Ballisticity and Einstein relation in 1d Mott variable range hopping

Alessandra Faggionato

Department of Mathematics University La Sapienza

Joint work with N. Gartnert and M. Salvi

Alessandra Faggionato

General dimension

• Physical motivations:

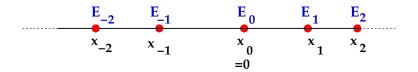
Phonon–assisted **electron transport in disordered solids** in the regime of strong Anderson localization (e.g. doped semiconductors)

• Mean field approximation:

The motion of a single conduction electron is described by a random walk $(X_t^{\xi})_{t\geq 0}$ in a random environment ξ .

The environment $\xi = (\{\mathbf{x}_i\}, \{\mathbf{E}_i\})$

- $\{x_i\}$ is a simple point process on \mathbb{R} containing $0 =: x_0$
- E_i 's are random variables with value in [-A, A] (energy marks)



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Continuous–time random walk X_t^{ξ}

- $X_t^{\xi} \in \{x_i\},$
- $X_0^{\xi} = 0,$
- Given $x_i \neq x_j$, probability rate for a jump $x_i \frown x_j$ is

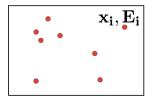
 $\mathbf{r_{x_i,x_j}}(\xi) = \exp\left\{-|\mathbf{x_i} - \mathbf{x_j}| - \beta(|\mathbf{E_i}| + |\mathbf{E_j}| + |\mathbf{E_i} - \mathbf{E_j}|)\right\}$

 β = inverse temperature

• Generalization: $r_{x_i,x_j}(\xi) = \exp\{-|x_i - x_j| + u(E_i, E_j)\},\ u(\cdot, \cdot)$ bounded and symmetric

d-dimensional version

Environment $\xi = ({\mathbf{x_i}}, {\mathbf{E_i}})$



$$\mathbf{r}_{\mathbf{x}_{i},\mathbf{x}_{j}}(\xi) = \exp\left\{-|\mathbf{x}_{i} - \mathbf{x}_{j}| - \beta(|\mathbf{E}_{i}| + |\mathbf{E}_{j}| + |\mathbf{E}_{i} - \mathbf{E}_{j}|)\right\}$$
$$r_{x_{i},x_{j}}(\xi) = \exp\left\{-|x_{i} - x_{j}| + u(E_{i}, E_{j})\right\}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● のへで

Variable range hopping

 $\mathbf{r_{x_i,x_j}}(\xi) = \exp\left\{-|\mathbf{x_i} - \mathbf{x_j}| - \beta(|\mathbf{E_i}| + |\mathbf{E_j}| + |\mathbf{E_i} - \mathbf{E_j}|)\right\}$

- Low temperature regime: $\beta \to \infty$.
- Long jumps can become convenient if energetically nice

In $d \ge 2$ the contribution of long jumps dominates as $\beta \to \infty$

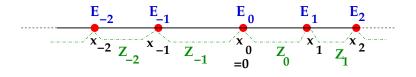
- For genuinely nearest neighbor random walk diffusion matrix $D(\beta) = O(e^{-c\beta})$
- Mott–Efros–Shklovskii law (for isotropic environment):

$$D(\beta) \sim \exp\left(-c\,\beta^{\frac{\alpha+1}{\alpha+1+d}}\right) \mathbb{1}$$

if $P(E_i \in [E, E + dE)) = c|E|^{\alpha} dE, \alpha \ge 0.$

- Rigorous lower/upper bounds: A.F. D.Spehner, H. Schulz–Baldes CMP (2006); A.F., P.Mathieu CMP (2008)
- M-E-S law concerns conductivity $\sigma(\beta)$. If Einstein relation is not violated, then $\sigma(\beta) = \beta D(\beta)$

Diffusive/Subdiffusive behavior



Theorem (A.F., P. Caputo AAP (2009))

• If $\mathbb{E}(e^{Z_0}) < \infty$, then quenched invariance principle and

 $c_1 \exp\left\{-\kappa_1 \beta\right\} \le D(\beta) \le c_2 \exp\left\{-\kappa_2 \beta\right\}.$

