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Notations

Elliptic curves

• equation (in Edwards form): x2 + y 2 = 1 + dx2y 2 where c , d ∈ K and
cd(1− c4d) 6= 0

• group law : (x1, y1) + (x2, y2) = ( x1y2+x2y1
c(1+dx1x2y1y2)

, y1y2−x1y2
c(1−dx1x2y1y2))

• cardinality (Hasse) :

|#{(x : y : z) ∈ P2(Fq) : x2z2 + y 2z2 = z4 + dx2y 2} − q| ≤ 2
√
q

• scalar product : for any r and P , [r ]P = P + · · ·+ P (r times)
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Finding elliptic curves

Use in cryptography

• Elliptic curves are used in all group-based cryptography : ElGamal, Diffie-Hellman,
DSA. They are standardized since 1999.

• Curves are constructed as follows
• select the good size

• pick a random prime q of the good size

• pick random parameters c and d which define a curve E

• use the Schoof algorithm to compute the cardinality r

• test primality of r (if desired test primality of q + 1− r)
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Pairings

Definition

• E an elliptic curve over a field K

• r an integer

• P(x,y) a point on E so that [r ]P = (0, 1) (neutral element).

• µ a unit of Φr in the algebraic closure of K

eE ,r ,P,µ : Z
rZP ×

Z
rZP → µZ/rZ

([a]P , [b]P) 7→ µab.

Properties of a pairing e

Non-degenerate bilinear map.

Computations of pairings

1. Theorem of Weil (1948): pairings can be defined in terms of divisors, without
computing a,b

2. Algorithm of Miller (1985): related to a ”fast exponentiation” and has a
polynomial complexity
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Three-party Diffie-Hellman

Problem
Alice, Bob and Carol use a public elliptic curve E and a pairing e with respect to a
point P. Each of the participants broadcast simultaneously an information in a public
channel. How can they agree on a common key ?

Joux’s protocol (2000)

1. Simultaneously, each participant generates a random integer in [0, r − 1] and
broadcasts a multiple of P :
• Alice generates a and computes [a]P ;
• Bob generates b and computes [b]P ;
• Carol generates c and computes [c]P ;

2. Simultaneously, each participant computes the pairing of the received information
and computes the common key:
• Alice computes e([b]P , [c]P)a;
• Bob computes e([c]P , [a]P)b;
• Carol computes e([a]P , [b]P)c ;

Common secret key: µabc .
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Embedding degree
Definition
Given E, K and r the embedding degree is the degree of the extension of K which
contains an r-th root of unity.

Pariring friendly elliptic curves

Let q be selected so that the discrete logarithm problem is just hard enough in the
elliptic curve. Then

• if k is too large, computations are slow (arithmetic in Fqk)

• if k is too small, the discrete logrithm in Fqk is too easy and the pairing is not safe.

Key sizes

security (bits) key size RSA key size ECDSA quotient

log2(qk) log2 r ≈ log2 q

80 1024 160 6

128 3072 256 12

256 15360 512 30

We need curves such that

• cardinality r = c × prime with c ≤ 10

• k donné
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CM method

Motivation

Theorem of Köblitz and Balusubramanian : a proportion of 1− o(1) of the curves
defined over Fq have k ≈ q.

We cannot take random curves, we must find families

Constructing pairings

Given an embedding degree k we construct a pairing-friendly curve E as follows:

1. find q, r and t subject to the CM equations in next slide; they are
• Fq is the field of coefficients
• E has q + 1− t points
• E has a subgroup of order r .

2. apply the complex method (Morain 1990) to construct a curve E corresponding to
q,r,t. The cost is O(h2+εD ) where hD is the class number of Q(

√
D) (for a random

D, hD '
√
D).
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CM equations

k given but some exceptions are allowed

Two primes q and r and a square-free integer D satisfy the CM conditions if

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2
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Super-singular curves

Idea
Take t = 0 and k = 2. Indeed,

1. Φk(t − 1) ≡ 0 (mod r) (true for all r because Φ2(−1) = 0)

2. q + 1− t ≡ 0 (mod r) (true for any divisor r of q + 1)

3. ∃y , 4q = Dy 2 + t2 (true for any q)

Limits

• if q = 2 or q = 3 we can have k ∈ {1, 2, 3, 4, 6} (but small characteristic and
hence subject to the quasi-polynomial time attack)

• if q ≥ 5 we has two possibilities
• k = 2 OK
• k = 1 but q = p2s and E or its twist are isomorphic to a pairing of embedding

degree 2 defined over ps (F(p2s)1=F(ps )2
).
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Cocks-Pinch

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method

1. replace (2) by an equivalent equation

2. select r so that r ≡ 1 mod k and (−Dr ) = 1

3. solve (2) for y

4. solve (3) for q
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Dupont-Enge-Morain

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method

1. replace (2) by an equivalent equation

2. compute R(a) = Rest(Φk(t − 1), a + (t − 2)2); enumerate a’s and take
• r a prime factor of R(a)
• compute gcd(Φk(t − 1) mod r , a + (t − 2)2 mod r) and obtain t if it is linear

3. solve (3) for q
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Sparse families (e.g. MNT)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. put r = Φk(t − 1), which satisfies (1)

2. put q = r + t − 1, which satisfies (2)

3. put t = t(x), t linear, and note that this forces q = q(x), quadratic polynomial q
(e.g. t(x) = −1± 6x and q(x) = 12x2 − 1). This transforms (3) into a
generalized Pell equation

4. solve the generalized Pell equation to get y and x , and therefor q

Was generalized by Freeman to k = 10, where ϕ(k) = 4
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Complete families (e.g. BN)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

1. replace (2) by an equivalent equation

2. • select r(x) ∈ Q[x ] so that Q[x ]/r(x) which contains a root of x2−D and Φk(x)
• take t = t(x) to be such that t − 1 is a kth root of unity mod r(x)

3. put y = t(x)/
√
−D which satisfies (2)

4. solve (3) for q

Note that we generate a large number of elliptic curves very quickly.
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Discrete logarithm problem (DLP)

DLP

Given P and [a]P find P.

