Stability of Phases and Interacting Particle Systems

Nick Crawford; The Technion

CIRM Luminy; May 2017

Based on joint work w/ W. De Roeck

Setup

- ho $\Omega = \{-1,1\}^{\mathbb{Z}^d}$ or $\Omega_N = \{-1,1\}^{\Lambda_N}$ with $\Lambda_N = [-N,N]^d$.
- ▶ Finite Range Markov process $\sigma_t \in \Omega$ or $\in \Omega_N$. No Conservation Laws!
- ▶ Semigroup $e^{t\mathcal{L}} : C(\Omega) \to C(\Omega)$. **Generator** \mathcal{L} acting on local functions:

$$\mathbb{E}_{\sigma}[f(\sigma_t)] = e^{t\mathcal{L}} \cdot f(\sigma).$$

Main Example of Interest: Ising Glauber Dynamics

1. $-H_N(\sigma|\eta) =$

$$1/2\sum_{|x-y|=1, x, y \in \Lambda_N} \sigma_x \sigma_y + \sum_{|x-y|=1, x \in \Lambda_N, y \in \Lambda_N^c} \sigma_x \eta_y + h \sum_{x \in \Lambda_N} \sigma_x$$

2. Spin Flip Operator:

$$\sigma_y^{\mathsf{x}} = \begin{cases} -\sigma_{\mathsf{x}} & \text{if } y = \mathsf{x} \\ \sigma_{\mathsf{y}} & \mathsf{o}/\mathsf{w}. \end{cases}$$

3. For $\sigma \in \Omega_N$,

$$c_{\mathsf{x}}(\sigma|\eta) = (1 + \exp(\beta[H(\sigma^{\mathsf{x}}|\eta) - H(\sigma|\eta)]))^{-1}$$
 and $\mathcal{L}_{N}^{\eta} \cdot f(\sigma) = \sum_{\mathsf{x} \in \Lambda_{N}} c_{\mathsf{x}}(\sigma|\eta)[f(\sigma^{\mathsf{x}}) - f(\sigma)].$

Similar on Ω

Invariant Measures

1. ν a measure on Ω . Invariance:

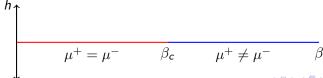
$$\mathbb{E}_{\nu}[f(\sigma_t)] = \mathbb{E}_{\nu}[f(\sigma_0)]$$

2. For Glauber, β fixed: All Gibbs measures invariant. Weak limits of

$$\mu_{N,\beta}^{\eta}(\sigma) \propto e^{-\beta H_N(\sigma|\eta)}$$
.

Others?

Structure of Gibbs measures:



Perturbations and Stability of Phases

▶ The Big Question: Suppose $\bar{\sigma}_t$ has generator $\bar{\mathcal{L}}$ "close" to \mathcal{L} . Is the Uniqueness/Multiplicity of stationary measures preserved?

Perturbations and Stability of Phases

- ▶ The Big Question: Suppose $\bar{\sigma}_t$ has generator $\bar{\mathcal{L}}$ "close" to \mathcal{L} . Is the Uniqueness/Multiplicity of stationary measures preserved?
- Caution: Glauber with Nonzero External Fields.

Perturbations and Stability of Phases

- ▶ The Big Question: Suppose $\bar{\sigma}_t$ has generator $\bar{\mathcal{L}}$ "close" to \mathcal{L} . Is the Uniqueness/Multiplicity of stationary measures preserved?
- Caution: Glauber with Nonzero External Fields.
- Current Understanding for Glauber:
 - 1. $\beta < \beta_c$ or $h \neq 0$ Yes. (C-DR '17)
 - 2. $\beta > \beta_c$ and h = 0 Don't Know. Very Interesting.

