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General dimension

• Physical motivations:
Phonon–assisted electron transport in disordered
solids in the regime of strong Anderson localization (e.g.
doped semiconductors)

• Mean field approximation:
The motion of a single conduction electron is described by
a random walk (Xξ

t )t≥0 in a random environment ξ.
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The environment ξ = ({xi}, {Ei})

• {xi} is a simple point process on R containing 0 =: x0

• Ei’s are random variables with value in [−A,A] (energy
marks)
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Continuous–time random walk Xξ
t

• Xξ
t ∈ {xi},

• Xξ
0 = 0,

• Given xi 6= xj , probability rate for a jump xi y xj is

rxi,xj
(ξ) = exp {−|xi − xj| − β(|Ei|+ |Ej|+ |Ei −Ej|)}

β = inverse temperature

• Generalization: rxi,xj (ξ) = exp {−|xi − xj |+ u(Ei, Ej)},
u(·, ·) bounded and symmetric
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d–dimensional version

Environment ξ = ({xi}, {Ei})

rxi,xj
(ξ) = exp {−|xi − xj| − β(|Ei|+ |Ej|+ |Ei −Ej|)}

rxi,xj (ξ) = exp {−|xi − xj |+ u(Ei, Ej)}
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Variable range hopping

rxi,xj
(ξ) = exp {−|xi − xj| − β(|Ei|+ |Ej|+ |Ei −Ej|)}

• Low temperature regime: β →∞.

• Long jumps can become convenient if energetically nice
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In d ≥ 2 the contribution of long jumps dominates as
β →∞

• For genuinely nearest neighbor random walk diffusion
matrix D(β) = O(e−cβ)

• Mott–Efros–Shklovskii law (for isotropic environment):

D(β) ∼ exp
(
−c β

α+1
α+1+d

)
1

if P (Ei ∈ [E,E + dE)) = c|E|αdE, α ≥ 0.

• Rigorous lower/upper bounds: A.F. D.Spehner, H.
Schulz–Baldes CMP (2006); A.F., P.Mathieu CMP (2008)

• M-E-S law concerns conductivity σ(β). If Einstein relation is not
violated, then σ(β) = βD(β)
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Diffusive/Subdiffusive behavior
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Theorem ( A.F., P. Caputo AAP (2009))

• If E
(
eZ0
)
<∞, then quenched invariance principle and

c1 exp {−κ1 β} ≤ D(β) ≤ c2 exp {−κ2 β}.

• If E
(
eZ0
)

=∞, then annealed invariance principle and

D(β) = 0 .
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For d = 1 variable range hopping becomes strong if

rxi,xj
(ξ) = exp {−|xi − xj|γ − β(|Ei|+ |Ej|+ |Ei −Ej|)}

with γ < 1

Theorem ( A.F., P. Caputo AAP (2009))

• If γ < 1, E
(
exp{εZi}

)
<∞ for some ε > 0,

then quenched invariance principle and

c1 exp
{
− κ1 β

αγ+γ
αγ+1

}
≤ D(β) ≤ c2 exp

{
− κ2 β

αγ+γ
αγ+1

}
.

• If γ < 1, E
(
exp{εZγi }

)
=∞ for some ε ∈ (0, 1),

then annealed invariance principle and

D(β) = 0 .
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Biased 1d Mott random walk

• generalized jump rates

• β fixed, include function u(·, ·)

Joint work with N. Gantert, M. Salvi (2016)
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Take λ ∈ (0, 1) and u(·, ·) bounded, symmetric

rλxi,xj (ξ) = exp {−|xi − xj |+ λ(xj − xi)− u(Ei, Ej)}

Biased random walk (Xξ,λ
t )t≥0 is well defined.
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Assumptions:

• (A1) The sequence (Zk, Ek)k∈Z is ergodic and stationary
w.r.t. shifts;

• (A2) The expectation E(Z0) is finite;

• (A3) There exists ` > 0 satisfying P(Z0 ≥ `) = 1.

Transience

Proposition

For P–a.a. ξ the rw Xξ,λ
t is transient to the right:

• limt→∞X
ξ,λ
t = +∞ a.s.
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Ballistic/Subballistic behavior

Theorem

• If E
[
e(1−λ)Z0

]
<∞, then for P–a.a. ξ it holds

lim
t→∞

Xξ,λ
t

t
= v(λ) > 0 a.s.

