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Setup

» Q= {—1,1}% or Qy = {~1, 1} with Ay = [-N, N]9.

» Finite Range Markov process o; € € or € Q.
No Conservation Laws!

» Semigroup et~ : C(Q) — C(Q).
Generator L acting on local functions:

Eq[f(0¢)] = et~ - f(0).



Main Example of Interest: Ising Glauber Dynamics

1.

—Hn(oln) =

1/2 Z ox0y + Z oxny +h Z Ox

|x—y|=1,x,yeAn [x—y|=1,xEAn,y EAG, xENN

Spin Flip Operator:

o = —oyx ify=x
o, o/w.
For o € Qy,

cx(aln) = (1 + exp(B[H(o™|n) — H(a|m]))

and Ly - f(0) = 3 en,, Sx(an)[f(a*) — (o).

Similar on 2....






Invariant Measures

1. v a measure on 2. Invariance:

E,[f(o+)] = E,[f(00)]

2. For Glauber, 3 fixed:
All Gibbs measures invariant. Weak limits of

l’L’rI(I”B(U) x e BHn(en)

Others?

Structure of Gibbs measures:
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» The Big Question: Suppose 7; has generator £ "close” to
L. s the Uniqueness/Multiplicity of stationary measures
preserved?

» Caution: Glauber with Nonzero External Fields.

» Current Understanding for Glauber:
1. < Bcorh#0 Yes. (C-DR '17)

2. B> pc.and h=0 Don’t Know. Very Interesting.
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Important Remark Not reversible in finite volume! (Cycle
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X ez[ﬁy_/BX]



Previous Related Work

Perturb around independent spin-flips 5 = 0.
Everything is true, all techniques work

1. Unique invariant measure

2. Exponential decay of all truncated correlations.
3. All is analytic
4

. Invariant measure is Gibbsian
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Attractivity

Attractive dynamics: Processes started from o, 7 with ¢ < 7 can
be coupled such that o; < n; almost surely. Ising Glauber has this
property, perturbations possibly not.

1. In 1d, uniqueness phase for attractive nearest neighbour
dynamics (Gray '82).

2. In general, (Holley '85) shows:
Attractive perturbations of attractive dynamics have unique
invariant measures if orginal process has exp. decay of
correlations.
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Weak Spatial Mixing: For 5 > [.(d) it is known that
vy ((0)) = vy(a(0)) < Ce™".

Lemma (Martinelli-Oliveri '94)

Weak Spatial Mixing implies the unique stationary v satisfies
sup |Eqy, [f(0r)] — v(F)| < Ce .
a0

Generalizable to finite range, attractive particle systems.
Big problem in Non-reversible setting...
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Main Result

> cx(0o) rates of oy, a finite range attractive particle system.
» dy (o) rates of perturbed process 5;. No need for
attractivity!
» M =sup, lex(0) — dx(o)].
Theorem (C-DR '17)

If o1 has Weak Spatial Mixing, then for M small enough G; has !
stationary v and

sup |Eyy [f(5¢)] — 7(F)| < Ce™ .
o0

Theorem (C-DR '17)

Any Ising model with finite-range, positive, pair interaction has
W.S.M if h # 0.

Corollary
First conclusion holds for Ising Glauber in entire uniqueness phase.
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Coupling from Past (Propp, Wilson '96)

SLITTIe

o 5 = = E DA



TresEs

o =, «=» T 9ac



» Given N's and U'’s, oy deterministic function of o_; = o,

oo = Fi(d')
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t=0

Supp(g)

t=—1y

g to

» For any g local, G; := Suppyag o F;
Gt = J < go Fp = cnst,

sup [Eoolg(on)] = v(g)] < P(Ge # 2).
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Space-Time non-Percolation

Course Graining: Fix r, N € N

Bo={0,1,...,rN —1}% x (0, V],
By, = By + (rNk, N¢) for n = (k,0) € Z9 x Z.

Bad Boxes:

A box is good o/w.
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Lemma
For N large enough, and € small enough (depending on N)

P(By is bad) < e~ V.

Consider X := (1{Bp is bad}),czd+1.

Lemma
For N large enough and e small enough, X is dominated by
subcritical site percolation (x-connected sense).
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