1. Individual Reservoirs: Fix $\epsilon, \beta > 0$. For $x \in \mathbb{Z}^d$, take $|\beta_x - \beta| < \epsilon$. Set

$$d_{\mathsf{x}}(\sigma|\eta) := (1 + \exp(eta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}|\eta) - H(\sigma|\eta)]))^{-1}$$

and
$$\bar{\mathcal{L}} \cdot f = \sum_{x} d_{x}(\sigma|\eta)[f(\sigma^{x}) - f(\sigma)].$$

1. Individual Reservoirs: Fix $\epsilon, \beta > 0$. For $x \in \mathbb{Z}^d$, take $|\beta_x - \beta| < \epsilon$. Set

$$d_{\mathsf{x}}(\sigma|\eta) := (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}|\eta) - H(\sigma|\eta)]))^{-1}$$

and
$$\bar{\mathcal{L}} \cdot f = \sum_{\mathbf{x}} d_{\mathbf{x}}(\sigma|\eta)[f(\sigma^{\mathbf{x}}) - f(\sigma)].$$

2. Two Temperatures: Set

$$\bar{\mathcal{L}} = \epsilon \mathcal{L}^{\beta_1} + (1 - \epsilon) \mathcal{L}^{\beta}.$$

1. Individual Reservoirs: Fix $\epsilon, \beta > 0$. For $x \in \mathbb{Z}^d$, take $|\beta_x - \beta| < \epsilon$. Set

$$d_{\mathsf{X}}(\sigma|\eta) := (1 + \exp(\beta_{\mathsf{X}}[H(\sigma^{\mathsf{X}}|\eta) - H(\sigma|\eta)]))^{-1}$$

and
$$\bar{\mathcal{L}} \cdot f = \sum_{x} d_{x}(\sigma|\eta)[f(\sigma^{x}) - f(\sigma)].$$

2. Two Temperatures: Set

$$\bar{\mathcal{L}} = \epsilon \mathcal{L}^{\beta_1} + (1 - \epsilon) \mathcal{L}^{\beta}.$$

Important Remark Not reversible in finite volume! (Cycle Condition)

1. Individual Reservoirs: Fix $\epsilon, \beta > 0$. For $x \in \mathbb{Z}^d$, take $|\beta_x - \beta| < \epsilon$. Set

$$d_{\mathsf{X}}(\sigma|\eta) := (1 + \exp(\beta_{\mathsf{X}}[H(\sigma^{\mathsf{X}}|\eta) - H(\sigma|\eta)]))^{-1}$$

and
$$\bar{\mathcal{L}} \cdot f = \sum_{x} d_{x}(\sigma|\eta)[f(\sigma^{x}) - f(\sigma)].$$

2. Two Temperatures: Set

$$\bar{\mathcal{L}} = \epsilon \mathcal{L}^{\beta_1} + (1 - \epsilon) \mathcal{L}^{\beta}.$$

Important Remark Not reversible in finite volume! (Cycle Condition)

Previous Related Work

Perturb around independent spin-flips $\beta = 0$.

Everything is true, all techniques work

- 1. Unique invariant measure
- 2. Exponential decay of all truncated correlations.
- 3. All is analytic
- 4. Invariant measure is Gibbsian

Attractivity

Attractive dynamics: Processes started from σ, η with $\sigma \leq \eta$ can be coupled such that $\sigma_t \leq \eta_t$ almost surely. Ising Glauber has this property, perturbations possibly not.

Attractivity

Attractive dynamics: Processes started from σ, η with $\sigma \leq \eta$ can be coupled such that $\sigma_t \leq \eta_t$ almost surely. Ising Glauber has this property, perturbations possibly not.

- 1. In 1d, uniqueness phase for attractive nearest neighbour dynamics (Gray '82).
- In general, (Holley '85) shows:
 Attractive perturbations of attractive dynamics have unique invariant measures if orginal process has exp. decay of correlations.

