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The interchange process on the line
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Exactly one particle sits on each site.
In each step two particles are swapped across an edge.
State space: all permutations of 1...n.

Balint Virdg + Rahman, Vizer, Kotowski, Dz Random Sorting Networks Luminy, June 1, 2017 2 /28



The permutahedron

A random walk on the permutahedron.

Cayley graph of Sym,,.

Has diameter (3). Farthest points: 1...n and n...1.

A shortest path between these points is called a sorting network.
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How many sorting networks on [n] are there?
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How many sorting networks on [n] are there?

Theorem (Stanley (1984))

The number of sorting networks on [n] is

()!

17371502 (2n — 1)L

st {staircase shaped standard Young tableaux of size (g) } .

Bijection [Edelman-Greene (1987)]: Between sorting networks and
staircase shaped standard Young tableaux.

Balint Virdg + Rahman, Vizer, Kotowski, Dz Random Sorting Networks Luminy, June 1, 2017 4/28



Angel, Holroyd, Romik and V, 2007

Let (s1, 52, ..

., Sn) be the swaps of a uniform random sorting network on

-time empirical measure of swaps:

[n]. Consider the scaled space

Theorem (Angel et. al. 2007)

1 — y2 dxdy.

2
s

The measure 1 converges weakly: n —
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RSN: Many conjectures

RSN"” = (04,0 < t < N) a uniform random sorting network on 1...n.

Figure: Permutation matrix of of RSN®% at half time (Courtesy A. Holroyd)
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Halfway permutation for 2000
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How do we study the geometry of large permutations?

Figure: Scaled matrix of a uniform random permutation of 500 elements.



Permutation limit theory |
The empirical measure of a permutation o of [n] is
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The empirical measure of a permutation o of [n] is

s 1 (2 20 (i)
“_nZ‘S(n L= 1).

It is the empirical joint distribution of (i, o) scaled to live on [~1,1]?.

Defintion

Permutations o, of increasing length converge if ;4°" converges in
distribution to a limiting measure p.




Permutation limit theory |
The empirical measure of a permutation o of [n] is

s 1 (2 20 (i)
u_n25<n L= 1).

It is the empirical joint distribution of (i, o) scaled to live on [~1,1]?.

Defintion

Permutations o, of increasing length converge if ;4°" converges in
distribution to a limiting measure p.

(v is a prob. measure on [—1,1]? with uniform marginals. A permuton.

Theorem (Hoppen et. al. 2013)

Any permuton is a limit of permutations.

Permutons are the same as copulas, used in statistics since 1981.



The halfway permutation

RSN" = (040 < t < N) a uniform random sorting network on [n].

Figure: Empirical measure p7v/2 of RSN®®. (A. Holroyd)
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The halfway permutation

Conjecture
Halfway permutation of RSN” converges to the Archimedean measure ,;z%J

o Unique probability measure on R? with Uni[—1, 1] projections along
any line through the origin.

@ Projection of normalized surface area measure of S onto R?. Has
density on the unit disk:

(2m)~*

V1—x2—y2

dxdy.



Permutation limit theory Il

For the joint limit of 2 permutations o, 7:
the empirical distribution of (i,ci,7i) scaled to [-1,1]3.

For the joint limit of a time-dependent permutations (0;,0 <t < 1)
with o9 = id
the empirical distribution of (0,0 < t < 1) scaled to [—1, 1].

This is the empirical distribution of the particle trajectories.

Defintion

A permuton process is the law of a stochastic process [0, 1] — [—1,1]
with uniform marginals.

Natural weak topology with respect to sup norm convergence.

Proposition (Rahman, V, Vizer, 16+)

Any permution process is a limit of a deterministic sequence of
time-dependent permutations.




Examples of permuton processes

© 9 o e o
1 2 3 4 5
7N\
¢ o o o ®
1 2 3 4 5
Example
The interchange process on {1,...,n} run at speed n3, rescaled to [~1,1]

is concentrated at a single permuton process B.