• If $\mathbb{E}(e^{Z_0}) = \infty$, then annealed invariance principle and

$$D(\beta) = 0.$$

For d = 1 variable range hopping becomes strong if

 $\mathbf{r}_{\mathbf{x}_{i},\mathbf{x}_{j}}(\xi) = \exp\left\{-|\mathbf{x}_{i} - \mathbf{x}_{j}|^{\gamma} - \beta(|\mathbf{E}_{i}| + |\mathbf{E}_{j}| + |\mathbf{E}_{i} - \mathbf{E}_{j}|)\right\}$

with $\gamma < 1$

Theorem (A.F., P. Caputo AAP (2009))

• If $\gamma < 1$, $\mathbb{E}(\exp{\{\varepsilon Z_i\}}) < \infty$ for some $\varepsilon > 0$, then quenched invariance principle and

 $c_1 \exp\left\{-\kappa_1 \beta^{\frac{\alpha\gamma+\gamma}{\alpha\gamma+1}}\right\} \le D(\beta) \le c_2 \exp\left\{-\kappa_2 \beta^{\frac{\alpha\gamma+\gamma}{\alpha\gamma+1}}\right\}.$

• If $\gamma < 1$, $\mathbb{E}(\exp\{\varepsilon Z_i^{\gamma}\}) = \infty$ for some $\varepsilon \in (0, 1)$, then annealed invariance principle and

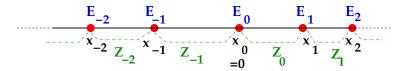
 $D(\beta) = 0.$

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー シタク

Biased 1d Mott random walk

- generalized jump rates
- β fixed, include function $u(\cdot, \cdot)$

Joint work with N. Gantert, M. Salvi (2016)



Take $\lambda \in (0, 1)$ and $u(\cdot, \cdot)$ bounded, symmetric

$$r_{x_i,x_j}^{\lambda}(\xi) = \exp\{-|x_i - x_j| + \lambda(x_j - x_i) - u(E_i, E_j)\}$$

Biased random walk $(X_t^{\xi,\lambda})_{t\geq 0}$ is well defined.

Assumptions:

• (A1) The sequence $(Z_k, E_k)_{k \in \mathbb{Z}}$ is ergodic and stationary w.r.t. shifts;

(ロ) (同) (目) (目) (日) (0) (0)

- (A2) The expectation $\mathbb{E}(Z_0)$ is finite;
- (A3) There exists $\ell > 0$ satisfying $\mathbb{P}(Z_0 \ge \ell) = 1$.

Transience

Proposition

For \mathbb{P} -a.a. ξ the rw $X_t^{\xi,\lambda}$ is transient to the right: • $\lim_{t\to\infty} X_t^{\xi,\lambda} = +\infty$ a.s.

Ballistic/Subballistic behavior

Theorem

• If
$$\mathbb{E}\left[e^{(1-\lambda)Z_0}\right] < \infty$$
, then for \mathbb{P} -a.a. ξ it holds

$$\lim_{t\to\infty}\frac{X_t^{\xi,\lambda}}{t}=v(\lambda)>0\qquad a.s.$$

• If $\mathbb{E}\left[e^{-(1+\lambda)Z_{-1}+(1-\lambda)Z_0}\right] = \infty$, then for \mathbb{P} -a.a. ξ it holds

$$\lim_{t\to\infty} \frac{X_t^{\xi,\lambda}}{t} = v(\lambda) = 0 \qquad a.s.$$

Alessandra Faggionato

Comments

$$\begin{cases} \mathbb{E}[e^{(1-\lambda)Z_0}] < \infty \implies v(\lambda) > 0\\ \mathbb{E}[e^{-(1+\lambda)Z_{-1} + (1-\lambda)Z_0}] = \infty \implies v(\lambda) = 0 \end{cases}$$

• If $(Z_k)_{k \in \mathbb{Z}}$ are i.i.d., or in general if $\|\mathbb{E}(Z_{-1}|Z_0)\|_{\infty} < \infty$, then

$$\mathbb{E}\left[e^{(1-\lambda)Z_0}\right] < 0 \Longleftrightarrow v(\lambda) > 0$$