• If E
[
e−(1+λ)Z−1+(1−λ)Z0

]
=∞, then for P–a.a. ξ it holds

lim
t→∞

Xξ,λ
t

t
= v(λ) = 0 a.s.
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Comments

{
E
[
e(1−λ)Z0

]
<∞ ⇒ v(λ) > 0

E
[
e−(1+λ)Z−1+(1−λ)Z0

]
=∞ ⇒ v(λ) = 0

• If (Zk)k∈Z are i.i.d., or in general if ‖E(Z−1|Z0)‖∞ <∞,
then

E
[
e(1−λ)Z0

]
< 0⇐⇒ v(λ) > 0

• Previous theorem holds for Yξ,λ
n = jump process of Xξ,λ

t

pλxi,xk(ξ) =
rλxi,xj (ξ)∑
k r

λ
xi,xk

(ξ)
probability for Y ξ,λ

n to xi y xj
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• Yξ,λ
n : discrete time random walk

• pλxi,xk(ξ) probability to jump from xi to xk

• ϕλ(ξ) =
∑

k xkp
λ
0,xk

(ξ) local drift

Theorem

The environment viewed from Y ξ,λ
n has an invariant ergodic

distribution Qλ mutually absolutely continuous w.r.t. P,

vY (λ) = Qλ

[
ϕλ
]

and vX(λ) =
vY (λ)

Qλ

[
1/(
∑

k r
λ
0,xk

)
]

True also for λ = 0:
dQ0 =

∑
k r0,xk

E[
∑
k r0,xk ]

dP reversible, vY (0) = vX(0) = 0
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Warning

When λ = 0, λ is understood: rxi,xj (ξ), pxi,xk(ξ), Xξ
t , Y ξ

t
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Comets–Popov analysis of rws with unbounded
jumps

F. Comets, S. Popov, Ballistic regime for random walks in random
environment with unbounded jumps and Knudsen billiards.
AIHP 48, 721–744 (2012)

• We have generalized the method developed by Comets–Popov for
rws on Z with unbounded jumps.

• Q(ρ)
λ : invariant ergodic distribution for rw Y ξ,λ,ρn obtained from

Y ξ,λn by suppressing jumps longer than ρ

• Comets–Popov method provides a representation of
dQ(ρ)

λ

dP in
terms of suitable hitting times and excursions
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Estimates on the Radon–Nykodim derivative dQλ
dQ0

Proposition

Suppose that for some p ≥ 2 it holds E
[
epZ0

]
< +∞. Fix

λ0 ∈ (0, 1). Then

sup
λ∈(0,λ0)

∥∥∥dQλ

dQ0

∥∥∥
Lp(Q0)

<∞
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Continuity of Qλ(f) at λ = 0

Theorem

Suppose that E(epZ0) <∞ for some p ≥ 2 and let q be the
coniugate exponent, i.e. q satisfies 1

p + 1
q = 1.

If f ∈ Lq(Q0), then f ∈ L1(Qλ) for λ ∈ (0, 1) and

lim
λ→0

Qλ(f) = Q0(f)
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Functional analysis

Take E(e2Z0) <∞. Thesis:(i) f ∈ L2(Q0)⇒ f ∈ L1(Qλ), (ii)
limλ→0Qλ(f) = Q0(f)

• Qλ(f) = Q0(
dQλ
dQ0

f)

• Item (i): apply Schwarz inequality

• Item (ii): supλ∈(0,λ0)

∥∥∥dQλdQ0

∥∥∥
L2(Q0)

<∞

Kakutani theorem → Balls are compact for L2(Q0)–weak
topology
Hence, dQλ

dQ0
in L2(Q0) with weak topology is relatively

compact
Let ρ be a limit point. Show that ρdQ0 is invariant for the
environment viewed from Y ξ

n
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∂λ=0Qλ(f)

• τxkξ: environment translated to make xk the new origin

• L0f(ξ) =
∑

k p0,xk [f(τxkξ)− f(ξ)] for f ∈ L2(Q0)

• f ∈ L2(Q0) ∩H−1: there exists C > 0 such that

|〈f, g〉| ≤ C〈g,−L0g〉1/2 ∀g ∈ D(L0)

Above 〈·, ·〉 is the scalar product in L2(Q0).