B is the law of stationary reflected Brownian motion on [—1,1].



Example: The Archimedean process

Defintion (The Archimedean process)

gty = cos(mt) Ay +sin(mt) Ay,
where (A, A)) ~ .

Conjecture (Angel, Holroyd, Romik, V, 07; Rahman, V, 16+)

RSN" converges after scaling to a deterministic limit, the Archimedean
process ;.




The permutons (), % /19) and random sorting networks

Figure: The path p7L) of RSN®® at times ¢ = k/10. (Holroyd)



What's special about the Archimedean process?
The Dirichlet energy of a path v in a compact metric space (K, d) is

n 2
d(f)/t 1771.“')

En[y] = sup _

bl O=ty<t;<---<tp=1 Iz_; ti—ti_1

where the supremum is over all finite partitions of [0, 1].



What's special about the Archimedean process?
The Dirichlet energy of a path v in a compact metric space (K, d) is

M (e e )?
En [7] — sup (/Ytl—l ’yt,)

Y
O=to<ti<<t,=1 5 L —li-1

where the supremum is over all finite partitions of [0, 1].

Theorem (Rahman, V, 16+)

&y uniquely minimizes Dirichlet energy among permuton processes X with
Xo = —X1.




What's special about the Archimedean process?

Theorem (Rahman, V, 16+)

4, is the uniquely minimizes L2-Dirichlet energy among permuton
processes X with Xp = —Xj.

Proof. Xy and X; are opposite points of an L2 ball of random variables
with mean 0 and variance 2/3.

Claim: . is the unique distribution of a half great circle with uniform
marginals.

Proof.
If X is a great circle in any Hilbert space, then
Xt = Xo cos(mt) + Xy o sin(mt)

Since X; are uniform, (Xo, X12) ~ @/. Thus (X;) ~ (%)



Questions about permutons

The length of a permuton (X, Y) is the infimum of the energy of a
permuton processes with (Xo, X1) = (X, Y).

Conjecture (Rahman, V, 16+)
(X, —X) is the unique longest permuton.
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Questions about permutons
The length of a permuton (X, Y) is the infimum of the energy of a

permuton processes with (Xo, X1) = (X, Y).
Conjecture (Rahman, V, 16+)
(X, —X) is the unique longest permuton. J

Proved by D. Dauvergne.
Conjecture (Rahman, V, 16+)

For any permuton (X, Y) there is a unique permuton process realizing its
length.

Proved by D. Dauvergne for the case when (X, Y) has a density. In that
case, X; is determined by (Xp, X1). (False for 27!).




Application: lazy sorting networks
Fix o € (0,1).

Defintion
A lazy sorting network is law of interchange process on the n-path
conditioned to be o(1)-close to the reverse permutation at time n?t%/2.
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exp <2n2+a logn — (7°/6 + o(l))n2_a>



Application: lazy sorting networks
Fix o € (0,1).

Defintion

A lazy sorting network is law of interchange process on the n-path
conditioned to be o(1)-close to the reverse permutation at time n?+</2.

LD mantra: The most likely trajectory minimizes the energy.

Theorem (Michal Kotowski-V, 16+)

Lazy sorting networks concentrate and converge to ;.

Corollary. The number of lazy sorting network paths is

1
exp <2n2+a logn — (7°/6 + o(l))n2_“>

But Stanley’s formula for the number of sorting networks, oo = 0:

exp (;n2 logn—(1/4 —log2 + o(l))n2)



The Edelman-Greene bijection

Lazy sorting networks still behave like random walks locally.
Sorting networks are different. (Particles can only swap once!)

EG: A bijection betwen random sorting network on [n] and
staircase-shaped young tableaux of volume (7).

Properties.
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staircase-shaped young tableaux of volume (7).

