−1(yN,i−1) ∈ ψi
(
yN,i + pNHi,min

)
= ψi(yN,i) + pNdψi,xi

(
Hi,min

)
⊂ ψi(yN,i) + pNZp
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u5 = 1
a

(
c2 + bd

)
u6 = 1

ab

(
c3 + bcd + ad2

)
u7 = 1

a2bc

(
bc4 + 2b2c2d + ac3d + b3d2 + abcd2 + a2d3

)
u8 = 1

a3b2cd

(
b2c6 + ac7 + 3b3c4d + 3abc5d + 3b4c2d2 + 3ab2c3d2 + 2a2c4d2 + b5d3 + ab3cd3 + 3a2bc2d3 + a2b2d4 + a3cd4

)
u9 = 1

a3b2c2d

(
b2c8 + ac9 + 4b3c6d + 3abc7d + 6b4c4d2 + 6ab2c5d2 + 3a2c6d2 + 4b5c2d3 + 7ab3c3d3 + 6a2bc4d3 + b6d4

+ 3ab4cd4 + 5a2b2c2d4 + 3a3c3d4 + 2a2b3d5 + 3a3bcd5 + a4d6
)

u10 = 1
a5b3c3d2

(
b4c10 + 2ab2c11 + a2c12 + 5b5c8d + 11ab3c9d + 6a2bc10d + 10b6c6d2 + 24ab4c7d2 + 17a2b2c8d2 + 4a3c9d2

+ 10b7c4d3 + 26ab5c5d3 + 28a2b3c6d3 + 15a3bc7d3 + 5b8c2d4 + 14ab6c3d4 + 27a2b4c4d4 + 24a3b2c5d4

+ 6a4c6d4 + b9d5 + 3ab7cd5 + 14a2b5c2d5 + 19a3b3c3d5 + 12a4bc4d5 + 3a2b6d6 + 6a3b4cd6 + 9a4b2c2d6

+ 4a5c3d6 + 3a4b3d7 + 3a5bcd7 + a6d8
)

Figure 3.8: The first terms of the generic SOMOS 4 sequence

using Eq. (3.37). Consequently ψi(yN,i) ≡ ψi−1(yN,i−1) (mod pN ) and we are done thanks to
the induction hypothesis.

3.3.2 Example: The Somos 4 sequence

The method of adaptive precision (presented in §3.3.1) has been used with success in several
concrete contexts: the computation of the solutions of some p-adic differential equations [52] and
the computation of GCD’s and Bézout coefficients via the usual extended Euclidean algorithm [17].
Below, we detail another example, initially pointed out by Buhler and Kedlaya [15], which is
simpler (it actually looks like a toy example) but already shows up all the interesting phenomena:
it is the evaluation of the p-adic Somos 4 sequences.

The Somos 4 sequence: definition, properties and calculations

The Somos 4 sequences were first introduced in [75] by Somos. It is a recursive sequence
defined by the recurrence:

u1 = a ; u2 = b ; u3 = c ; u4 = d

un+4 =
un+1un+3 + u2n+2

un
for n > 1

where a, b, c and d are given initial values. The first values of the generic Somos 4 sequence
(that is the Somos 4 sequence where the initial values are left as indeterminates) are shown
on Figure 3.8. We observe a quite surprising property: the denominators of the first ui’s are all
monomials. We insist on the fact that this behavior is a priori not expected at all. For instance the
definition of u9 involves a division by u5 but a miraculous simplification occurs. This phenomenon
is in fact general. Fomin and Zelevinsky proved in [28] (as an application of their theory of
cluster algebras) that the Somos 4 sequence exhibits the Laurent phenomenon: for all n, the term
un of the generic Somos 4 sequence is a Laurent polynomial in a, b, c, d, that is a polynomial in a,
b, c, d and their inverses.

We address the question of the computation of the n-th term (for n large) of a Somos 4
sequence whose initial values a, b, c and d are invertible elements of Zp. At least two options
are available: (1) we unroll the recurrence starting from the given initial values and (2) we
precompute the n-th term of the generic Somos 4 sequence and, in a second time, we plug the
values of a, b, c and d. Concretely, they correspond to the following codes respectively:

def somos_option1(a,b,c,d,n): # We assume n > 5
x,y,z,t = a,b,c,d

f o r i in 1, 2, . . . , n−4:
x,y,z,t = y, z, t, (y*t + z*z)/x

return t
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Laurent method Zealous arith. Float. arith. Relaxed arith.