• Previous theorem holds for $\mathbf{Y}_{\mathbf{n}}^{\xi,\lambda}$ = jump process of $X_t^{\xi,\lambda}$ $p_{x_i,x_k}^{\lambda}(\xi) = \frac{r_{x_i,x_j}^{\lambda}(\xi)}{\sum_k r_{x_i,x_k}^{\lambda}(\xi)}$ probability for $Y_n^{\xi,\lambda}$ to $x_i \curvearrowright x_j$

- $\mathbf{Y}_{\mathbf{n}}^{\xi,\lambda}$: discrete time random walk
- $p_{x_i,x_k}^{\lambda}(\xi)$ probability to jump from x_i to x_k
- $\varphi_{\lambda}(\xi) = \sum_{k} x_k p_{0,x_k}^{\lambda}(\xi)$ local drift

Theorem

The environment viewed from $Y_n^{\xi,\lambda}$ has an invariant ergodic distribution \mathbb{Q}_{λ} mutually absolutely continuous w.r.t. \mathbb{P} ,

$$v_Y(\lambda) = \mathbb{Q}_{\lambda}[\varphi_{\lambda}] \quad and \quad v_X(\lambda) = \frac{v_Y(\lambda)}{\mathbb{Q}_{\lambda}\left[1/(\sum_k r_{0,x_k}^{\lambda})\right]}$$

True also for $\lambda = 0$: $d\mathbb{Q}_0 = \frac{\sum_k r_{0,x_k}}{\mathbb{E}[\sum_k r_{0,x_k}]} d\mathbb{P}$ reversible, $v_Y(0) = v_X(0) = 0$

When $\lambda = 0$, λ is understood: $r_{x_i,x_j}(\xi)$, $p_{x_i,x_k}(\xi)$, X_t^{ξ} , Y_t^{ξ}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へぐ

Alessandra Faggionato

Comets–Popov analysis of rws with unbounded jumps

F. Comets, S. Popov, Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards. AIHP 48, 721–744 (2012)

- We have generalized the method developed by Comets–Popov for rws on Z with unbounded jumps.
- $\mathbb{Q}_{\lambda}^{(\rho)}$: invariant ergodic distribution for rw $Y_{n}^{\xi,\lambda,\rho}$ obtained from $Y_{n}^{\xi,\lambda}$ by suppressing jumps longer than ρ

• Comets–Popov method provides a representation of $\frac{d\mathbb{Q}_{\lambda}^{(\rho)}}{d\mathbb{P}}$ in terms of suitable hitting times and excursions

Proposition

Suppose that for some $p \geq 2$ it holds $\mathbb{E}[e^{pZ_0}] < +\infty$. Fix $\lambda_0 \in (0, 1)$. Then

$$\sup_{\lambda \in (0,\lambda_0)} \left\| \frac{d\mathbb{Q}_{\lambda}}{d\mathbb{Q}_0} \right\|_{L^p(\mathbb{Q}_0)} < \infty$$

Continuity of $\mathbb{Q}_{\lambda}(f)$ at $\lambda = 0$

Theorem

Suppose that $\mathbb{E}(e^{pZ_0}) < \infty$ for some $p \ge 2$ and let q be the coniugate exponent, i.e. q satisfies $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^q(\mathbb{Q}_0)$, then $f \in L^1(\mathbb{Q}_\lambda)$ for $\lambda \in (0,1)$ and $\lim_{\lambda \to 0} \mathbb{Q}_\lambda(f) = \mathbb{Q}_0(f)$

Functional analysis

Take $\mathbb{E}(e^{2Z_0}) < \infty$. Thesis:(i) $f \in L^2(\mathbb{Q}_0) \Rightarrow f \in L^1(\mathbb{Q}_\lambda)$, (ii) $\lim_{\lambda \to 0} \mathbb{Q}_\lambda(f) = \mathbb{Q}_0(f)$

- $\mathbb{Q}_{\lambda}(f) = \mathbb{Q}_0(\frac{d\mathbb{Q}_{\lambda}}{d\mathbb{Q}_0}f)$
- Item (i): apply Schwarz inequality
- Item (ii): $\sup_{\lambda \in (0,\lambda_0)} \left\| \frac{d\mathbb{Q}_{\lambda}}{d\mathbb{Q}_0} \right\|_{L^2(\mathbb{Q}_0)} < \infty$