Weak Spatial Mixing: For $\beta > \beta_c(d)$ it is known that

$$u_N^+(\sigma(0)) - \nu_N^-(\sigma(0)) \le C \mathrm{e}^{-cN}.$$

Weak Spatial Mixing: For $\beta > \beta_c(d)$ it is known that

$$u_N^+(\sigma(0)) - \nu_N^-(\sigma(0)) \le C \mathrm{e}^{-cN}.$$

Lemma (Martinelli-Oliveri '94)

Weak Spatial Mixing implies the unique stationary ν satisfies

$$\sup_{\sigma_0} |\mathbb{E}_{\sigma_0}[f(\sigma_t)] - \nu(f)| \le C \mathrm{e}^{-ct}.$$

Weak Spatial Mixing: For $\beta > \beta_c(d)$ it is known that

$$\nu_N^+(\sigma(0)) - \nu_N^-(\sigma(0)) \le C e^{-cN}.$$

Lemma (Martinelli-Oliveri '94)

Weak Spatial Mixing implies the unique stationary ν satisfies

$$\sup_{\sigma_0} |\mathbb{E}_{\sigma_0}[f(\sigma_t)] - \nu(f)| \leq C e^{-ct}.$$

Generalizable to finite range, attractive particle systems. Big problem in Non-reversible setting...

- $c_x(\sigma)$ rates of σ_t , a finite range attractive particle system.
- ▶ $d_x(\sigma)$ rates of perturbed process $\bar{\sigma}_t$. No need for attractivity!
- $M = \sup_{\sigma,x} |c_x(\sigma) d_x(\sigma)|.$

- $c_x(\sigma)$ rates of σ_t , a finite range attractive particle system.
- ▶ $d_x(\sigma)$ rates of perturbed process $\bar{\sigma}_t$. No need for attractivity!
- $M = \sup_{\sigma,x} |c_x(\sigma) d_x(\sigma)|.$

Theorem (C-DR '17)

If σ_t has Weak Spatial Mixing, then for M small enough $\bar{\sigma}_t$ has ! stationary $\bar{\nu}$ and

$$\sup_{\sigma_0} |\mathbb{E}_{\sigma_0}[f(\bar{\sigma}_t)] - \bar{\nu}(f)| \leq C \mathrm{e}^{-ct}.$$

- $c_x(\sigma)$ rates of σ_t , a finite range attractive particle system.
- ▶ $d_x(\sigma)$ rates of perturbed process $\bar{\sigma}_t$. No need for attractivity!
- $M = \sup_{\sigma,x} |c_x(\sigma) d_x(\sigma)|.$

Theorem (C-DR '17)

If σ_t has Weak Spatial Mixing, then for M small enough $\bar{\sigma}_t$ has ! stationary $\bar{\nu}$ and

$$\sup_{\sigma_0} |\mathbb{E}_{\sigma_0}[f(\bar{\sigma}_t)] - \bar{\nu}(f)| \leq C \mathrm{e}^{-ct}.$$

Theorem (C-DR '17)

Any Ising model with finite-range, positive, pair interaction has W.S.M if $h \neq 0$.

- $ightharpoonup c_x(\sigma)$ rates of σ_t , a finite range attractive particle system.
- ▶ $d_x(\sigma)$ rates of perturbed process $\bar{\sigma}_t$. No need for attractivity!
- $M = \sup_{\sigma,x} |c_x(\sigma) d_x(\sigma)|.$

Theorem (C-DR '17)

If σ_t has Weak Spatial Mixing, then for M small enough $\bar{\sigma}_t$ has ! stationary $\bar{\nu}$ and

$$\sup_{\sigma_0} |\mathbb{E}_{\sigma_0}[f(\bar{\sigma}_t)] - \bar{\nu}(f)| \leq C \mathrm{e}^{-ct}.$$

Theorem (C-DR '17)

Any Ising model with finite-range, positive, pair interaction has W.S.M if $h \neq 0$.

Corollary

First conclusion holds for Ising Glauber in entire uniqueness phase.

Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

Indep., to each x attach

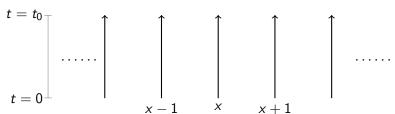
- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

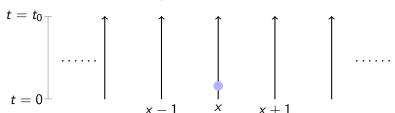


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

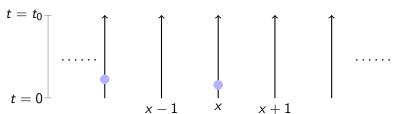


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

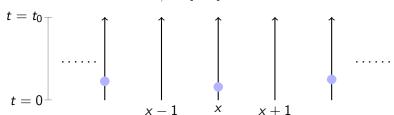


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

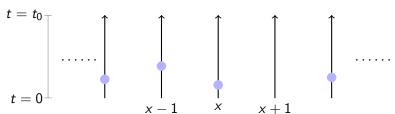


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

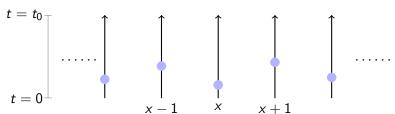


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

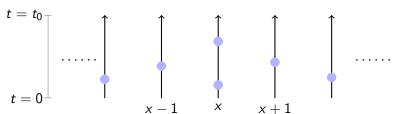


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

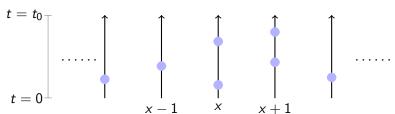


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

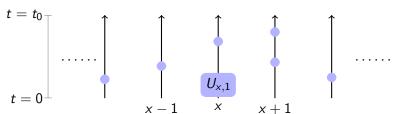


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

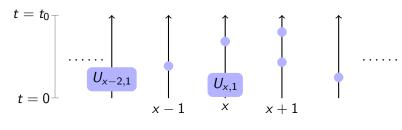


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

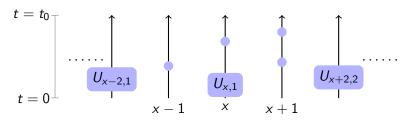


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.

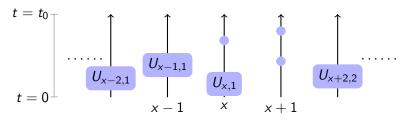


Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.



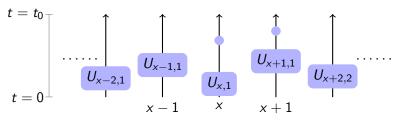
Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

Indep., to each x attach

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.



Information (Non)-Percolation

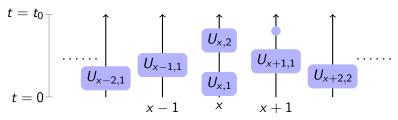
Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

 $\overline{\text{Indep.}}$, to each x attach

- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.



Information (Non)-Percolation

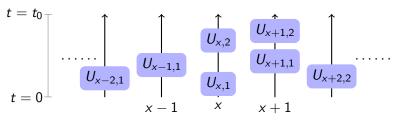
Individual Reservoirs: Fix $\epsilon, \beta > 0$ and $|\beta_x - \beta| < \epsilon$.

$$d_{\mathsf{x}}(\sigma) = (1 + \exp(\beta_{\mathsf{x}}[H(\sigma^{\mathsf{x}}) - H(\sigma)]))^{-1}$$

The Basic Coupling:

Indep., to each x attach

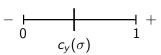
- 1. Rate 1 Poisson process $N_t(x)$.
- 2. An i.i.d. sequence $U_{x,i}$ of [0, 1] uniform variables.