u1 . . . 0000000001 . . . 0000000001 . . . 0000000001 —
u2 . . . 0000000001 . . . 0000000001 . . . 0000000001 —
u3 . . . 0000000001 . . . 0000000001 . . . 0000000001 —
u4 . . . 0000000001 . . . 0000000001 . . . 0000000001 —
u5 . . . 0000000010 . . . 0000000010 . . . 0000000010 precision on u1: 10

u6 . . . 0000000011 . . . 0000000011 . . . 0000000011 precision on u1: 10

u7 . . . 0000000111 . . . 0000000111 . . . 0000000111 precision on u1: 10

u8 . . . 0000010111 . . . 0000010111 . . . 0000010111 precision on u1: 10

u9 . . . 0000111011 . . . 000111011 . . . 0000111011 precision on u1: 11

u10 . . . 0100111010 . . . 100111010 . . . 10100111010 precision on u1: 11

u50 . . . 0000011010 . . . 0 . . . 11000011010 precision on u1: 19

u54 . . . 0100101001 BOOM . . . 1100101001 precision on u1: 20

u500 . . . 1111110010 — . . . 01111110010 precision on u1: 109

Figure 3.9: The Somos 4 sequence with initial values 1, 1, 1, 1 ∈ Z2

def somos_option2(a,b,c,d,n): # We assume n > 5
X,Y,Z,T = A,B,C,D # A, B, C, D are formal variables
f o r i in 1, 2, . . . , n−4:

X,Y,Z,T = Y, Z, T, (Y*T + Z*Z)/X

return T(A=a, B=b, C=c, D=d)

The second option has of course a terrible complexity because the size of the terms of the
generic Somos 4 sequence grows very rapidly (see Figure 3.8). However, if we are mostly
interested in numerical stability, this option is rather attractive; indeed, we deduce from the
Laurent phenomenon that if the initial values a, b, c and d (which are supposed to be invertible
in Zp) are given at precision O(pN ) then all the next terms will be computed at precision O(pN )
as well. On the contrary, the first option may lead to quite important losses of precision.

The table of Figure 3.9 shows the results obtained for the particular Somos 4 sequence
initialized with a = b = c = d = 1 ∈ Z2 using various methods. The first column corresponds to
the second option discussed above; as expected, no losses of precision have to be reported. On the
second column (resp. the third column), we have displayed the results obtained by unrolling the
recurrence using the algorithm somos option1 within the framework of zealous arithmetic (resp.
p-adic floating-point arithmetic). We observe that the precision decreases rapidly in the second
column. For example, one digit of precision is lost when computing u9 because of the division by
u5 which has valuation 1. These losses of precision continue then regularly and, at some point,
we find a value which becomes indistinguishable from 0. Dividing by it then produces an error
and the computations cannot continue. The third column exhibits much better results though
certain digits are still wrong (compare with the first column). Finally, the last column concerned
lazy/relaxed arithmetic; it shows the number of digits of u1 that have been asked for in order
to compute the term un at precision O(210). We observe that this number increases regularly in
parallel with the losses of precision observed in the zealous context. For instance, the relaxed
technology needs one more digit of precision on u1 to compute u9 while the zealous approach
loses one digit of precision on u9. There phenomena have of course a common explanation: they
are both due to the division by u5 which has valuation 1.

The Somos 4 sequence starting with (a, b, c, d) = (1, 1, 1, 3) is even more unstable (see
Figure 3.10); indeed its 15-th term is divisible by 210 and so vanishes at the precision O(210)
we are considering. Zealous arithmetic and floating-point arithmetic are both puzzled after this
underflow and crash on the computation of u19 (which requires a division by u15).
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Laurent method Zealous arith. Float. arith. Relaxed arith.

u1 . . . 0000000001 . . . 0000000001 . . . 0000000001 —
u2 . . . 0000000001 . . . 0000000001 . . . 0000000001 —
u3 . . . 0000000001 . . . 0000000001 . . . 0000000001 —
u4 . . . 0000000011 . . . 0000000011 . . . 0000000011 —
u5 . . . 0000000100 . . . 0000000100 . . . 000000000100 precision on u1: 10