Generic algorithm

A combination of Pohlig-Hellman reduction and Pollard’s rho solves DLP in a generic
group G after O(

√
r) operations, where r is the largest prime factor of #G .

Relation to pairings

A pairing e : 〈P〉 × 〈P〉 → K (µ) is safe only if

1. DLP in E [r ] is hard; (DLP on elliptic curves) if log2 #G = n, cost=2
n
2

2. DLP in K (µ) is hard. (DLP in finite fields) if log2 #K (µ) = n, cost≈ exp( 3
√
n)
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Types of pairing friendly families

Possible target fields K (µ):

1. (supersingular) F24·n and F36·n (fastest)

2. (complete families: BN) Fpk with p of polynomial form, e.g.
p = 36u4 + 36u3 + 24u2 + 6u + 1

3. (Pinch-Cocks) arbitrary Fpk much slower (log2q ≈ 2 log2 r)
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DLP: an example (1)

Parameters

• p = 12101

• g = 7 is a generator of G = (Z/pZ)∗

• ` = 11 is a prime factor of (p − 1) = #G

• B = 10 is the smoothness bound

• factor base 2, 3, 5, 7

Finding relations among logs

75 mod p = 4706 = 2 · 13 · 181

The last relation gives:
7 = 3 log7 3 + 2 log7 5

25 = 8 log7 2 + 1 log7 3

42 = 6 log7 2 + 2 log7 5.
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DLP: an example (2)

Thanks to the Pohlig-Hellman reduction

we do the linear algebra computations modulo ` = 11.

Linear algebra computations

We have to find the unknown log7 2, log7 3 and lg7 5 in the equation0 3 2

8 1 0

6 0 2

 ·
log7 2

log7 3

log7 5

 ≡
 7

25

42

 mod 11.

Conjecture

The matrix obtained by the technique above has maximal rank.

We can drop all conjectures by modifying the algorithm, but this variant is fast and,
even if the matrix has smaller rank we can find logs.

Solution
We solve to obtain log7 2 ≡ 0 mod 11; log7 3 ≡ 3 mod 11 and log7 5 ≡ 10 mod 11.
For this small example we can also use Pollard’s rho method and obtain that

log7 3 = 8869 ≡ 3 mod 11.
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DLP: an example (3)

At this point, we know discrete logarithms of the factor base and of smooth numbers:

log7(10) = log7 2 + log7 5 ≡ 10 mod 11.

Smoothing by randomization

Consider a residue modulo p which is not 10-smooth, e.g. h = 151. We take random
exponents a and test is (g ah) mod p is B-smooth.

The discrete logarithms of the two members are equal:

5 + log7(151) = 2 log7 2 + 7 log7 3.

We find log7(151) ≡ 3 mod 11.

Remark
This part of the computations is independent of the relation collection and linear
algebra stages. It is called individual logarithm stage.
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log7(10) = log7 2 + log7 5 ≡ 10 mod 11.

Smoothing by randomization

Consider a residue modulo p which is not 10-smooth, e.g. h = 151. We take random
exponents a and test is (g ah) mod p is B-smooth.

73151 mod p = 3389

74151 mod p = 11622 = 2 · 3 · 13 · 149

75151 mod p = 8748 = 22 · 37

The discrete logarithms of the two members are equal:

5 + log7(151) = 2 log7 2 + 7 log7 3.

We find log7(151) ≡ 3 mod 11.

Remark
This part of the computations is independent of the relation collection and linear
algebra stages. It is called individual logarithm stage.
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Small characteristic

The quasi polynomial (B, Gaudry, Joux, Thomé 2014)

• special choice of definition of F2n (Joux 2013)

• special choice of smoothness candidates (aP + b)q − (aP + b)

• special smoothness base : {P + λ | λ ∈ Fq2}

Consequences

• F2n broken asymptotocally in time nO(log n)

• real-life cryptographic examples of 128 bits of security broken by Granger
Kleinjung Zumbragel (2014) in char 2 and by Adj, Menezes Olivieira Rodriguez
(2016) in char 3

• since 2013 ENISA standards forbid cryptosystems based on these two cases
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The case Fpn where p has polynomial form

(S)exTNFS

• (TNFS; B, Gaudry, Kleinjung 2015) in NFS replace Q by a number field of degree
a divisor of n

• (exTNFS: Kim and B 2016) combine in TNFS with a method of Joux and Pierrot
2013

(S)exTNFS

• complexity changed from T to T
1
3√2

• key sizes of ENISA repport are incorrect, they must be doubled
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The case Fpn where p is arbitrary

New methods of polynomial selection for NFS

• (Joux Lercier Smart Vercauteren 2006) adapted NFS from Fp to Fpn by modifying
the polynomial selection

• (B Gaudry Guillevic Morain 2015) proposed a better method : conjugation
method (applications of LLL)

exTNFS with conjugation method

• complexity changed from T to T
1

3√1.33

• key sizes of ENISA repport are incorrect, they must be multiplied by 1.33
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Conclusion

Summary

property of pairing-friendly curves attack which exploits it

small ϕ(k) exTNFS for composite k

SNFS q SNFS variant of exTNFS

Unaffected pairings

1. Cocks-Pinch when k = 5, 7, etc (slow)

2. Menezes’ k = 1 curves (slow)

Quotation

”Is it the beginning of the end of pairings ?” (referee of Crypto 2016)
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