If
$$\sigma_s(y) = +$$

$$t = s + \Delta t \Big| \qquad \qquad + \qquad \qquad - \qquad \qquad -$$

$$t = s \Big| \qquad \qquad \downarrow \qquad \qquad \qquad \bigcup_{y, N_s(y)} \qquad \qquad \bigcup_{y \in S(y)} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

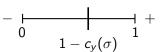


$$-\frac{U}{0}$$
 $+\frac{U}{c_{\nu}(\sigma)}$ $+\frac{U}{1}$

If
$$\sigma_s(y)=+$$
 $t=s+\Delta t$
 $t=s$
 $t=s$

$$-\frac{1}{0} \frac{U}{c_{\nu}(\sigma)} +$$

If
$$\sigma_s(y) = t = s + \Delta t$$
 $t = s$
 $t = s$

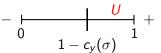


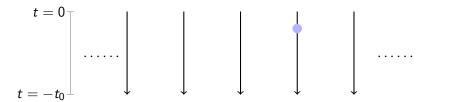
If
$$\sigma_s(y) = -$$

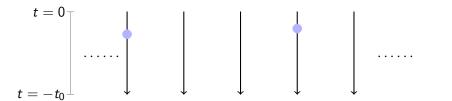
$$t = s + \Delta t \qquad \qquad + \qquad - \qquad - \qquad -$$

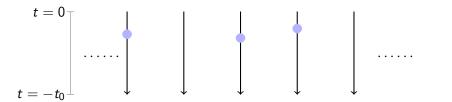
$$t = s \qquad \qquad \cup \qquad \qquad \bigcup_{y, N_s(y)} \qquad \qquad \bigcup_{y, N_s(y)} \qquad \qquad \cup \qquad \cup$$

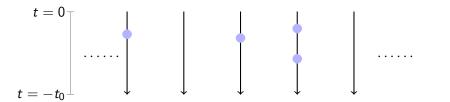
If
$$\sigma_s(y) = t = s + \Delta t$$
 $U_{y,N_s(y)}$
 $t = s$

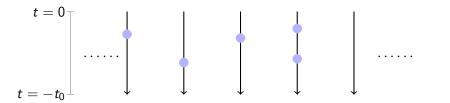


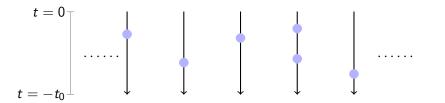


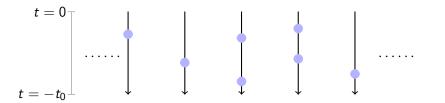


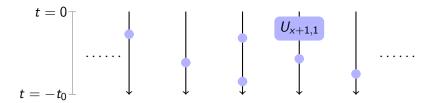


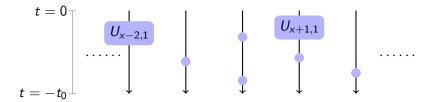


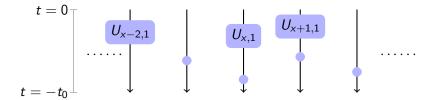


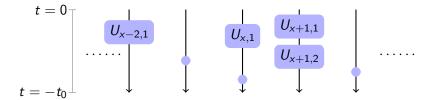


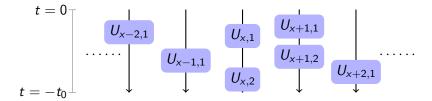


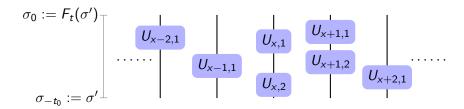








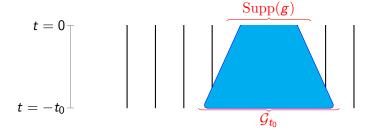




$$\sigma_0 := F_t(\sigma')$$
 $U_{x-2,1}$ $U_{x,1}$ $U_{x+1,1}$ $U_{x+1,2}$ $U_{x+2,1}$ $U_{x+2,1}$ $U_{x+2,1}$ $U_{x+2,1}$

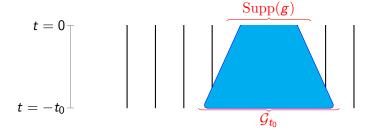
▶ Given *N*'s and *U*'s, σ_0 deterministic function of $\sigma_{-t} = \sigma'$,

$$\sigma_0 = F_t(\sigma')$$



▶ For any g local, $\mathcal{G}_t := \operatorname{Supp}_{\mathbb{Z}^d} g \circ F_t$

$$G_t = \emptyset \Leftrightarrow g \circ F_t = \text{cnst},$$



▶ For any g local, $\mathcal{G}_t := \operatorname{Supp}_{\mathbb{Z}^d} g \circ F_t$

$$\mathcal{G}_t = \emptyset \Leftrightarrow g \circ F_t = \text{cnst},$$

$$\sup_{\sigma_0} |\mathbb{E}_{\sigma_0}[g(\sigma_t)] - \nu(g)| \leq \mathbb{P}(\mathcal{G}_t \neq \varnothing).$$