u6 . . . 0000001101 . . . 0000001101 . . . 0000001101 precision on u1: 10

u7 . . . 0000110111 . . . 0000110111 . . . 0000110111 precision on u1: 10

u8 . . . 0111010111 . . . 0111010111 . . . 0111010111 precision on u1: 10

u9 . . . 0111101111 . . . 11101111 . . . 1111101111 precision on u1: 12

u10 . . . 0000010010 . . . 00010010 . . . 11000010010 precision on u1: 12

u11 . . . 1000111001 . . . 00111001 . . . 0000111001 precision on u1: 12

u12 . . . 0011111101 . . . 11111101 . . . 0011111101 precision on u1: 12

u13 . . . 0000110101 . . . 00110101 . . . 0000110101 precision on u1: 12

u14 . . . 1101010011 . . . 1010011 . . . 1101010011 precision on u1: 13

u15 . . . 0000000000 . . . 0000000 0 precision on u1: 13

u16 . . . 0101011101 . . . 1011101 . . . 0101011101 precision on u1: 13

u17 . . . 1001101011 . . . 1101011 . . . 1001101011 precision on u1: 13

u18 . . . 0011110011 . . . 1110011 . . . 0011110011 precision on u1: 13

u19 . . . 0000000111 BOOM BOOM precision on u1: 23

Figure 3.10: The Somos 4 sequence with initial values 1, 1, 1, 3 ∈ Z2

Stabilization

We now apply the theory of adaptive precision, trying to stabilize this way the algorithm
somos version1. The decomposition of the routine somos version1 into steps in straightforward:
each step corresponds to an interaction of the for loop. They are all modeled by the same
mathematical function:

σ : Q4
p −→ Q4

p

(x, y, z, t) 7→
(
y, z, t, yt+z

2

x

)
.

Remark 3.37. Of course σ is not defined at the points of the form (0, y, z, t). In the sequel, it will
be nevertheless more convenient to regard σ as a partially defined function over Q4

p (than as a
well-defined function over Q?

p ×Q3
p).

Differential computations. For i > 0, we set ϕi = σ ◦ · · · ◦ σ (i times). Clearly σ and the ϕi’s are
all functions of class C1 on their domain of definition. The Jacobian matrix of σ at the point
(x, y, z, t) is easily seen to be:

J(σ)(x,y,z,t) =


0 0 0 −yt+z2

x2

1 0 0 t
x

0 1 0 2z
x

0 0 1 y
x

 .

The computation of the Jacobian matrix of ϕi is more complicated. It is however remarkable that
we can easily have access to its determinant. Indeed, observe that the determinant of J(σ)(x,y,z,t)

is equal to t′

x where t′ = yt+z2

x is the last coordinate of σ(x, y, z, t). By the chain rule, we then
deduce that:

det J(ϕi)(a,b,c,d) =
u5
u1
· u6
u2
· · · ui+4

ui
=
ui+1 · ui+2 · ui+3 · ui+4

u1 · u2 · u3 · u4
=
ui+1 · ui+2 · ui+3 · ui+4

abcd
(3.38)
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where the ui’s are the terms of the Somos 4 sequence initialized by (u1, u2, u3, u4) = (a, b, c, d).
Apart from that, the matrix J(ϕi)(a,b,c,d) has another remarkable property: if a, b, c, d are invertible
in Zp, all the entries of J(ϕi)(a,b,c,d) lie in Zp; indeed they can be obtained alternatively as the
partial derivatives of the terms of the generic Somos 4 sequence in which only divisions by a, b, c
and d occur. As a consequence, we derive the double inclusion:

pv(i) · Z4
p ⊂ dϕi,(a,b,c,d)

(
Z4
p

)
⊂ Z4

p (3.39)

with v(i) = val(ui+1) + val(ui+2) + val(ui+3) + val(ui+4)

which is the key for making the method of adaptive precision work.

Lemma 3.38. For all i, there is at most one non invertible element among four consecutive terms of
the Somos 4 sequence. In particular:

v(i) = max
(
val(ui+1), val(ui+2), val(ui+3), val(ui+4)

)
.

Proof. It is enough to prove that if val(ui−3) = val(ui−2) = val(ui−1) = 0 and val(ui) > 0, then
val(ui+1) = val(ui+2) = val(ui+3) = 0. This can be derived easily from the defining formula of
the Somos 4 sequence.

Example. As an instructive example, we take the values (a, b, c, d) = (1, 1, 1, 3) (given at precision
O(210)) and i = 14 corresponding to the annoying situation reported on Figure 3.10 where a
term of the Somos sequence vanishes at the working precision. An explicit computation yields:

J(ϕ14)(1,1,1,3) =

 . . . 0001110110 . . . 0100010110 . . . 1110111100 . . . 0111110000
. . . 1100101001 . . . 1110001010 . . . 1101010100 . . . 0111111101
. . . 0001001100 . . . 0101001110 . . . 1010110101 . . . 0011101100
. . . 0000000111 . . . 0100100101 . . . 1011100010 . . . 0101011110

 .