Kakutani theorem \rightarrow Balls are compact for $L^2(\mathbb{Q}_0)$ -weak topology

Hence, $\frac{d\mathbb{Q}_{\lambda}}{d\mathbb{Q}_0}$ in $L^2(\mathbb{Q}_0)$ with weak topology is relatively compact

Let ρ be a limit point. Show that $\rho d\mathbb{Q}_0$ is invariant for the environment viewed from Y_n^{ξ}

 $\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$

- $\tau_{x_k}\xi$: environment translated to make x_k the new origin
- $\mathbb{L}_0 f(\xi) = \sum_k p_{0,x_k} [f(\tau_{x_k}\xi) f(\xi)]$ for $f \in L^2(\mathbb{Q}_0)$
- $f \in L^2(\mathbb{Q}_0) \cap H_{-1}$: there exists C > 0 such that

 $|\langle f,g\rangle| \le C \langle g, -\mathbb{L}_0 g \rangle^{1/2} \quad \forall g \in \mathcal{D}(\mathbb{L}_0)$

Above $\langle \cdot, \cdot \rangle$ is the scalar product in $L^2(\mathbb{Q}_0)$.

• $f \in L^2(\mathbb{Q}_0) \cap H_{-1} \Rightarrow \mathbb{Q}_0(f) = 0$

Theorem

Suppose $\mathbb{E}(e^{pZ_0}) < \infty$ for some p > 2. Then, for any $f \in H_{-1} \cap L^2(\mathbb{Q}_0)$, $\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$ exists. Moreover:

$$\partial_{\lambda=0} \mathbb{Q}_{\lambda}(f) = \begin{cases} \mathbb{Q}_0 \left[\sum_{k \in \mathbb{Z}} p_{0, x_k}(x_k - \varphi) h \right] \\ -\operatorname{Cov}(N^f, N^{\varphi}) \end{cases}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへで

Representation of $\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$ by forms

• M measure on $\Omega \times \mathbb{Z}$

$$M(u) = \mathbb{Q}_0\left[\sum_k p_{0,x_k} u(\xi,k)\right], \qquad u(\xi,k) \text{ Borel, bounded}$$

- $L^2(M)$: square integrable forms
- Potential form:

 $\nabla g(\xi,k) := g(\tau_k \xi) - g(\xi), \qquad g \in L^2(\mathbb{Q}_0)$

- Given $\varepsilon > 0$ let $g_{\varepsilon} \in L^2(\mathbb{Q}_0)$ solve $(\varepsilon \mathbb{L}_0)g_{\varepsilon} = f$
- Kipnis–Varadhan: $\nabla g_{\varepsilon} \to h$ in $L^2(M)$

Representation of $\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f)$ by forms

- Given $\varepsilon > 0$ let $g_{\varepsilon} \in L^2(\mathbb{Q}_0)$ solve $(\varepsilon \mathbb{L}_0)g_{\varepsilon} = f$
- Kipnis–Varadhan: $\nabla g_{\varepsilon} \to h$ in $L^2(M)$

$$\partial_{\lambda=0}\mathbb{Q}_{\lambda}(f) = \mathbb{Q}_0\left[\sum_{k\in\mathbb{Z}} p_{0,x_k}(x_k - \varphi)h\right]$$

•
$$(\varepsilon - \mathbb{L}_0)g_{\varepsilon} = f$$

$$\frac{\mathbb{Q}_{\lambda}(f) - \mathbb{Q}_0(f)}{\lambda} = \frac{\mathbb{Q}_{\lambda}(f)}{\lambda} = \frac{\varepsilon \mathbb{Q}_{\lambda}(g_{\varepsilon})}{\lambda} - \frac{\mathbb{Q}_{\lambda}(\mathbb{L}_0g_{\varepsilon})}{\lambda}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Take first $\varepsilon \to 0$, afterwards $\lambda \to 0$
- Kipnis–Varadhan: $\varepsilon \mathbb{Q}_{\lambda}(g_{\varepsilon})$ negligible as $\varepsilon \to 0$

•
$$\partial_{\lambda=0} \mathbb{Q}_{\lambda}(f) = -\lim_{\lambda \to 0} \frac{\mathbb{Q}_{\lambda}(\mathbb{L}_{0}g_{\varepsilon})}{\lambda}$$