Attractivity \Rightarrow

$$\mathbb{P}(\mathcal{G}_t \neq \varnothing) = \mathbb{E}_+[g(\sigma_t)] - \mathbb{E}_-[g(\sigma_t)].$$

for g increasing.

Attractivity \Rightarrow

$$\mathbb{P}(\mathcal{G}_t \neq \varnothing) = \mathbb{E}_+[g(\sigma_t)] - \mathbb{E}_-[g(\sigma_t)].$$

for g increasing.

Lemma (Lubetsky-Sly '13)

For equilibrium Ising Glauber dynamics,

$$\mathbb{E}_{+}[\sigma_{t}(0)] - \mathbb{E}_{-}[\sigma_{t}(0)] = \mathbb{P}(\mathcal{G}_{t} = \varnothing)$$

In particular $\mathbb{P}(\mathcal{G}_t = \varnothing) \leq Ce^{-ct}$.

Attractivity \Rightarrow

$$\mathbb{P}(\mathcal{G}_t \neq \varnothing) = \mathbb{E}_+[g(\sigma_t)] - \mathbb{E}_-[g(\sigma_t)].$$

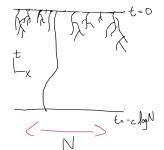
for g increasing.

Lemma (Lubetsky-Sly '13)

For equilibrium Ising Glauber dynamics,

$$\mathbb{E}_{+}[\sigma_{t}(0)] - \mathbb{E}_{-}[\sigma_{t}(0)] = \mathbb{P}(\mathcal{G}_{t} = \varnothing)$$

In particular $\mathbb{P}(\mathcal{G}_t = \varnothing) \leq Ce^{-ct}$.



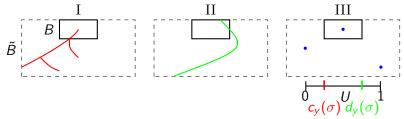
Space-Time non-Percolation

Course Graining: Fix $r, N \in \mathbb{N}$

$$B_0 = \{0, 1, \dots, rN - 1\}^d \times (0, N],$$

$$B_n = B_0 + (rNk, N\ell) \text{ for } n = (k, \ell) \in \mathbb{Z}^d \times \mathbb{Z}.$$

Bad Boxes:



A box is good o/w.

Lemma

For N large enough, and ϵ small enough (depending on N)

$$\mathbb{P}(B_n \text{ is bad}) \leq e^{-cN}.$$

Lemma

For N large enough, and ϵ small enough (depending on N)

$$\mathbb{P}(B_n \text{ is bad}) \leq e^{-cN}$$
.

Consider $\mathbf{X} := (\mathbf{1}\{B_n \text{ is bad}\})_{n \in \mathbb{Z}^{d+1}}$.

Lemma

For N large enough and ϵ small enough, **X** is dominated by subcritical site percolation (*-connected sense).

Open Questions

- 1. In uniqueness phase, is $\bar{\nu}$ Gibbs? (Redig et. al.)
- 2. Is attractivity essential in uniqueness phase? e.g.

3. Stability of Coexistence.

Open Questions

- 1. In uniqueness phase, is $\bar{\nu}$ Gibbs? (Redig et. al.)
- 2. Is attractivity essential in uniqueness phase? e.g.

3. Stability of Coexistence.

Open Questions

- 1. In uniqueness phase, is $\bar{\nu}$ Gibbs? (Redig et. al.)
- 2. Is attractivity essential in uniqueness phase? e.g.

3. Stability of Coexistence.