According to the results of §3.2.1, the j-th column of this matrix (for 1 6 j 6 4) encodes the
loss/gain of precision on the computation of uj+14. Precisely, we observe that each column
of J(ϕ14)(1,1,1,3) contains an element of valuation zero, meaning that the optimal precision on
u15, u16, u17 and u18 separately is O(210). In particular, we cannot decide whether u15 actually
vanishes or does not. This sounds quite weird because we were able in any case to compute
u19 using algorithm somos option1. The point is that the formula given the value of u19 has
the shape u19 = numerator

u15
where the numerator is divisible by u15. The approach based on the

Laurent phenomenon views this simplification and is therefore able to compute u19 even when
u15 vanishes!

The analysis of the optional precision on the quadruple (u15, u16, u17, u18) is interesting as
well. However, according to Eq. (3.38), the determinant of J(ϕ14)(1,1,1,3) vanishes at the working
precision; we cannot then certify its surjectivity and it seems that we are in a deadlock. In order
to go further, we increase a bit the precision on the initial values: for now on, we assume that a,
b, c and d (whose values are 1, 1, 1 and 3 respectively) are given at precision O(2N ) with N > 10.
The computation then shows that the determinant of J(ϕ14)(1,1,1,3) has valuation 10. Thanks to
Eq. (3.14) that the quadruple (u15, u16, u17, u18) has 10 diffused digits of precision. We can even
be more precise by computing the Hermite normal form of J(ϕ14)(1,1,1,3), which is:

1 0 0 179
0 1 0 369
0 0 1 818
0 0 0 210


meaning that the particular linear combination 179u15 +369u16 +818u17−u18 could in principle
be determined at precisionO(2N+10). Using this, it becomes possible to determine u19 at precision
O(2N ) (while a naive computation will lead to precision O(2N−10) because of the division by
u15).
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Explicit precision Lemma. Another task we have to do in order to use the theory of adaptive
precision is to make explicit the constants in the precision Lemma for the particular problem we
are studying. In the case of the Somos 4 sequence, the result we need takes the following form.

Proposition 3.39. We keep the above notations and assumptions25. For all N > v(i), we have:

ϕi
(
(a, b, c, d) + pNZ4

p

)
= (ui+1, ui+2, ui+3, ui+4) + pN dϕi,(a,b,c,d)

(
Z4
p

)
.

Proof. The proof is a slight generalization (to the case of multivariate Laurent polynomials) of
Proposition 3.17. In fact, the only missing input is the generalization of Lemma 3.19 to our
setting. Concretely, we then just have to establish that:

‖ϕi(v2)− ϕi(v1)− dϕi,v(v2−v1)‖ 6 max
(
‖v1−v‖, ‖v2−v‖

)
· ‖v2−v1‖ (3.40)

for all integers i and all vectors v, v1, v2 ∈ Z4
p whose all coordinates are invertible. (Here ‖ · ‖

denotes as usual the infinite norm.) For doing so, we write ϕi as the compositum ϕi = ϕ̃i ◦ ι
where ι is the (partially defined) embedding:

ι : Q4
p → Q4

p, (x, y, z, t) 7→ (x, y, z, t, x−1, y−1, z−1, t−1)

and ϕ̃i : Q8
p → Q4

p is a function whose each coordinate is given by a multivariate polynomial with
coefficients in Zp. We set w = ι(v), w1 = ι(v1), w2 = ι(v2) and compute:

ϕi(v2)− ϕi(v1)− dϕi,v(v2−v1) = ϕ̃i(w2)− ϕ̃i(w1)− dϕ̃i,w ◦ dιv(v2−v1)
= ϕ̃i(w2)− ϕ̃i(w1)− dϕ̃i,w(w2−w1)

+ dϕ̃i,w(w2 − w1 − dιv(v2−v1)
)
.

From the shape of ϕ̃i, we deduce that the norm of its differential dϕ̃i,w is at most 1. Therefore:

‖ϕi(v2)− ϕi(v1)− dϕi,v(v2−v1)‖
6 max

(
‖ϕ̃i(w2)− ϕ̃i(w1)− dϕ̃i,w(w2−w1)‖, ‖w2 − w1 − dιv(v2−v1)‖

)
6 max

(
‖w1−w‖·‖w2−w1‖, ‖w2−w‖·‖w2−w1‖, ‖w2−w1 − dιv(v2−v1)‖

)
. (3.41)

the last inequality coming from Lemma 3.19 applied to a shift of the function ϕ̃i. Given three
invertible elements x, x1, x2 in Zp, we have:∣∣∣∣ 1

x1
− 1

x2
−
(−1

x2

)
· (x1−x2)

∣∣∣∣ =

∣∣∣∣(x1−x2) · (x1x2 − x2)x2x1x2

∣∣∣∣ = |x1−x2| · |x1x2 − x2|.