• f ∈ L2(Q0) ∩H−1 ⇒ Q0(f) = 0
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∂λ=0Qλ(f)

Theorem

Suppose E(epZ0) <∞ for some p > 2.
Then, for any f ∈ H−1 ∩ L2(Q0), ∂λ=0Qλ(f) exists.
Moreover:

∂λ=0Qλ(f) =

{
Q0

[∑
k∈Z p0,xk(xk − ϕ)h

]
−Cov(Nf , Nϕ)
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Representation of ∂λ=0Qλ(f) by forms

• M measure on Ω× Z

M(u) = Q0

[∑
k

p0,xku(ξ, k)
]
, u(ξ, k) Borel, bounded

• L2(M): square integrable forms

• Potential form:

∇g(ξ, k) := g(τkξ)− g(ξ) , g ∈ L2(Q0)

• Given ε > 0 let gε ∈ L2(Q0) solve (ε− L0)gε = f

• Kipnis–Varadhan: ∇gε → h in L2(M)

Alessandra Faggionato Ballisticity and Einstein relation in 1d Mott variable range hopping



Representation of ∂λ=0Qλ(f) by forms

• Given ε > 0 let gε ∈ L2(Q0) solve (ε− L0)gε = f

• Kipnis–Varadhan: ∇gε → h in L2(M)

∂λ=0Qλ(f) = Q0

[∑
k∈Z

p0,xk(xk − ϕ)h
]
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• (ε− L0)gε = f

Qλ(f)−Q0(f)

λ
=

Qλ(f)

λ
=
εQλ(gε)

λ
− Qλ(L0gε)

λ

• Take first ε→ 0, afterwards λ→ 0

• Kipnis–Varadhan: εQλ(gε) negligible as ε→ 0
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• ∂λ=0Qλ(f) = − limλ→0
Qλ(L0gε)

λ

−Qλ[L0gε]

λ
= Qλ

[(Lλ − L0)gε
λ

]
= Qλ

[∑
k∈Z

pλ0,k − p0,k
λ

(gε(τk·)− gε)
]

≈ Qλ

[∑
k∈Z

∂λ=0p
λ
0,k h(·, k)

]
≈ Q0

[∑
k∈Z

∂λ=0p
λ
0,k h(·, k)

]
= Q0

[∑
k∈Z

p0,xk(xk − ϕ)h
]
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Representation of ∂λ=0Qλ(f) as covariance

(ξn)n=0,1,2,... environment viewed from Y ξ
n

By Kipnis–Varadhan

1√
n

(n−1∑
j=0

f(ξj),

n−1∑
j=0

ϕ(ξj)
) n→∞→ (Nf , Nϕ)

(Nf , Nϕ) gaussian 2d vector

∂λ=0Qλ(f) = −Cov(Nf , Nϕ)
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• N. Gantert, X. Guo, J. Nagel; Einstein relation and steady
states for the random conductance model

• P. Mathieu, A. Piatnitski; Steady states, fluctuation-
dissipation theorems and homogenization for diffusions in a
random environment with finite range of dependence
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• DX : diffusion coefficient of Xξ
t

• DY : diffusion coefficient of Y ξ
n

Theorem

Suppose E(epZ0) <∞ for some p > 2. Then the Einstein
relation holds:

∂λ=0vY (λ) = DY and ∂λ=0vX(λ) = DX
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∂λ=0Qλ[ϕ0] = F(h) where h = h[ϕ0]

vY (λ)− vY (0)

λ
=
vY (λ)

λ
=

Qλ[ϕλ]

λ

= Qλ

[ϕλ − ϕ0

λ

]
+

Qλ[ϕ0]−Q0[ϕ0]

λ
≈ Q0

[
∂λ=0ϕλ] + ∂λ=0Qλ[ϕ0]

= Q0

[
∂λ=0ϕλ] + F(h) = DY .
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Most recent papers

A. Faggionato, M. Salvi, N. Gantert

• The velocity of 1d Mott varaible–range hopping with
external field. AIHP. To appear. Available online

• Einstein relation for 1d Mott variable range hopping.
Forthcoming
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