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The interchange process on the line

1 2 3 4 5

1 2 3 4 5

Exactly one particle sits on each site.
In each step two particles are swapped across an edge.
State space: all permutations of 1...n.
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The permutahedron

A random walk on the permutahedron.
Cayley graph of Symn.
Has diameter

(n
2

)
. Farthest points: 1...n and n...1.

A shortest path between these points is called a sorting network.
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How many sorting networks on [n] are there?

Theorem (Stanley (1984))

The number of sorting networks on [n] is(n
2

)
!

1n3n−15n−2 · · · (2n − 1)1
=

#

{
staircase shaped standard Young tableaux of size

(
n

2

)}
.

Bijection [Edelman-Greene (1987)]: Between sorting networks and
staircase shaped standard Young tableaux.
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Angel, Holroyd, Romik and V, 2007
Let (s1, s2, . . . , sN) be the swaps of a uniform random sorting network on
[n]. Consider the scaled space-time empirical measure of swaps:

η =
1

N

N∑
i=1

δ

(
i

N
,

2si
n
− 1

)
.

Theorem (Angel et. al. 2007)

The measure η converges weakly: η → 2
π

√
1− y2 dxdy .

Figure: Empirical measure of swaps of RSN2000. (Courtesy A. Holroyd)
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RSN: Many conjectures

RSNn = (σt ; 0 ≤ t ≤ N) a uniform random sorting network on 1...n.

Figure: Permutation matrix of of RSN500 at half time (Courtesy A. Holroyd)
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Halfway permutation for 2000
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Selected trajectories
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How do we study the geometry of large permutations?

Figure: Scaled matrix of a uniform random permutation of 500 elements.



Permutation limit theory I
The empirical measure of a permutation σ of [n] is

µσ =
1

n

n∑
i=1

δ

(
2i

n
− 1,

2σ(i)

n
− 1

)
.

It is the empirical joint distribution of (i , σi) scaled to live on [−1, 1]2.

Defintion

Permutations σn of increasing length converge if µσn converges in
distribution to a limiting measure µ.

µ is a prob. measure on [−1, 1]2 with uniform marginals. A permuton.

Theorem (Hoppen et. al. 2013)

Any permuton is a limit of permutations.

Permutons are the same as copulas, used in statistics since 1981.
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The halfway permutation

RSNn = (σt ; 0 ≤ t ≤ N) a uniform random sorting network on [n].

Figure: Empirical measure µσN/2 of RSN500. (A. Holroyd)
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The halfway permutation

Conjecture

Halfway permutation of RSNn converges to the Archimedean measure A .

Unique probability measure on R2 with Uni[−1, 1] projections along
any line through the origin.

Projection of normalized surface area measure of S2 onto R2. Has
density on the unit disk:

(2π)−1√
1− x2 − y2

dxdy .



Permutation limit theory II
For the joint limit of 2 permutations σ, τ :

the empirical distribution of (i , σi , τ i) scaled to [−1, 1]3.

For the joint limit of a time-dependent permutations (σt , 0 ≤ t ≤ 1)
with σ0 = id

the empirical distribution of (σt , 0 ≤ t ≤ 1) scaled to [−1, 1].

This is the empirical distribution of the particle trajectories.

Defintion

A permuton process is the law of a stochastic process [0, 1]→ [−1, 1]
with uniform marginals.

Natural weak topology with respect to sup norm convergence.

Proposition (Rahman, V, Vizer, 16+)

Any permution process is a limit of a deterministic sequence of
time-dependent permutations.



Examples of permuton processes

1 2 3 4 5

1 2 3 4 5

Example

The interchange process on {1, . . . , n} run at speed n3, rescaled to [−1, 1]
is concentrated at a single permuton process B.

B is the law of stationary reflected Brownian motion on [−1, 1].



Example: The Archimedean process

Defintion (The Archimedean process)

At = cos(πt)Ax + sin(πt)Ay ,

where (Ax ,Ay ) ∼ A .

Conjecture (Angel, Holroyd, Romik, V, 07; Rahman, V, 16+)

RSNn converges after scaling to a deterministic limit, the Archimedean
process At .



The permutons (A0,Ak/10) and random sorting networks

Figure: The path µσbtNc of RSN500 at times t = k/10. (Holroyd)



What’s special about the Archimedean process?
The Dirichlet energy of a path γ in a compact metric space (K , d) is

En [γ] = sup
0=t0<t1<···<tn=1

n∑
i=1

d(γti−1 , γti )
2

ti − ti−1
,

where the supremum is over all finite partitions of [0, 1].