Writing x1x2−x2 = x(x1−x) + x1(x2−x) shows that |x1x2−x2| 6 max
(
|x1−x|, |x2−x|

)
. Thus:

‖w2−w1 − dιv(v2−v1)‖ 6 ‖v2−v1‖ ·max
(
‖v1−v‖, ‖v2−v‖

)
.

Finally, a straightforward computation shows that ‖w1−w‖ = ‖v1−v‖, ‖w2−w‖ = ‖v2−v‖ and
‖w2−w1‖ = ‖v2−v1‖. Inserting these inputs into Eq. (3.41), we get Eq. (3.40) as desired.

Context of zealous arithmetic. We fix a positive integer N . We assume that the initial values a,
b, c and d are given at precision O(pN ). The corresponding lattice is H = pnZ4

p. By Proposition
3.39, the precision Lemma applies with ϕi, x and H as soon as N > v(i).

We now follow step by step the method of adaptive precision (see §3.3.1). We first set
Hi = dϕi,(a,b,c,d)(H) = pN dϕi,(a,b,c,d)(Z4

p). We then have to exhibit two “simple” lattices Hi,min
and Hi,max that approximates Hi from below and from above respectively. The answer is given
by the inclusions (3.39): we take Hi,min = pN+v(i)Z4

p and Hi,max = pNZ4
p. Concerning the lattice

25In particular, we continue to assume that the initial values a, b, c and d are invertible in Zp.
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H ′i−1, it can be any lattice for which the following requirement holds: if the quadruple (x, y, z, t)
is known at precision H ′i−1, then zealous arithmetic is able to compute σ(x, y, z, t) at precision
H ′i,min = pN+v(i)Z4

p. Since the division by x induces a loss of precision of at most val(x) digits, we
can safely take H ′i−1 = pN+v(i)+val(ui)Z4

p. Instantiating the routine Phi stabilized v2 (page 71)
to our setting, we end up with the following stabilized version of the procedure somos option1.

def somos_stabilized(a,b,c,d,n):

# We assume n > 5

# a,b,c,d are units in Zp given at precision O(pN )
x,y,z,t = a,b,c,d

f o r i in 1, 2, . . . , n−4:
u = (y*t + z*z)/x # Precomputation at small precision
v = valp(y) + valp(z) + valp(t) + valp(u)
i f v > N : r a i s e PrecisionError

l i f t x,y,z,t at precision O(pN+v+valp(x))
x,y,z,t = y, z, t, (y*t + z*z)/x

return t at precision O(pN )

This algorithm always returns a correct answer at precision O(pN ). It might fail — and then it
raises an error — if the precision on the entries is not sufficient; by Lemma 3.38, this occurs
exactly when one term of the Somos 4 sequence we are computing is indistinguishable from 0.
One possible solution in that case is to increase arbitrarily the precision on a, b, c and d, rerun
the algorithm and finally truncate the obtained result back to precision O(pN ).

Context of lazy/relaxed arithmetic. The literal translation to the lazy world of the stabilized
algorithm we have designed just above is:

def somos_stabilized(a,b,c,d,n):

# We assume n > 5
# a,b,c,d are lazy invertible p-adic numbers
def nth_term(N):

x,y,z,t = a(N),b(N),c(N),d(N)

f o r i in 1, 2, . . . , n−4:
u = (y*t + z*z) / x

v = valp(y) + valp(z) + valp(t) + valp(u)
i f v > N : r a i s e PrecisionError

x,y,z,t = y % pN+v, z % pN+v, t % pN+v, u % pN+v

return t % pN

return nth_term

Remark 3.40. Instead of raising an error if N is too small, it is more clever to rerun the
computation at higher precision. We can implement this idea simply by replacing the statement
“raise PrecisionError” by “return ntn term(2*N)” in the code above.

The correctness of this algorithm is proved similarly to the case of zealous arithmetic by applying
the precision Lemma to the function ϕi (see Proposition 3.39). We notice, in particular, that
we do not need here Proposition 3.35; this is nice because making explicit the constant N0 of
Proposition 3.35 is tedious. This simplification is due to the fact that the differential dϕi,(a,b,c,d) is
surjective (actually even bijective).
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