 $-\frac{\mathbb{Q}_{\lambda}[\mathbb{L}_{0}g_{\varepsilon}]}{\lambda} = \mathbb{Q}_{\lambda} \Big[\frac{(\mathbb{L}_{\lambda} - \mathbb{L}_{0})g_{\varepsilon}}{\lambda} \Big]$
 $= \mathbb{Q}_{\lambda} \Big[\sum_{k \in \mathbb{Z}} \frac{p_{0,k}^{\lambda} - p_{0,k}}{\lambda} (g_{\varepsilon}(\tau_{k} \cdot) - g_{\varepsilon}) \Big]$
 $\approx \mathbb{Q}_{\lambda} \Big[\sum_{k \in \mathbb{Z}} \partial_{\lambda=0} p_{0,k}^{\lambda} h(\cdot, k) \Big]$
 $\approx \mathbb{Q}_{0} \Big[\sum_{k \in \mathbb{Z}} \partial_{\lambda=0} p_{0,k}^{\lambda} h(\cdot, k) \Big]$
 $= \mathbb{Q}_{0} \Big[\sum_{k \in \mathbb{Z}} p_{0,x_{k}}(x_{k} - \varphi) h \Big]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Alessandra Faggionato

$\boxed{\textbf{Represent}} \overrightarrow{\textbf{ation of }} \partial_{\lambda=0} \mathbb{Q}_{\lambda}(f) \textbf{ as } \overrightarrow{\textbf{covariance}}$

 $(\xi_n)_{n=0,1,2,\dots}$ environment viewed from Y_n^{ξ} By Kipnis–Varadhan

$$\frac{1}{\sqrt{n}} \left(\sum_{j=0}^{n-1} f(\xi_j), \sum_{j=0}^{n-1} \varphi(\xi_j) \right) \stackrel{n \to \infty}{\to} (N^f, N^{\varphi})$$

 (N^f,N^{φ}) gaussian 2d vector

$$\partial_{\lambda=0} \mathbb{Q}_{\lambda}(f) = -\operatorname{Cov}(N^f, N^{\varphi})$$

- N. Gantert, X. Guo, J. Nagel; *Einstein relation and steady* states for the random conductance model
- P. Mathieu, A. Piatnitski; Steady states, fluctuationdissipation theorems and homogenization for diffusions in a random environment with finite range of dependence

< ロト (母) (ヨ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (コ) (1)

- D_X : diffusion coefficient of X_t^{ξ}
- D_Y : diffusion coefficient of Y_n^{ξ}

Theorem

Suppose $\mathbb{E}(e^{pZ_0}) < \infty$ for some p > 2. Then the Einstein relation holds:

 $\partial_{\lambda=0}v_Y(\lambda) = D_Y$ and $\partial_{\lambda=0}v_X(\lambda) = D_X$

$$\partial_{\lambda=0} \mathbb{Q}_{\lambda}[\varphi_0] = \mathcal{F}(h)$$
 where $h = h[\varphi_0]$

$$\frac{v_Y(\lambda) - v_Y(0)}{\lambda} = \frac{v_Y(\lambda)}{\lambda} = \frac{\mathbb{Q}_{\lambda}[\varphi_{\lambda}]}{\lambda}$$
$$= \mathbb{Q}_{\lambda} \left[\frac{\varphi_{\lambda} - \varphi_0}{\lambda} \right] + \frac{\mathbb{Q}_{\lambda}[\varphi_0] - \mathbb{Q}_0[\varphi_0]}{\lambda}$$
$$\approx \mathbb{Q}_0 \left[\partial_{\lambda=0} \varphi_{\lambda} \right] + \partial_{\lambda=0} \mathbb{Q}_{\lambda}[\varphi_0]$$
$$= \mathbb{Q}_0 \left[\partial_{\lambda=0} \varphi_{\lambda} \right] + \mathcal{F}(h) = D_Y \,.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = の�?

Alessandra Faggionato

Most recent papers

A. Faggionato, M. Salvi, N. Gantert

- The velocity of 1d Mott varaible-range hopping with external field. AIHP. To appear. Available online
- Einstein relation for 1d Mott variable range hopping. Forthcoming