Properties.
@ bijection, so uniform measure is preserved

@ early steps in the network are determined by values close to diagonal
of the YT.

@ similar to the RSK correspondence.



The Edelman-Greene bijection

Lazy sorting networks still behave like random walks locally.
Sorting networks are different. (Particles can only swap once!)

EG: A bijection betwen random sorting network on [n] and
staircase-shaped young tableaux of volume ().

Properties.
@ bijection, so uniform measure is preserved

@ early steps in the network are determined by values close to diagonal
of the YT.

@ similar to the RSK correspondence.

@ The longest increasing subsequence of swaps is easy to read off and
control.



Limits of sorting networks

Theorem (Angel, Holroyd, Dauvergne, V; Gorin, Rahman)

Consider the time scaled swap process

UH(X7 t) = O|nt| (X)a

where ¢ is a uniform random sorting network. Then




Limits of sorting networks

Theorem (Angel, Holroyd, Dauvergne, V; Gorin, Rahman)

There exists a swap process U so that the following holds. For any

u € (—1,1), and sequence k, with k,/n — (1 + u)/2. Consider the
shifted, and time scaled swap process

Un(X, t) = O'Lnt/mJ(kn =F X) = kn,
where o is a uniformly random sorting network. Then

d
u, — V.
n—o0




Properties of the limit

U is stationary and mixing of all orders in space.

U and has stationary increments in time.

For every t, the permutation U(, t) is finitary.

Particles in U have random speed, S(x) = lim;_o U(x, t)/t exists.

S(x) is a stationary and ergodic.

(Rahman, V, 16+). Proving ES(x)? < £ would imply the
Archimedean process conjecture.
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Two proofs of the local limit

Both work by taking local limits of the staircase YT, then applying EG in
the limit.
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Two proofs of the local limit

Both work by taking local limits of the staircase YT, then applying EG in
the limit.

@ Angel, Holroyd, Dauvergne, Virag: Hook formula, probabilistic
arguments, monotonicity. First principles.
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Two proofs of the local limit

Both work by taking local limits of the staircase YT, then applying EG in
the limit.

@ Angel, Holroyd, Dauvergne, Virag: Hook formula, probabilistic
arguments, monotonicity. First principles.

@ Gorin, Rahman: Petrov's contour integral formula, an exact formula

for plain partitions. Integrable probability, random matrix correlations
in the limit.
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Application of the local limit

Theorem (Dauvergne, V, 17+)

In any subsequential permuton process limit X of RSN,

supp(Xo, X;) C supp(#, %)
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Application of the local limit

Theorem (Dauvergne, V, 17+)

In any subsequential permuton process limit X of RSN,

supp(Xo, Xt) C supp(#, #)

Proof.

o |t suffices to show that in the local limit, particles have speed
bounded by 1.
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Application of the local limit

Theorem (Dauvergne, V, 17+)

In any subsequential permuton process limit X of RSN,

supp(Xo, Xt) C supp(#, #)

Proof.

o |t suffices to show that in the local limit, particles have speed
bounded by 1.

@ Suppose the contrary.
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Application of the local limit

Theorem (Dauvergne, V, 17+)
In any subsequential permuton process limit X of RSN,

supp(Xo, Xt) C supp(#, #)

Proof.
o |t suffices to show that in the local limit, particles have speed
bounded by 1.
@ Suppose the contrary.
@ Then in large enough boxes we see particles travelling diagonally at a
higher speed with high probability.
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Application of the local limit

Theorem (Dauvergne, V, 17+)

In any subsequential permuton process limit X of RSN,

supp(Xo, Xt) C supp(#, #)

Proof.

o |t suffices to show that in the local limit, particles have speed
bounded by 1.

@ Suppose the contrary.

@ Then in large enough boxes we see particles travelling diagonally at a
higher speed with high probability.

o Tiling the global sorting network with these boxes, we find an
increasing subsequence that is too long before time 1.
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Thank You