Theorem (Rahman, V, 16+)

At uniquely minimizes Dirichlet energy among permuton processes X with
X0 = −X1.
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What’s special about the Archimedean process?

Theorem (Rahman, V, 16+)

At is the uniquely minimizes L2-Dirichlet energy among permuton
processes X with X0 = −X1.

Proof. X0 and X1 are opposite points of an L2 ball of random variables
with mean 0 and variance 2/3.

Claim: At is the unique distribution of a half great circle with uniform
marginals.

Proof.

If X is a great circle in any Hilbert space, then

Xt = X0 cos(πt) + X1/2 sin(πt)

Since Xt are uniform, (X0,X1/2) ∼ A . Thus (Xt) ∼ (At).



Questions about permutons
The length of a permuton (X ,Y ) is the infimum of the energy of a
permuton processes with (X0,X1) = (X ,Y ).

Conjecture (Rahman, V, 16+)

(X ,−X ) is the unique longest permuton.

Proved by D. Dauvergne.

Conjecture (Rahman, V, 16+)

For any permuton (X ,Y ) there is a unique permuton process realizing its
length.

Proved by D. Dauvergne for the case when (X ,Y ) has a density. In that
case, Xt is determined by (X0,X1). (False for A !).
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Application: lazy sorting networks
Fix α ∈ (0, 1).

Defintion

A lazy sorting network is law of interchange process on the n-path
conditioned to be o(1)-close to the reverse permutation at time n2+α/2.

LD mantra: The most likely trajectory minimizes the energy.

Theorem (Michal Kotowski-V, 16+)

Lazy sorting networks concentrate and converge to At .

Corollary. The number of lazy sorting network paths is

exp

(
1

2
n2+α log n − (π2/6 + o(1))n2−α

)
But Stanley’s formula for the number of sorting networks, α = 0:

exp

(
1

2
n2 log n − (1/4− log 2 + o(1))n2

)
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The Edelman-Greene bijection

Lazy sorting networks still behave like random walks locally.

Sorting networks are different. (Particles can only swap once!)

EG: A bijection betwen random sorting network on [n] and
staircase-shaped young tableaux of volume

(n
2

)
.

Properties.

bijection, so uniform measure is preserved

early steps in the network are determined by values close to diagonal
of the YT.

similar to the RSK correspondence.

The longest increasing subsequence of swaps is easy to read off and
control.
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Limits of sorting networks

Theorem (Angel, Holroyd, Dauvergne, V; Gorin, Rahman)

Consider the time scaled swap process

Un(x , t) = σbntc(x),

where σ is a uniform random sorting network. Then

Un
d−−−→

n→∞
U.



Limits of sorting networks

Theorem (Angel, Holroyd, Dauvergne, V; Gorin, Rahman)

There exists a swap process U so that the following holds. For any
u ∈ (−1, 1), and sequence kn with kn/n→ (1 + u)/2. Consider the
shifted, and time scaled swap process

Un(x , t) = σbnt/
√

1−u2c(kn + x)− kn,

where σ is a uniformly random sorting network. Then

Un
d−−−→

n→∞
U.



Properties of the limit

U is stationary and mixing of all orders in space.

U and has stationary increments in time.

For every t, the permutation U(·, t) is finitary.

Particles in U have random speed, S(x) = limt→∞ U(x , t)/t exists.

S(x) is a stationary and ergodic.

(Rahman, V, 16+). Proving ES(x)2 ≤ EAt would imply the
Archimedean process conjecture.
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Two proofs of the local limit

Both work by taking local limits of the staircase YT, then applying EG in
the limit.

Angel, Holroyd, Dauvergne, Virag: Hook formula, probabilistic
arguments, monotonicity. First principles.

Gorin, Rahman: Petrov’s contour integral formula, an exact formula
for plain partitions. Integrable probability, random matrix correlations
in the limit.
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Application of the local limit

Theorem (Dauvergne, V, 17+)

In any subsequential permuton process limit X of RSN,

supp(X0,Xt) ⊂ supp(A0,At)
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Application of the local limit

Theorem (Dauvergne, V, 17+)

In any subsequential permuton process limit X of RSN,

supp(X0,Xt) ⊂ supp(A0,At)

Proof.

It suffices to show that in the local limit, particles have speed
bounded by 1.

Suppose the contrary.

Then in large enough boxes we see particles travelling diagonally at a
higher speed with high probability.

Tiling the global sorting network with these boxes, we find an
increasing subsequence that is too long before time 1.
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Thank You


